

Общероссийский математический портал

М. Ф. Атья, Г. Б. Сегал, Индекс эллиптических операторов. II, YMH, 1968, том 23, выпуск 6(144), 135-149

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 188.123.230.140

4 февраля 2017 г., 15:42:25

YCHEXU MATEMATU YECKUX HAYK

УДК 517.4+513.83

ИНДЕКС ЭЛЛИПТИЧЕСКИХ ОПЕРАТОРОВ. II 1)

М. Ф. Атья и Г. Б. Сегал

содержание

Введение			 	 	 		. 135
§ 1. Теорема	локализации .		 	 	 		. 135
	Лефшеца						
§ 3. Частные	случаи и прил	кинэжог	 	 	 		. 145
Литература.			 	 	 		. 149

Введение

Цель этой статьи — показать, каким образом теорема об индексе из [5] может быть переформулирована как общая «теорема Лефшеца о неподвижной точке», похожая на изложенную в [2]. На этом пути мы получим основную теорему из [2], обобщенную на произвольные множества неподвижных точек, но только в случае, когда преобразования принадлежат к компактной группе.

Содержание этой статьи в основном топологическое, и она может рассматриваться как статья об эквивариантной К-теории на многообразиях. Весь анализ уже был проведен в [5], а здесь мы просто выразим топологический индекс в терминах множества неподвижных точек. Эта статья не очень зависит от основной теоремы из работы [5], утверждающей равенство аналитического и топологического индекса.

Как и в [5], мы используем только K-теорию и не рассматриваем когомологии. В третьей статье этой серии мы вернемся к когомологиям и получим точную формулу в терминах характеристических классов.

Основной теоремой K_G -теории, приводящей к формуле о неподвижной точке, является так называемая теорема локализаций. Мы напомним ее в § 1. В § 2 она применяется к топологическому индексу. Некоторые представляющие специальный интерес случаи рассмотрены в § 3.

§ 1. Теорема локализации

В [5] мы напомнили основные факты о функторе K_G (X) для компактной группы Ли G и локально компактного G-пространства X. Однако мы не ввели группу K_G^1 (X) и точную последовательность K_G -теории, которые

¹⁾ Перевод статьи с английского выполнен С. И. Гельфандом; первая часть опубликована в УМН 23, вып. 5 (143) (1968), стр. 99—142.

нам здесь будут нужны. Напомним [1], что мы определяем

$$K_G^{-n}(X) = K_G(\mathbf{R}^n \times X)$$

(где G тривиально действуют на \mathbf{R}^n), и теорема периодичности дает естественные изоморфизмы: $K_G^{-n} \cong K_G^{-n-2}$. Рассматривая n по модулю 2, введем

$$K_G^* = K_G^0 \oplus K_G^1 \qquad (K_G^0 = K_G).$$

Для компактной пары (X, Y) имеет место точный треугольник

$$\begin{array}{ccc} K_G^*\left(X\right) \\ \nearrow & \searrow \\ K_G^*\left(X,\ Y\right) & \stackrel{\delta}{\longleftarrow} & K_G^*\left(Y\right), \end{array}$$

где δ меняет местами K_G^0 и K_G^1 .

Вообще для любых локально компактных пространств, где Y замкнуто в X, у нас есть точный треугольник

Это сразу следует из компактного случая, если заменить X, Y их одноточечными компактификациями X^+, Y^+ и заметить, что $K_G^*(X^+, Y^+) = K_G^*(X^+ - Y^+) = K_G^*(X - Y)$.

Напомним теперь, что тензорное произведение индуцирует спаривание $K_G(X) \otimes K_G(Y) \longrightarrow K_G(X \times Y)$

для любых двух локально-компактных G-пространств X, Y. Если в частности, Y — точка, K_G (X) является модулем над K_G (точка) = R (G)—кольцом характеров G. Заменяя X на $R^1 \times X$, получим, что то же самое верно для K_G^1 (X) и, значит, для K_G^* (X). Поэтому модуль K_G^* (X) можно изучать с точки зрения коммутативной алгебры, анализируя его связь с простыми идеалами R (G). Цель этого параграфа — рассмотреть основные результаты в этом направлении.

Пусть γ — класс сопряженных элементов G. Он определяет простой идеал в R (G), состоящий из характеров, равных 0 на γ . Для каждого R (G)-модуля M обозначим через M_{γ} модуль, получающийся локализацией M по этому простому идеалу; M_{γ} будет модулем над кольцом R (G) $_{\gamma}$. Элемент R (G) $_{\gamma}$ — это «отношение» $\frac{u}{s}$, где u, $s \in R$ (G) и s (γ) $\neq 0$. При этом два отношения $\frac{u}{s}$ и $\frac{u'}{s'}$ определяют один и тот же элемент R (G) $_{\gamma}$, если существует такое $t \in R$ (G), что t (γ) $\neq 0$ и tus' = tu's. Элементами M_{γ} являются «отношения» $\frac{m}{s}$ ($m \in M$, $s \in R$ (G), s (γ) $\neq 0$) с тем же соотношением эквивалентности.

С другой стороны, если X есть G-простран**с**тво, мы можем рассмотреть подпространство

$$X^{oldsymbol{\gamma}} = igcup_{g \in oldsymbol{\gamma}} X^{oldsymbol{g}}$$

где X^g — множество неподвижных точек при действии g в X. Тогда X^γ — замкнутое 1) G-подпространство в X. Основной результат состоит в следующем.

