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Introduction

Transitive Lie algebroids have specific properties that allow to look at the
transitive Lie algebroid as an element of the object of a homotopy functor.
Roughly speaking each transitive Lie algebroids can be described as a vector
bundle over the tangent bundle of the manifold which is endowed with additional
structures. Therefore transitive Lie algebroids admits a construction of inverse
image generated by a smooth mapping of smooth manifolds. The construction
can be managed as a homotopy functor from the category of smooth manifolds
to the transitive Lie algebroids. The intention of this article is to make a
classification of transitive Lie algebroids and on this basis to construct a classifying
space. The realization of the intention allows to describe characteristic classes
of transitive Lie algebroids form the point of view a natural transformation of
functors similar to the classical abstract characteristic classes for vector bundles.

1 Definitions and formulation of the problem

Given smooth manifold M let

E-STME5 M

be a vector bundle over T'M with fiber g, pr = pr-a. So we have a commutative
diagram of two vector bundles

M—M
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The diagram is endowed with additional structure (commutator braces) and
then is called ([I], definition 3.3.1, [2], definition 1.1.1) transitive Lie algebroid

E—2>TM
A= pEl lpT; {.’.}

M—M

Let f: M'—M be a smooth map. Then one can define an inverse image
(pullback) of the Lie algebroid ([I], page 156, [2], definition 1.1.4), f"(.A). This
means that given the finite dimensional Lie algebra g there is the functor A
such that with any manifold M it assigns the family A(M) of all transitive Lie
algebroids with fixed Lie algebra g.

In the dissertation [3] the following statement was proved: Each transitive Lie
algebroid is trivial, that is there is a trivialization of vector bundles E, T M, kera =
g such that

E~TM® g,

and the Lie bracket is defined by the formula:
[(Xa ’U,), (K ’U)] = ([Xv Y]v [’U,, ’U] + X(U) - Y(u))

Then using the construction of pullback and the idea by Allen Hatcher [4]
one can prove that the functor A is homotopic functor. More exactly for two
homotopic smooth maps fy, f1 : M1— M5 and for the transitive Lie algebroid

(BT My—Mo; {e, e})

two inverse images f§'(€) and f{'(A) are isomorphic.

Hence there is a final classifying space B, such that the family of all transitive
Lie algebroids with fixed Lie algebra g over the manifold M has one-to-one
correspondence with the family of homotopy classes of continuous maps [M, By

A(M) = [M, By

Using this observation one can describe the family of all characteristic classes
of a transitive Lie algebroids in terms of cohomologies of the classifying space
By. Really, from the point of view of category theory a characteristic class «
is a natural transformation from the functor A to the cohomology functor H*.
This means that for the transitive Lie algebroid & = (E-3TM—M;{e, e})
the value of the characteristic class «(€) is a cohomology class

alé) e H (M),
such that for smooth map f : M;— M we have
a(fs () = [*(a(€)) € H*(M).

Hence the family of all characteristic classes {a} for transitive Lie algebroids
with fixed Lie algebra g has a one-to-one correspondence with the cohomology
group H*(By).



On the base of these abstract considerations a natural problem can be
formulated.

Problem. Given finite dimensional Lie algebra g describe the classifying
space B, for transitive Lie algebroids in more or less understandable terms.

Below we suggest a way of solution the problem and consider some trivial
examples.

2 Description of transitive Lie algebroids using
transition functions

Consider the trivial transitive Lie algebroids
Ex~TM®g, g==DMxyg,
and the Lie bracket is defined by the formula:
(X, w), (Y, 0)] = ([X, Y], [u, 0] + X (v) = Y (u),

where X, Y € I'°(T M) are smooth vector fields, u, v € I'>°g are smooth sections
which are represented as smooth vector functions with values in the Lie algebra
g. Consider a fiberwise isomorphism A : F—F that is identical on the second
summands and generates the Lie algebra homomorphism A : T'°(E)—I'*°(E).
The isomorphism A can be written by formula:

