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Abstract

We investigate orthonormality-preserving, C∗-conformal and conformal module mappings on full Hilbert
C∗-modules to obtain their general structure. Orthogonality-preserving bounded module maps T act as
a multiplication by an element λ of the center of the multiplier algebra of the C∗-algebra of coeffi-
cients combined with an isometric module operator as long as some polar decomposition conditions for
the specific element λ are fulfilled inside that multiplier algebra. Generally, T always fulfills the equality
〈T (x), T (y)〉 = |λ|2〈x, y〉 for any elements x, y of the Hilbert C∗-module. At the contrary, C∗-conformal
and conformal bounded module maps are shown to be only the positive real multiples of isometric module
operators.
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The set of all orthogonality-preserving bounded linear mappings on Hilbert spaces is fairly
asy to describe, and it coincides with the set of all conformal linear mappings there: a linear
ap T between two Hilbert spaces H1 and H2 is orthogonality-preserving if and only if T is

he scalar multiple of an isometry V with V ∗V = idH1 . Furthermore, the set of all orthogonality-
reserving mappings {λ ·V : λ ∈ C, V ∗V = idH1} corresponds to the set of all those maps which
ransfer tight frames of H1 into tight frames of (norm-closed) subspaces V (H1) of H2, cf. [13].

The latter fact transfers to the more general situation of standard tight frames of Hilbert C∗-
odules in case the image submodule is an orthogonal summand of the target Hilbert C∗-module,

f. [9, Prop. 5.10]. Also, module isometries of Hilbert C∗-modules are always induced by mod-
le unitary operators between them [16], [14, Prop. 2.3]. However, in case of a non-trivial center
f the multiplier algebra of the C∗-algebra of coefficients the property of a bounded mod-
le map to be merely orthogonality-preserving might not infer the property of that map to be
C∗-)conformal or even isometric. So the goal of the present note is to derive the structure of
rbitrary orthogonality-preserving, C∗-conformal or conformal bounded module mappings on
ilbert C∗-modules over (non-)unital C∗-algebras without any further assumption.
Partial solutions can be found in a publication by D. Ilišević and A. Turnšek for C∗-algebras A

f coefficients which admit a faithful ∗-representation π on some Hilbert space H such that
(H) ⊆ π(A) ⊆ B(H), cf. [14, Thm. 3.1]. Orthogonality-preserving mappings have been men-

ioned also in a paper by J. Chmieliński, D. Ilišević, M.S. Moslehian, Gh. Sadeghi, [7, Thm. 2.2].
or C∗-algebras results can be found in [4]. In two working drafts [17,18] by Chi-Wai Leung,
hi-Keung Ng and Ngai-Ching Wong found by a Google search in May 2009 we obtained further
artial results on orthogonality-preserving linear mappings on Hilbert C∗-modules.

Orthogonality-preserving bounded linear mappings between C∗-algebras have been consid-
red by J. Schweizer in his Habilitation thesis in 1996 [22, Props. 4.5–4.8]. His results are of
nterest in application to the linking C∗-algebras of Hilbert C∗-modules.

A bounded module map T on a Hilbert C∗-module M is said to be orthogonality-
reserving if 〈T (x), T (y)〉 = 0 in case 〈x, y〉 = 0 for certain x, y ∈ M. In particular, for two
ilbert C∗-modules M, N over some C∗-algebra A a bounded module map T : M → N is
rthogonality-preserving if and only if the validity of the inequality 〈x, x〉 � 〈x + ay, x + ay〉
or some x, y ∈ M and any a ∈ A forces the validity of the inequality 〈T (x), T (x)〉 �
T (x) + aT (y), T (x) + aT (y)〉 for any a ∈ A, cf. [14, Cor. 2.2]. So the property of a bounded
odule map to be orthogonality-preserving has a geometrical meaning considering pairwise