Теорема 1.1 (покапивации). Пусть у — класс сопряженных элементов в G, $i: X^{\gamma} \longrightarrow X$ — вложение. Тогда

$$i^*: K_G(X) \longrightarrow K_G(X^{\gamma})$$

становится изоморфизмом

$$i_{\gamma}^*: K_G(X)_{\gamma} \longrightarrow K_G(X^{\gamma})_{\gamma}$$

после локализации по простому идеалу в R (G), определенному классом γ . Доказательство этой теоремы дано в [7]. Однако, поскольку эта теорема играет основную роль в нашей статье, мы коротко изложим его. Первым шагом является следующая лемма о характерах.

Лемма 1.1. Пусть H — замкнутая подгруппа компактной группы Ли G и γ — класс сопряженных элементов в G, не пересекающийся c γ . Тогда существует $\chi \in R$ (G), для которого

$$\chi(\gamma) \neq 0, \tag{i}$$

$$\chi(h) = 0$$
 для всех $h \in H$. (ii)

Для произвольной группы G доказательство леммы 1.1 неожиданно оказывается сложным. Однако для наших целей достаточно рассматривать абелевы группы. В этом случае лемма 1.1 является тривиальным следствием того, что характеры разделяют точки в фактор-группе G/H.

После локализации по простому идеалу в R (G), определяемому классом γ , элемент χ из леммы 1.1 становится (ввиду (i)) обратимым в R (G) $_{\gamma}$. Ввиду (ii) этот обратимый элемент аннулирует R (H) $_{\gamma}$, где R (H) $_{\gamma}$ естественным образом снабжается структурой R (G) $_{\gamma}$ -модуля. Поэтому мы получаем

Следствие 1.1. B обозначениях леммы 1.1. R $(H)_{v} = 0$.

Заметим теперь, что для любого класса сопряженных элементов γ в G R $(H)_{\gamma}$ является кольцом отношений R (H). Если M — R (H)-модуль, а значит, и R (G)-модуль, что M_{γ} будет R $(H)_{\gamma}$ -модулем. Поскольку все наши модули унитарны (т. е. умножение на единицу кольца оставляет на месте элементы модуля), $M_{\gamma} = 0$, как только R $(H)_{\gamma} = 0$. Это положение возникает, если γ удовлетворяет предположениям леммы 1.1 и если за M взять модуль K_G^* (X), где X — компактное G-пространство, допускающее G-отображение в G/H. Отображение

$$X \longrightarrow G/H \longrightarrow$$
 точка

приводит к отображению

$$K_{G}^{*}\left(X\right)\longleftarrow K_{G}^{*}\left(G/H\right)\longleftarrow K_{G}^{*}$$
 (точка)
$$\uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad R\left(H\right)\longleftarrow R\left(G\right),$$

так что $K_G^*(X)$ в действительности является R(H)-модулем. Мы получили, таким образом,

¹⁾ γ компактно и X^γ — образ в X замкнутого подпространства в $\gamma \times X$ при проекции $\gamma \times X \to X$.

Следствие 1.2. Пусть γ , G, H такие, как в лемме 1.1, $u \ X$ — ком-пактное G-пространство, допускающее G-отображение в G/H. Тогда

$$K_G^*(X)_{\gamma} = 0.$$

Замечание. Если Y — произвольное замкнутое G-подпространство X, то Y также допускает G-отображение в G/H и, значит, $K_G^*(Y)_{\gamma} = 0$. Точный треугольник пары (X, Y) и точность локализации показывают, что $K_G^*(X, Y)_{\gamma} = 0$.

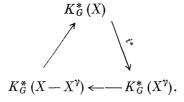
Пусть теперь X — произвольное локально компактное G-пространство, и $Y \subset H$ — орбита со стационарной группой H. Тогда мы можем найти замкнутую G-окрестность V подпространства Y в X и G-ретракцию V на Y. В общем случае это следует из существования слоения (slice) (см. [7]), но для наших целей достаточно будет применять это лишь в случае, когда X — дифференцируемое G-многообразие. В этом случае Y есть G-подмногообразие, и за V мы можем взять замкнутую трубчатую окрестность, определенную G-инвариантной римановой метрикой. В каждом случае, когда такие окрестности V орбит существуют, мы можем покрыть любое компактное G-подпространство L в X конечным числом множеств $L_i = V_i \cap L$. Если H_i — стационарная группа, связанная с V_i , то у нас есть G-отображения $L_i \to G/H_i$. Пусть теперь γ — такой класс сопряженных элементов в G, что у элементов из γ нет неподвижных точек в X. Тогда $\gamma \cap H_i = \emptyset$ для всех i и, значит, $K_G^*(L_i)_{\nu} = 0$ в силу следствия 1.2. Простая индукция по числу множеств L_i , использующая точные последовательности и приведенное выше замечание, показывает, что $K_G^*(L)_{\gamma} = 0$. Заменяя L на произвольное компактное G-подпространство L' и используя точный треугольник для (L, L'), получим, что $K_G^*(L, L')_v = 0$. Если, в частности, U — открытое относительно компактное G-подпространство в X, то

$$K_G^*(U) = K_G^*(\overline{U}, \partial \overline{U})_{\gamma} = 0.$$

Поскольку $K_G^*(X)$ является пределом прямого спектра $K_G^*(U)$ для таких U, а локализация коммутирует с взятием пределов прямого спектра, то имеет место

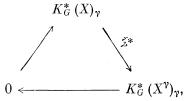
Предложение 1.1. Пусть X — локально компактное G-пространство, γ — класс сопряженных элементов G, не имеющий в X неподвижных точек. Тогда $K_G^*(X)_{\gamma} = 0$.