(’U,Y) = A(U,X);
(v, X) = (o(z)(u(z)) + w(X), X),

where ¢(z) : g—>g is a fiberwise map of the bundle g, and w is a differential
form with values in g. The isomorphism A can be expressed as a matrix

v(@) \ _ [ ela) w ) ([ ul)
Y o 0 1 X
From the property of that A is a Lie algebra homomorphism:
'A([(Xv u)? (Yv U)]) = ['A(Xv u)v A(Yv U)]
one has that

(@) ([ur (2), uz(2)]) = [p(2) (u1 (2), () (uz(2)))),

dw (X1, X2) + [w(X1), w(X2)] =0, (1)

dp(X)(u) = [p(u), w(X)].
Consider an atlas of charts on the manifold M, {4}, |JU, = M, and the

trivializations F,, % TU, ® (U, X g) of the Lie algebroid E over each chart U,
with the Lie brackets defined by the formula

(X, w), (Y, 0)] = ([X, Y], [u, o] + X (v) = Y (u)),



for X, Y € T°(TU,), u,v € I>°(U, X g).
On the intersection of two charts U,g = U, N Ug we have the transition
function

Ppo = PP, : TUap ® (Uap X 9)—TUap ® (Uap X g)

which have the matrix form

()= (9)- (74 2)(%)

For another choice of trivializations @/, the correspondent transition functions
(I)/Ba satisfy the homology condition:

P = Hg - Pgo - H'

(63

or

( %%(I) Wle ) _

( (%) pa éx)n; Yx) —np(r)ppalz)ng 1(171% +ng(T)wsa + 1p )

)

. Py () = 1 (@) 50 ()5 (2),

Wi = —18(2)0pa ()15 () o + N (T)wpa + pp-
The elements ng and ug satisfy similar () conditions:

1 () ([ur (2), ua(2)]) = [ns(2) (ur(2)), ns (x) (uz(2))]),
dpg (X1, Xa) + [ps(X1), np(X2)] = 0,
dng (X) () = [np(w), pp(X)].

3 Case of commutative Lie algebra g

In commutative case the conditions () have for simple form:

ppa(@)([u1 (@), u2(2)]) = [ppa(r)(u1(2)), Ppa () (u2(2))]),

dw,@a(Xl,Xg) = 0, (2)

dppa(X)(u) = 0.



Hence
©ga(z) = const .

This means that the vector bundle g is flat and the family w = {wg, } defines
a Cech cochain

w e CHH, Q(9))
in the bigraded Cech complex

o = {@ Ci(4h, QI (g);d = d' + d"}

where il = {U,} is the atlas of charts.
One has
d(w)=0; d'(w)=0.

Hence w defines cohomology class
[w] € H?(M;g).
Therefore we have the following

Theorem 1 The classification of all transitive Lie algebroids with fized commutative
Lie algebra g over the manifold M s determined by a flat Lie algebra bundle g
over M and a 2-dimensional cohomology class [w] € H*(M; g).

4 Some general properties

In common case we can say that a little bit about the transition functions on
the level of homology groups H.(g) of the Lie algebra g. Since each transition
function ¢gq(z) is the homomorphism of the Lie algebra g, that is ¢gq(x) €
Aut(g), the cocycle {¢ga(x)} generate associated bundles with fibers H.(g),
say, H.(g), and bundles with fibers H*(g),H*(g). The properties () imply that
all bundles H.(g) and H*(g) are flat. In particular the differential forms wg, €
O (Uap; §) generates the cocycle

= {Wpa} € C' (8, Hi(g) @Q Uapi Hi(9)),
that is
d'(@) =0,
d"(w) = 0.

This means that the cocycle w induces a cohomology class
@ e B2 (M; ().

The foregoing consideration creates a conjecture that classification of the
transitive Lie algebroid E induces by two things: the Lie algebra bundle with



—~

structural group Aut(g) with special topology and the cohomology class [w] €

H? (M;Hl(g)). The special topology in the group Aut(g) is defined as a

minimal topology, which is more fine topology than the classical topology in
Aut(g) and such that all homomorphisms

Aut (g) —Aut (Hk (g))discrete

are continuous.
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