rthogonal one-dimensional C∗-submodules and their orthogonality in a geometric sense.
Orthogonality of elements of Hilbert C∗-modules with respect to their C∗-valued inner prod-

cts is different from the classical James–Birkhoff orthogonality defined with respect to the
orm derived from the C∗-valued inner products, in general. Nevertheless, the results are sim-
lar in both situations, and the roots of both these problem fields coincide for the particular
ituation of Hilbert spaces. For results in this parallel direction the reader might consult publica-
ions by A. Koldobsky [15], by A. Turnšek [25], by J. Chmieliński [5,6], and by A. Blanco and
. Turnšek [3], among others.
Further resorting to C∗-conformal or conformal mappings on Hilbert C∗-modules, i.e.

ounded module maps preserving either a generalized C∗-valued angle 〈x, y〉/‖x‖‖y‖ for
ny x, y of the Hilbert C∗-module or its normed value, we consider a particular situation of
rthogonality-preserving mappings. Surprisingly, both these sets of orthogonality-preserving and
f (C∗-)conformal mappings are found to be different in case of a non-trivial center of the mul-
iplier algebra of the underlying C∗-algebra of coefficients.
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.

The content of the present paper is organized as follows. In the following section we inves-
tigate the general structure of orthogonality-preserving bounded module mappings on Hilbert
C∗-modules. The results are formulated in Theorems 3 and 4. In the last section we char-
acterize C∗-conformal and conformal bounded module mappings on Hilbert C∗-modules, see
Theorems 6 and 8.

Since we rely only on the very basics of ∗-representation and duality theory of C∗-algebras
and of Hilbert C∗-module theory, respectively, we refer the reader to the monographs by M. Take-
saki [24] and by V.M. Manuilov and E.V. Troitsky [19], or to other relevant monographical
publications for basic facts and methods of both these theories.

1. Orthogonality-preserving mappings

The set of all orthogonality-preserving bounded linear mappings on Hilbert spaces is fairly
easy to describe. For a given Hilbert space H it consists of all scalar multiples of isometries V ,
where an isometry is a map V :H → H such that V ∗V = idH . Any bounded linear orthogonality-
preserving map T induces a bounded linear map T ∗T :H → H . For a non-zero element x ∈ H

set T ∗T (x) = λxx + z with z ∈ {x}⊥ and λx ∈ C. Then the given relation 〈x, z〉 = 0 induces the
equality

0 = 〈
T (x), T (z)

〉 = 〈
T ∗T (x), z

〉 = 〈λxx + z, z〉 = 〈z, z〉.

Therefore, z = 0 by the non-degenerateness of the inner product, and λx � 0 by the positivity
of T ∗T . Furthermore, for two orthogonal elements x, y ∈ H one has the equality

λx+y(x + y) = T ∗T (x + y) = λxx + λyy

which induces the equality λx+y〈x, x〉 = λx〈x, x〉 after scalar multiplication by x ∈ H . Since the
element 〈x, x〉 is invertible in C we can conclude that the orthogonality-preserving operator T

induces an operator T ∗T which acts as a positive scalar multiple λ · idH of the identity operator
on any orthonormal basis of the Hilbert space H . So T ∗T = λ · idH on the Hilbert space H by
linear continuation. The polar decomposition of T inside the von Neumann algebra B(H) of
all bounded linear operators on H gives us the equality T = √

λV for an isometry V :H → H ,
i.e. with V ∗V = idH . The positive number

√
λ can be replaced by an arbitrary complex number

of the same modulus multiplying by a unitary u ∈ C. In this case the isometry V has to be
replaced by the isometry u∗V to yield another decomposition of T in a more general form.

As a natural generalization of the described situation one may change the algebra of coeffi-
cients to arbitrary C∗-algebras A and the Hilbert spaces to C∗-valued inner product A-modules,
the (pre-)Hilbert C∗-modules. Hilbert C∗-modules are an often used tool in the study of locally
compact quantum groups and their representations, in noncommutative geometry, in KK-theory,
and in the study of completely positive maps between C∗-algebras, among other research fields.