Предложение 1.1 является частным случаем леммы 1.1, когда $X^{\gamma}=\varnothing$. Для доказательства теоремы локализации в общем случае рассмотрим точный треугольник



Локализуем его по простому идеалу, определенному γ, и напомним, что локализация сохраняет свойство точности. Применяя предложение 1.1

к пространству $X-X^{\gamma}$ (в котором у γ нет неподвижных точек), получаем точный треугольник



который устанавливает теорему 1.1.

Замечание. Данное только что доказательство теоремы 1.1 является полным в случае, когда G абелева и X — дифференцируемое G-много-образие (заметим, что мы были осторожными и избегали использования одноточечной компактификации X). Только этот случай и будет использоваться в остальной части статьи.

§ 2. Формула Лефшеца

Пусть G — компактная группа Ли, X — компактное дифференцируемое G-многообразие. Касательное расслоение TX будет тогда дифференцируемым G-многообразием и мы можем рассмотреть группу K_G (TX). В [5] мы определили два R (G)-гомоморфизма

a-ind:
$$K_G(TX) \longrightarrow R(G)$$
,
t-ind: $K_G(TX) \longrightarrow R(G)$.

Основная теорема из [5] утверждает, что эти два гомоморфизма совпадают. В этом параграфе мы покажем, как топологический индекс t= ind может быть вычислен через множества неподвижных точек. В соединении с основной теоремой из [5] это даст «формулу Лефшеца о неподвижных точках» для эллиптических операторов. Для упрощения обозначений (и поскольку во всех случаях a-ind = t-ind) мы будем писать ind вместо t-ind. Когда нужно будет избежать ошибки, мы будем писать \inf_G^X , явно указывая рассматриваемые пространство и группу.

Напомним сначала, что в [5] мы определили функториальный гомоморфизм

$$i_!: K_G(TX) \longrightarrow K_G(TY)$$

для каждого G-вложения $i\colon X\to Y$. В терминах этого гомоморфизма топологический индекс можно определить следующим образом. Пусть $i\colon X\to E$ есть G-вложение X в пространство вещественного представления G, и пусть $j\colon P\to E$ — вложение начала координат. Тогда

$$j_!: K_G(TP) \longrightarrow K_G(TE)$$

является изоморфизмом, и тополотический индекс

ind:
$$K_G(TX) \longrightarrow K_G(TP) = R(G)$$

определяется равенством

$$ind = (i_1)^{-1} \circ i_1$$
.

Из определения (и функториальности i_1) сразу следует, что если

$$i: Z \longrightarrow X$$

есть G-вложение замкнутого многообразия Z, то диаграмма

$$K_{G}(TZ) \xrightarrow{i_{!}} K_{G}(TX)$$

$$R(G)$$

$$(2.1)$$

коммутативна.

Кроме ковариантного отображения

$$i_1: K_G(TZ) \longrightarrow K_G(TX),$$

имеется, конечно, обычное контравариантное отображение ограничения

$$i^*: K_G(TX) \longrightarrow K_G(TZ).$$

Соотношение между ними дается следующей леммой ([5], лемма 3.1). Лемма 2.1. Если $i: Z \longrightarrow X$ есть G-вложение, N — нормальное расслоение, то гомоморфизм

$$i*i_!: K_G(TZ) \longrightarrow K_G(TZ)$$

является умножением на

$$\lambda_{-1}(N \otimes_{\mathbf{R}} \mathbf{C}) = \sum (-1)^{i} \lambda^{i} (N \otimes_{\mathbf{R}} \mathbf{C}),$$

где λ^i — внешние степени, и K_G (TZ) рассматривается обычным образом как K_G (Z)-модуль.

Предположим теперь, что G — топологически циклическая группа, т. е. в G существует элемент g, степени которого плотны в G. Тогда множество неподвижных точек g будет неподвижным относительно всей группы, т. е

$$X^g = X^G$$
.

Поэтому 1) (см. [5], § 2)

$$K_G(X^g) \cong K(X^g) \otimes R(G)$$
 (2.2)

и значит, локализуя по простому идеалу в R(G), определенному классом сопряженных элементов $\{g\}$,

$$K_G(X^g)_g \cong K(X^g) \otimes R(G)_g.$$
 (2.3)

Следующая лемма (верная для любой группы G) характеризует обратимые элементы в этом кольце.

Лемма 2.2. Пусть Y — компактное пространство, на котором G действует тривиально, p — простой идеал в R (G). Тогда элемент $u \in K_G$ (Y) $_p$ обратим тогда u только тогда, когда его ограничение на каждую точку $P \in Y$ обратимо в кольце K_G (P) $_p = R$ (G) $_p$.

 $^{^{1}}$) Тензорные произведения, если не оговорено обратное, берутся над кольцом ${\bf Z}$ елых чисел.

Доказательство. Пусть 1) H^0 (Y, \mathbf{Z}) — группа непрерывных отображений $Y \to \mathbf{Z}$. Сопоставляя каждому векторному расслоению на Y его размерность (или ранг), мы получим гомоморфизм

$$rk: K(Y) \longrightarrow H^0(Y; \mathbb{Z}).$$

Этот гомоморфизм расщепляется, т. е. если $K_1\left(Y\right) = \operatorname{Ker}\left(rk\right)$, то имеет место разложение

$$K(Y) = K_1(Y) \oplus H^0(Y; \mathbb{Z}).$$

В [1], (3.1.6), показано, что каждый элемент в $K_1(Y)$ нильпотентен. Поэтому элемент из

$$K_G(Y)_p \cong K(Y) \otimes R(G)_p \cong (K_1(Y) \otimes R(G)_p) \oplus (H^0(Y; \mathbf{Z}) \otimes R(G)_p)$$

обратим тогда и только тогда, когда его образ в H^0 $(Y; \mathbf{Z}) \otimes R$ $(G)_p$ обратим. Но H^0 $(Y; \mathbf{Z}) \otimes R$ $(G)_p$ можно отождествить с кольцом непрерывных функций $Y \to R$ $(G)_p$, а элемент этого кольца обратим тогда и только тогда, когда его значение в каждой точке $P \in Y$ обратимо.