To be more precise, a (left) pre-Hilbert C∗-module over a (not necessarily unital) C∗-algebra
A is a left A-module M equipped with an A-valued inner product 〈·,·〉 : M × M → A, which
is A-linear in the first variable and has the properties 〈x, y〉 = 〈y, x〉∗, 〈x, x〉 � 0 with equality
if and only if x = 0. We always suppose that the linear structures of A and M are compatible
A pre-Hilbert A-module M is called a Hilbert A-module if M is a Banach space with respect to
the norm ‖x‖ = ‖〈x, x〉‖1/2.
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Consider bounded module orthogonality-preserving maps T on Hilbert C∗-modules M. For
everal reasons we cannot repeat the simple arguments given for Hilbert spaces in the situa-
ion of an arbitrary Hilbert C∗-module, in general. First of all, the bounded module operator T

ight not admit a bounded module operator T ∗ as its adjoint operator, i.e. satisfying the equal-
ty 〈T (x), y〉 = 〈x,T ∗(y)〉 for any x, y ∈ M. Secondly, orthogonal complements of subsets of
Hilbert C∗-module might not be orthogonal direct summands of it. Last but not least, Hilbert
∗-modules might not admit analogs (in a wide sense) of orthogonal bases. So the understand-

ng of the nature of bounded module orthogonality-preserving operators on Hilbert C∗-modules
nvolves both more global and other kinds of localization arguments.

xample 1. Let A be the C∗-algebra of continuous functions on the unit interval [0,1] equipped
ith the usual Borel topology. Let I = C0((0,1]) be the C∗-subalgebra of all continuous func-

ions on [0,1] vanishing at zero. I is a norm-closed two-sided ideal of A.
Let M1 = A ⊕ A be the Hilbert A-module that consists of two copies of A, equipped with

he standard A-valued inner product on it. Consider the multiplication T1 of both parts of M1 by
he function a(t) ∈ A, a(t) := t for any t ∈ [0,1]. Obviously, the map T1 is bounded, A-linear,
njective and orthogonality-preserving. However, its range is even not norm-closed in M1.

Let M2 = I ⊕ l2(A) be the orthogonal direct sum of a proper ideal I of A and of the stan-
ard countably generated Hilbert A-module l2(A). Consider the shift operator T2 : M2 → M2
efined by the formula T2((i, a1, a2, . . .)) = (0, i, a1, a2, . . .) for ak ∈ A, i ∈ I . It is an isometric
-linear embedding of M2 into itself and, hence, orthogonality-preserving, however T2 is not

djointable.

To formulate the result on orthogonality-preserving mappings we need a construction by
.L. Paschke [20]: for any Hilbert A-module M over any C∗-algebra A one can extend M

anonically to a Hilbert A∗∗-module M# over the bidual Banach space and von Neumann alge-
ra A∗∗ of A [20, Thm. 3.2, Prop. 3.8, §4]. For this aim the A∗∗-valued pre-inner product can be
efined by the formula

[a ⊗ x, b ⊗ y] = a〈x, y〉b∗,

or elementary tensors of A∗∗⊗M , where a, b ∈ A∗∗, x, y ∈ M . The quotient module of A∗∗⊗M

y the set of all isotropic vectors is denoted by M#. It can be canonically completed to a self-
ual Hilbert A∗∗-module N which is isometrically algebraically isomorphic to the A∗∗-dual
∗∗-module of M#. N is a dual Banach space itself (cf. [20, Thm. 3.2, Prop. 3.8, §4]). Every
-linear bounded map T : M → M can be continued to a unique A∗∗-linear map T : M# → M#

reserving the operator norm and obeying the canonical embedding π ′(M) of M into M#.
imilarly, T can be further extended to the self-dual Hilbert A∗∗-module N . The extension

s such that the isometrically algebraically embedded copy π ′(M) of M in N is a w∗-dense
-submodule of N , and that A-valued inner product values of elements of M embedded in N

re preserved with respect to the A∗∗-valued inner product on N and to the canonical isometric
mbedding π of A into its bidual Banach space A∗∗. Any bounded A-linear operator T on M
xtends to a unique bounded A∗∗-linear operator on N preserving the operator norm, cf. [20,
rop. 3.6, Cor. 3.7, §4]. The extension of bounded A-linear operators from M to N is contin-
ous with respect to the w∗-topology on N . For topological characterizations of self-duality of
ilbert C∗-modules over W ∗-algebras we refer to [20], [8, Thm. 3.2] and to [22,23]: a Hilbert
∗-module K over a W ∗-algebra B is self-dual, if and only if its unit ball is complete with respect
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to the topology induced by the semi-norms {|f (〈., x〉)|: x ∈ K, f ∈ B∗, ‖x‖ � 1, ‖f ‖ � 1},
if and only if its unit ball is complete with respect to the topology induced by the semi-norms
{f (〈·,·〉)1/2: f ∈ B∗, ‖x‖ � 1, ‖f ‖ � 1}. The first topology coincides with the w∗-topology
on K in that case.

Note, that in the construction above M is always w∗-dense in N , as well as for any subset
of M the respective construction is w∗-dense in its biorthogonal complement with respect to N .
However, starting with a subset of N its biorthogonal complement with respect to N might not
have a w∗-dense intersection with the embedding of M into N , cf. [21, Prop. 3.11.9].

Example 2. Let A be the C∗-algebra of all continuous functions on the unit interval, i.e.
A = C([0,1]). In case we consider A as a Hilbert C∗-module over itself and an orthogonality-
preserving map T0 defined by the multiplication by the function a(t) = t · (sin(1/t)+ i cos(1/t))

we obtain that the operator T0 cannot be written as the combination of a multiplication by a
positive element of A and of an isometric module operator U0 on M = A. The reason for this
phenomenon is the lack of a polar decomposition of a(t) inside A. Only a lift to the bidual
von Neumann algebra A∗∗ of A restores the simple description of the continued operator T0 as
the combination of a multiplication by a positive element (of the center) of A and an isometric
module operator on M# = N = A∗∗. The unitary part of a(t) is a so-called local multiplier of
C([0,1]), i.e. a multiplier of C0((0,1]). But it is not a multiplier of C([0,1]) itself. We shall
show that this example is a very canonical one.

We are going to demonstrate the following fact on the nature of orthogonality-preserving
bounded module mappings on Hilbert C∗-modules. Without loss of generality, one may assume
that the range of the A-valued inner product on M in A is norm-dense in A. Such Hilbert C∗-
modules are called full Hilbert C∗-modules. Otherwise A has to be replaced by the range of the
A-valued inner product which is always a two-sided norm-closed ∗-ideal of A. The sets of all
adjointable bounded module operators and of all bounded module operators on M, respectively,
are invariant with respect to such changes of sets of coefficients of Hilbert C∗-modules, cf. [20].

Theorem 3. Let A be a C∗-algebra, M be a full Hilbert A-module and M# be its canonical
A∗∗-extension. Any orthogonality-preserving bounded A-linear operator T on M is of the form
T = λV , where V : M# → M# is an isometric A-linear embedding and λ is a positive element
of the center Z(M(A)) of the multiplier algebra M(A) of A.

If any element λ′ ∈ Z(M(A)) with |λ′| = λ admits a polar decomposition inside Z(M(A))

then the operator V preserves π ′(M) ⊂ M#. So T = λ · V on M.

In [14, Thm. 3.1] D. Ilišević and A. Turnšek proved Theorem 3 for the particular case if for
some Hilbert space H the C∗-algebra A admits an isometric representation π on H with the
property K(H) ⊂ π(A) ⊂ B(H). In this situation Z(M(A)) = C.