Теперь мы должны сделать некоторые замечания о множестве неподвижных точек X^g элемента $g \in G$. Поскольку G — компактная группа, мы, усреднив по G, можем предположить, что g — изометрия в некоторой римановой метрике. Пусть $P \in X^g$ и T_P^π — касательное пространство к X в P. Тогда g индуцирует линейное преобразование $g \mid T_P$ пространства T_P . Если $\xi \in T_P$ неподвижен относительно $g \mid T_P$, то неподвижной будет и геодезическая в направлении ξ . Из этого легко следует, что в окрестности точки P X^g является образом при экспоненциальном отображении 2) собственного подпространства $g \mid T_P$ с собственным значением +1. Поэтому X^g — подмногообразие X, и у линейного преобразования $g \mid N_P$, индуцированного g на нормали N_P к X^g в P, нет собственного значения +1. Другими словами,

$$\det (1 - g | N_P) \neq 0. \tag{2.4}$$

Применим теперь лемму 2.2. для получения следующей леммы.

 Π е м м а 2.3. Π усть G — топологически циклическая группа с образующей g и X — компактное G-пространство. Π усть N^g — нормальное расслоение 3) X^g в X. Tогда

$$\lambda_{-1} (N^g \otimes_{\mathbf{R}} \mathbf{C}) \in K_G (X^g)$$

становится обратимым элементом в $K_{G}(X^{g})_{g}$.

Доказательство. По лемме 2.2 достаточно рассмотреть ограничение на каждую точку $P \in X^g$. Элемент $\chi \in R(G)$, т. е. характер,

¹⁾ Для наших целей достаточен случай $Y = \sum_{i=1}^n Y_i$, где Y_i — связные пространства,

так что H^0 $(Y; \mathbf{Z})$ — свободная абелева группа, с одной образующей для каждого Y_i .

²⁾ Определенном выбранной римановой метрикой

 $^{^{3})}$ X^{g} может иметь компоненты различной размерности, так что N^{g} является векторным расслоением, размерность которого может быть различна над различными компонентами.

обратим в R $(G)_g$ тогда и только тогда, когда χ $(g) \neq 0$. Если χ — ограничение λ_{-1} $(N^g \otimes_{\mathbf{R}} \mathbb{C})$ в точке $P \in X^g$, то 1)

$$\chi(g) = \sum (-1)^i \operatorname{Tr} \lambda^i (g \mid N_P \otimes_{\mathbf{R}} \mathbb{C}) = \det_{\mathbf{C}} (1 - g \mid N_P \otimes_{\mathbf{R}} \mathbb{C}) =$$

$$= \det_{\mathbf{R}} (1 - g \mid N_P) \neq 0 \text{ в силу} \quad (2.4).$$

Доказательство закончено.

Теперь мы можем доказать наш основной результат.

 Π редложение 2.1. Пусть G — топологически циклическая группа с образующей g, X — компактное G-многообразие. Тогда

$$i_!: K_G(TX^g) \longrightarrow K_G(TX)$$

после локализации по простому идеалу в R(G), определенному g, становится изоморфизмом

$$(i_!)_g: K_G(TX^g)_g \longrightarrow K_G(TX)_g.$$

Обратный к нему равен

$$rac{i_{g}^{*}}{\lambda_{-1}\left(N_{{}^{\mathcal{S}}}igotimes_{\mathbf{R}}\mathbf{C}
ight)}$$
 ,

где ig — локализация гомоморфизма ограничения

$$i^*: K_G(TX) \longrightarrow K_G(TX^g).$$

Доказательство. По теореме 1.1 (локализации) i_g^* — изоморфизм; нужно только заметить, что по (2.4)

$$TX^g = (TX)^g$$

или, другими словами, что касательные векторы к X, неподвижные относительно g, как раз являются касательными векторами к X^g . Ввиду леммы 1.1 композиция $i^*i_!$ является умножением на λ_{-1} ($N^g\otimes_{\mathbf{R}}\mathbf{C}$). Поскольку G тривиально действует на TX^g ,

$$K_G(TX^g) \cong K(TX^g) \otimes R(G)$$

и, значит (1 обозначает группу из одного элемента),

$$\operatorname{ind}_G^{X^g} \cong \operatorname{ind}_1^{X^g} \otimes Id.$$

Поэтому зависимость $\operatorname{ind}_G^{X^g}$ от G довольно тривиальна. С другой стороны, зависимость ind_G^X от G не так тривиальна. Однако, локализуя (2.1), мы получаем коммутативную диаграмму

$$K_{G}(TX^{g})_{g} \xrightarrow{(i_{1})_{g}} K_{G}(TX)_{g}$$

$$K_{G}(TX)_{g}$$

$$R(G)_{g}$$

$$(2.5)$$

и из предложения 2.1 мы знаем, что $(i_!)_g$ — изоморфизм. Это значит, что ind_G^X , локализованный в g, можно вычислить через ind_1^X . Точнее, из предложения 2.1 и формулы (2.5) мы получаем следующее

 $^{^{1}}$) Мы пишем $\det_{\mathbf{R}}$ и $\det_{\mathbf{C}}$, когда нужно отличить детерминанты вещественных и комплексных линейных преобразований.

 Π редложение 2.2. Пусть G, g и X такие же, как в предложении 2.1, u $u \in K_G(TX)$. Тогда 1)

$$(\operatorname{ind}_{G}^{X} u)_{g} = (\operatorname{ind}_{G}^{X^{g}})_{g} \left[\frac{i^{*}u}{\lambda^{-1} (N \otimes_{\mathbf{R}} \mathbf{C})} \right]. \tag{2.6}$$

Эта формула вычисляет образ $\operatorname{ind}_G^X u$ в локализованном кольце $R(G)_g$. Более обычным способом вычисления элемента из R(G) является рассмотрение его как функции на G и вычисления значения этой функции на всех элементах G. Для вычисления этого значения на образующей g заметим, что отображение взятия значения $R(G) \to \mathbb{C}$, задающееся формулой $\chi \to \chi(g)$, проводится через локальное кольцо: отображение взятия значения $R(G)_g \to \mathbb{C}$, задаваемое формулой $\chi/\psi \to \chi(g)/\psi(g)$, определено, поскольку $\psi(g) \neq 0$. Таким образом, предложение 2.2 приводит к формуле для $(\operatorname{ind}_G^X u)(g)$. Чтобы записать ее в удобной форме, введем для каждого тривиального G-пространства Y отображение взятия значения

$$K_G(Y) \cong K(Y) \otimes R(G) \longrightarrow K(Y) \otimes C,$$

 $K_G(Y)_g \cong K(Y) \otimes R(G)_g \longrightarrow K(Y) \otimes C,$

задаваемые соответственно формулами

$$u \otimes \chi \longrightarrow u \otimes \chi(g),$$

 $u \otimes \chi/\psi \longrightarrow u \otimes \chi(g)/\psi(g),$

для $u \in K(Y)$. Беря $Y = TX^g$, мы можем вычислить (2.6) на элементе g и получаем формулу

$$(\operatorname{ind}_{G}^{X} u)(g) = (\operatorname{ind}_{1}^{X^{g}} \otimes Id) \left\{ \frac{i_{*} u(g)}{\lambda_{-1}(N^{g} \otimes_{\mathbf{R}} C)(g)} \right\}, \qquad (2.7)$$

где

$$\operatorname{ind}_{1}^{X^{g}} \otimes Id: K(TX^{g}) \otimes C \longrightarrow \mathbf{Z} \otimes C = C$$

— естественное расширение $\operatorname{ind}_1^{X^g}$, получаемое тензорным умножением на C. В (2.7) мы предположили, что G— топологически циклична и порождена элементом g. Для произвольной группы G и любого $g \in G$ обозначим через H подгруппу, порожденную g. Для $u \in K_G(TX)$ пусть u_H — элемент в $K_H(TX)$, индуцированный u. Ввиду естественности топологического индекса

$$\operatorname{ind}_{G}^{X}u\left(g\right) =\operatorname{ind}_{H}^{X}u_{H}\left(g\right) .$$

Применяя (2.7) с H вместо G, мы получаем точное выражение для топологического индекса-характера ind_G^X через обычный топологический (целочисленный) индекс различных множеств неподвижных точек; другими словами, группу G можно исключить из рассмотрения.

Если мы соединим эту формулу для топологического индекса с основной теоремой из [5], мы получим общую «формулу Лефшеца». А именно, пусть E — эллиптический комплекс на X, инвариантный относительно G и σ (E) —

¹⁾ Выражение в квадратных скобках нужно понимать, конечно, как элемент локализованного кольца K_G (TX^g) $_g$.

его последовательность символов. Она определяет элемент $u = [\sigma(E)] \in K_G(TX)$, и аналитический индекс u, вычисленный в g, есть число Лефшеца

$$L(g, E) = \sum (-1)^{i} \operatorname{Tr}(g | H^{i}(E)),$$

где $H^{i}\left(E\right) -$ группы гомологий эллиптического комплекса.

Формула (2.7) приводит теперь к следующей общей теореме Лефшеца о неподвижной точке для G-инвариантного эллиптического комплекса.

Теорема 2.1. Пусть G — компактная группа $\mathcal{J}u$, X — компактное G-многообразие, E — эллиптический комплекс на X, на котором действует G. $\mathcal{J}_{\mathcal{I}\mathcal{A}}$ каждого $g\in G$ обозначим через X^g множество неподвижных точек g, через N^g — нормальное расслоение к X^g в X. Пусть, наконец, $u=[\sigma(E)]\in K_G(TX)$ — класс символа E u $i^*u\in K_G(TX^g)$ — его ограничение на X^g . Применяя отображение взятия значения

$$K_G(TX^g) \cong K(TX^g) \otimes R(G) \longrightarrow K(TX^g) \otimes C$$

задаваемое формулой $a \otimes \chi \longrightarrow a \otimes \chi(g)$, мы можем образовать элементы $i^*u(g)$ $u \ \lambda_{-1}(N^g \otimes_{\mathbf{R}} \mathbb{C})(g)$ в $K(TX^g) \otimes \mathbb{C}$. Второй из этих элементов обратим, и поэтому можно определить

$$\frac{i^{*}u\left(g\right)}{\lambda_{-1}\left(N^{g}\bigotimes_{\mathbf{R}}\mathbf{C}\right)\left(g\right)}\in K\left(TX^{g}\right)\otimes\mathbf{C}.$$

Tогда число Лефшеца L(g,E) задается формулой

$$L(g, E) = \operatorname{ind} \left\{ \frac{i^* u(g)}{\lambda_{-1} (N^g \otimes_{\mathbf{R}} \mathbb{C})(g)} \right\}, \qquad (2.8)$$

 $e\partial e$ ind: $K(TX^g)\otimes C\longrightarrow C$ — естественное расширение топологического индекса $K(TX^g)\longrightarrow {\bf Z}.$

Замечание 1. Теорема 2.1 сводит задачу вычисления индекса в R (G), или числа Лефшеца, к вычислению обычного индекса в Z. В принципе этим можно было бы воспользоваться для доказательства равенства a-ind = t-ind c группой G из соответствующего равенства без группы. Однако это было бы довольно искусственно, поскольку основным шагом в любом случае является коммутативная диаграмма (2.1) (и для a-ind и для t-ind).

3 а м е ч а н и е 2. Применяя точную когомологическую формулу для индекса из [4] к теореме 2.1 можно, конечно, получить соответствующее выражение для $L\left(g,\;E\right)$. Это будет подробно проделано в статье III этой серии.

Замечание 3. Когда множество неподвижных точек X^g конечно, топологический индекс $K(TX^g) \to \mathbb{Z}$ тривиален и теорема 2.1 немедленно приводит к точной формуле Лефшеца из [2]. Это будет развито в следующем параграфе, а сейчас мы хотим только уточнить связь нашей теоремы 2.1 с основной теоремой из [2]. В [2] рассматриваются произвольные отображения с простыми неподвижными точками. Эти отображения не обязаны быть обратимыми, и даже если они обратимы, они могут не лежать ни в какой компактной группе автоморфизмов эллиптического комплекса. Методы деформации, пригодные в случае компактных групп (ввиду дискретности

характеров) здесь неприменимы и доказательство в [2] ведется прямым анализом. В случае, когда множество неподвижных точек имеет более высокую размерность, для прямых рассмотрений требуется более тонкий анализ, и поэтому наше использование деформаций очень выгодно, правда, лишь в тех случаях, когда оно применимо, т. е. в случае компактной группы.

Замечание 4. Правая часть формулы (2.8) является а priori произвольным комплексным числом. Число Лефшеца L(g, E) является, с другой стороны, значением характера группы G в точке g. Если, например, G конечна, эти значения должны быть целыми алгебраическими числами. Таким образом, теорема 2.1 приводит к «теоремам целочисленности» для действия групп на многообразиях. Это будет разъяснено в следующем параграфе. Следует, возможно, указать, что для циклических групп эти «теоремы целочисленности» не зависят от анализа в [5], поскольку мы определили число Лефшеца топологически.

§ 3. Частные случаи и приложения

Прежде всего, мы, как отмечено в замечании 3, рассмотрим случай, когда множество неподвижных точек X^g состоит из конечного числа точек. В этом случае

$$K\left(TX^{g}\right) =\prod_{P}K\left(P\right) ,$$

где P пробегает неподвижные точки g. Топологический индекс совпадает на каждом сомножителе K(P) с естественным изоморфизмом $K(P) \cong \mathbf{Z}$. Нормальное расслоение N^g в P совпадает с касательным пространством T_P к X в P и

$$\lambda_{-1}(T_P \otimes_{\mathbf{R}} \mathbf{C})(g) = \det(1 - g \mid T_P).$$

Если, наконец, E_i — расслоения эллиптического комплекса E, то компонента $(i^xu)_P$ есть Σ $(-1)^iE_i$ и ее значение в g равно

$$\sum (-1)^i \operatorname{Tr} (g \mid E_i).$$

Поэтому в качестве частного случая теоремы 2.1 получается

Теорема 3.1. Пусть G — компактная группа Ли, X — компактное G-многообразие, E — эллиптический комплекс на X, на котором действует G. Пусть $g \in G$ имеет конечное число неподвижных точек. Тогда число Лефшеца L(g,E) задается формулой

$$L(g, E) = \sum_{P} v(P),$$

где суммирование ведется по всем неподвижным точкам g u

$$v(P) = \frac{\sum_{i} (-1)^{i} \operatorname{Tr} (g \mid E_{i, P})}{\det (1 - g \mid T_{P})}.$$
 (3.1)

Покажем теперь, что эта формула совпадает с формулой, приведенной в [2]. Для этого рассмотрим отображение $f\colon X\longrightarrow X$, заданное формулой $f(x)=g^{-1}x$, и отображения

$$\varphi_{i, x}: E_{i, f(x)} \longrightarrow E_{i, x},$$

10 Успехи матем. наук, т. XXIII, вып. 6

определенные действием g. Отображение T_i на сечениях E_i , индуцированное (f, φ_i) , совпадает с естественным действием g: если $s \in \Gamma(E_i)$, то

$$(gs)(gx) = g(s(x))$$

или

$$(gs)(y) = g(s(g^{-1}y)) = \varphi_{i,x}s(f(y)) = (T_{i}s)(y).$$

Поэтому L(g, E) = L(T) совпадает с числом Лефшеца из [[2]. Что касается членов v(P) в [2], они определялись там формулой

$$\frac{\sum (-1)^{i} \operatorname{Tr} \varphi_{i,P}}{|\det (1-df_{P})|}.$$

Но $\varphi_{i,P} = g \mid E_{i,P}$ и $\mid df_P = g^{-1} \mid T_P$. Поскольку $g \mid T_P$ ортогональное преобразование,

$$\det (1 - g^{-1} | T_P) = \det (1 - g | T_P) > 0.$$

Поэтому

$$\det (1 - g^{-1} | T_P) = |\det (1 - df_P)|,$$

так что члены v(P) в (3.1) равны соответствующим членам в [2].

Теорема 3.1 имеет несколько интересных приложений, но поскольку эти вопросы подробно рассматривались в [3], мы не будем заниматься ими здесь.

Другой, представляющий специальный интерес случай возникает, когда X — компактное комплексное многообразие, а G — конечная группа комплексных аналитических автоморфизмов X. Пусть, кроме того, V — голоморфное векторное G-расслоение на X. Тогда комплекс Дольбо A (V)

$$\rightarrow A^{0,p}(V) \stackrel{\overline{\partial}}{\rightarrow} A^{0,p+1}(V) \rightarrow$$

(где $A^{0,p}(V)$ — дифференциальные формы типа (0,p) на X с коэффициентами из V) является эллиптическим комплексом, на котором действует G. Группы гомологий этого комплекса можно отождествить с группами когомологий $H^p(X, \mathcal{O}(V))$ пучка $\mathcal{O}(V)$ ростков голоморфных сечений V. Число Лефшеца равно поэтому

$$L(g, A(V)) = \sum_{p} (-1)^{p} \operatorname{Tr} (g \mid H^{p}(X, \Theta(V)).$$

Рассмотрим теперь множество X^g неподвижных точек элемента g. Это—комплексное [подмногообразие X. Если $a(X, V) \in K_G(TX)$ —класс символа комплекса Дольбо A(V), то его ограничение на $K_G(TX^g)$ задается равенством

$$i^*a(X, V) = a(X^g, V | X^g) \lambda_{-1}(\overline{N}^*),$$

где N — (комплексное) нормальное расслоение X^g в X. Это следует из обычного разложения внешней алгебры в прямую сумму. Кроме того, у нас есть изоморфизмы

$$N \otimes_{\mathbf{R}} \mathbf{C} \cong N \oplus \overline{N}, \quad \overline{N} \cong N^*,$$

и, значит,

$$\frac{\lambda_{-1}\left(\overline{N^*}\right)}{\lambda_{-1}\left(N\bigotimes_{\mathbf{R}}\mathbf{C}\right)} = \frac{\lambda_{-1}\left(N\right)}{\lambda_{-1}\left(N\right)\cdot\lambda_{-1}\left(N^*\right)} = \frac{1}{\lambda_{-1}\left(N^*\right)} \ .$$

Таким образом, мы получили, что

$$\frac{i^*a\left(X,\,V\right)}{\lambda_{-1}\left(N\bigotimes_{\mathbf{R}}\mathbf{C}\right)} = \frac{a\left(X^g,\,V\mid X^g\right)}{\lambda_{-1}\left(N^*\right)} = \frac{a\left(X^g\right)\left[V\mid X^g\right]}{\lambda_{-1}\left(N^*\right)}\,\,,\tag{3.2}$$

где $a(X^g)$ — класс символа комплекса Дольбо на X^g .

Если U — голоморфное векторное расслоение на компактном комплексном многообразии Y, через $\chi(Y,U)$ обычно обозначается эйлерова характеристика

$$\sum (-1)^p \dim H^p(Y, \mathcal{O}(U)),$$

т. е. индекс комплекса Дольбо $A\left(Y,\,U\right)$. Мы распространим это обозначение на любое $u\in K\left(Y\right)\otimes\mathbb{C}$, т. е. положим

$$\chi(Y, u) = \text{ind}(a(Y) \cdot u) \in \mathbb{C}.$$

В этих обозначениях (3.2) принимает вид

$$\operatorname{ind}\left\{ \frac{i^{*a}\left(X,\,V\right)\left(g\right)}{\lambda_{-1}\left(N\bigotimes_{\mathbf{R}}\mathbf{C}\right)\left(g\right)}\right\} = \chi\left(X^{g},\,\,\frac{\left[V\,|\,X^{g}\right]\left(g\right)}{\lambda_{-1}\left(N^{*}\right)\left(g\right)}\right)\,.$$

Учитывая это равенство в теореме 2.1, получаем, что имеет место следующая X е о р е м а 3.2. Пусть X — компактное комплексное многообразие, Y — голоморфное векторное расслоение на X, G — конечная группа автоморфизмов пары (X, V). Для каждого $g \in G$ через X^g обозначим множество неподвижных точек g в X, а через N^g — (комплексное) нормальное расслоение K X^g в X. Тогда

$$\sum \left(-1\right)^{p} \operatorname{Tr}\left(g \mid H^{p}\left(X, \, \mathfrak{S}\left(V\right)\right)\right) = \chi\left(X^{g}, \, \frac{\left[V \mid X^{g}\right]\left(g\right)}{\lambda_{-1}\left(\left(N^{g}\right)^{*}\right)\left(g\right)}\right) \, .$$

Замечание. В случае общего эллиптического комплекса E с классом символа u мы можем ограничить на K_G (TX^g) только u, а не сам комплекс. В голоморфном случае, однако, имеется в некотором смысле естественное ограничение, и поэтому теорему 3.2 можно сформулировать без обращения к символам.

Покажем теперь, что из теоремы 3.2 в действительности следует теорема Римана — Роха для комплексного пространства X/G. Для этого нам нужна следующая

Лемма 3.1. Пусть X, V, G — такие, как и в теореме 3.2 и $f: X \to X/G$ — проекция X на аналитическое пространство X/G. Тогда имеют место естественные изоморфизмы

$$(H^p(X, \mathcal{O}(V)))^G \cong H^p(X/G, (f_*\mathcal{O}(V))^G),$$

где ($)^{
m G}$ обозначает инвариантную часть относительно действия $\emph{G}.$

Доказательство. Напомним, что структурным пучком на X/G является, по определению, f_* $(\mathcal{O}_X)^G$. Все высшие прямые образы R^q f_* $(\mathcal{O}(V))$ $(g\geqslant 0)$ равны нулю, поскольку каждая точка $y\in X/G$ имеет базис окрестностей U таких, что f^{-1} (U) является объединением конечногочисла непересекающихся комплексных шаров. Поэтому спектральная последовательность Лере

$$H^{p}\left(X/G,\ R^{q}f_{*}\left(\mathcal{O}\left(V\right)\right)\right)\Longrightarrow H^{p+q}\left(X,\ \mathcal{O}\left(V\right)\right)$$

вырождается и приводит к изоморфизмам

$$H^{p}\left(X/G, \ f_{*}\left(\mathcal{O}\left(V\right)\right)\right) \cong H^{p}\left(X, \ \mathcal{O}\left(V\right)\right).$$

Беря инвариантные части с обеих сторон и замечая, что

$$H^p(X/G, (f_*(\mathcal{O}(V)))^G) \cong H^p(X/G, f_*(\mathcal{O}(V)))^G$$

(поскольку () G — точный функтор в категории векторных пространств над C), получаем нужный результат.

Если W — голоморфное векторное расслоение на Y=X/G, то $V=f^*W$ — голоморфное G-векторное расслоение на X и $(f_*(\mathcal{O}(V)))^G\cong\mathcal{O}(W)$. Поэтому эйлерова характеристика

$$\chi(Y, W) = \sum (-1)^p \dim H^p(Y, \Theta(W))$$

может быть вычислена из следующей теоремы:

T е о p е m а 3.3. Π усть G — конечная группа автоморфизмов компактного комплексного многообразия X и W — голоморфное векторное расслоение на комплексном пространстве Y = X/G. Tогда

$$\chi(Y, W) = \frac{1}{|G|} \sum_{g \in G} \mu(g),$$

где

$$\mu\left(g\right)=\chi\left(X^{g},\ \frac{\left[f^{*W}\left(X^{g}\right)\right]\left(g\right)}{\lambda_{-1}\left(\left(N^{g}\right)^{*}\right)\left(g\right)}\right)\ ,$$

 N^g — нормальное расслоение к X^g в X и |G| — число элементов в G. Доказательство. По лемме 3.1

$$\chi(Y, W) = \sum (-1)^p \dim H^p(X, \mathcal{O}(f^*W))^G.$$

Теорема сразу следует из соединения этого равенства с теоремой 3.2 и того, что для любого G-модуля M

$$\dim M^{G} = \frac{1}{\mid G \mid} \sum_{g \in G} \operatorname{Tr} (g \mid M).$$

Замечание 1. Теорема 3.3 сводит теорему Римана — Роха для пространства с особенностями X/G к теореме Римана — Роха для многообразий X. Поэтому если члены μ (g) выражены в точной когомологической форме, мы получим точную формулу для χ (Y, W). Это особенно интересно в случае автоморфных форм (см. [6]).

3 а м е ч а н и е 2. Возможно, что теоремы 3.2 или 3.3 обобщаются на абстрактную алгебраическую геометрию в предположении, что $\mid G \mid$ взаимно просто с характеристикой основного поля.

Другим интересным частным случаем теоремы является оператор Дирака спинорного многообразия, но мы отложим этот пример до статьи III (в случае, когда неподвижные точки изолированы, см. [3] § 8).

Теорема 2.1 становится особенно простой, если нормальное расслоение N^g на X^g будет G-тривиально (т. е. изоморфно $X^g \times M$ для некоторого G-модуля M), или если оно по крайней G-тривиально на каждой связной компоненте. В этом случае на каждой связной компоненте λ_{-1} ($N \otimes_{\mathbf{R}} \mathbf{C}$)

будет элементом R(G), значение которого в g равно

$$\lambda_{-1}(N \otimes_{\mathbf{R}} \mathbf{C})(g) = \det(1 - g \mid N_P),$$

где P— любая точка соответствующей связной компоненты, и формула (2.8) приводится к виду

$$L(g, E) = \sum_{j} \sigma_{j},$$

где суммирование ведется по всем связным компонентам X_{j}^{g} множества X_{j}^{g}

$$\sigma_{j} = \frac{1}{\det(1-g \mid N_{j})} \text{ ind } i_{j}^{*}u(g)$$

 $i^*u_j \in K_G(TX_j^g)$ и N_j —слой N в какой-нибудь точке X_j^g . Теорема 3.1, относящаяся к конечному множеству является, конечно, частным случаем ситуации, когда нормальное расслоение тривиально на каждой связной компоненте.

ЛИТЕРАТУРА

- [1] М. Ф. Атья, К-теория, М., «Мир», 1967.
- [2] M. F. Atiyah, R. Bott, The Lefschetz fixed-point theorem for elliptic complexes. I, Ann of Math. 86 (1967), 374-407.
- [3] M. F. A ti y a h, R. B o t t, The Lefschetz fixed-point theorem for elliptic complexes. II, Ann. of Math. 00 (1968).
- [4] M. F. A t i y a h, I. M. S i n g e r, The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433.
- [5] М. Ф. Атья, И. М. Зингер, Индекс эллиптических операторов. I, УМН 23, вып. 5 (143) (1968), 99—142.
- [6] Ф. Хирцебрух, Эллиптические дифференциальные операторы на многообразиях, УМН **23**, вып. 1 (139) (1968), 191—209.
- [7] G. B. Segal, Equivariant K-theory, Publ. Math. Inst. Hautes Etudes Sci (Paris) (1968).