Proof. We want to make use of the canonical non-degenerate isometric ∗-representation π of a
C∗-algebra A in its bidual Banach space and von Neumann algebra A∗∗ of A, as well as of its
extension π ′ : M → M# → N and of its operator extension. That is, we switch from the triple
{A, M, T } to the triple {A∗∗, M# ⊆ N , T }.

We have to demonstrate that for orthogonality-preserving bounded A-linear mappings T

on M the respective extended bounded A∗∗-linear operator on N is still orthogonality-
preserving for N . Let x be an element of N and denote by K its biorthogonal complement
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ith respect to N . Then K is a direct orthogonal summand of N because N and K are self-dual
ilbert A∗∗-modules. Consider any positive normal state f on A∗∗ with f (〈x, x〉) �= 0. Since

he A-valued inner product 〈·,·〉 on M continues to an A∗∗-valued inner product 〈·,·〉 on N in a
nique way by [20, Thm. 3.2], the possibly degenerated complex-valued inner product f (〈·,·〉)
n M continues to a possibly degenerated complex-valued inner product f (〈·,·〉) on N in a
nique way. Consider x ∈ N and its module-biorthogonal complement K with respect to N . The
ntersection of K with the isometrically embedded copy of M in N has to be a weakly-dense
ubset of K after factorization by the kernel of f (〈·,·〉)1/2, otherwise the continuation of f (〈·,·〉)
rom M ∩ K to K would be non-unique. So x can be represented as a weak limit of a Hilbert space
equence of the subset (K ∩ M)/kernel(f (〈·,·〉)1/2) in N /kernel(f (〈·,·〉)1/2). Now, take another
on-trivial element y ∈ N with 〈x, y〉 = 0. Then the module-biorthogonal complement L of y

ith respect to N is orthogonal to K. Repeat the construction for y fixing f . Since f (〈z, t〉) = 0
or any z ∈ (K ∩ M)/kernel(f (〈·,·〉)1/2) and any t ∈ (L ∩ M)/kernel(f (〈·,·〉)1/2), and since
hese sets are weakly dense in K/kernel(f (〈·,·〉)1/2) and L/kernel(f (〈·,·〉)1/2), respectively,
he weak continuity of the map T and the jointly weak continuity of inner products forces
(〈T (z), T (t)〉) = 0. Since f has been selected arbitrarily, 〈x, y〉 = 0 for some x, y ∈ N forces

T (x), T (y)〉 = 0. Note, that the arguments are so complicated because K or L might have non-
◦∗-dense intersections with M ⊆ N by [21, Prop. 3.11.9].
Next, we want to consider only discrete W ∗-algebras, i.e. W ∗-algebras for which the supre-

um of all minimal projections contained in them equals their identity. (We prefer to use the
ord discrete instead of atomic.) To connect to the general C∗-case we make use of a theorem
y Ch.A. Akemann stating that the ∗-homomorphism of a C∗-algebra A into the discrete part
f its bidual von Neumann algebra A∗∗ which arises as the composition of the canonical em-
edding π of A into A∗∗ followed by the projection ρ to the discrete part of A∗∗ is an injective
-homomorphism, [1, p. 278] and [2, p. I]. The injective ∗-homomorphism ρ is partially imple-
ented by a central projection p ∈ Z(A∗∗) in such a way that A∗∗ multiplied by p gives the

iscrete part of A∗∗. Applying this approach to our situation we reduce the problem further by
nvestigating the triple {pA∗∗,pN ,pT } instead of the triple {A∗∗, N , T }, where we rely on the
njectivity of the algebraic embeddings ρ ◦ π :A → pA∗∗ and ρ′ ◦ π ′ : M → pN . The latter
ap is injective since 〈x, x〉 �= 0 forces 〈px,px〉 = p〈x, x〉 = ρ ◦ π(〈x, x〉) �= 0. Obviously, the

ounded pA∗∗-linear operator pT is orthogonality-preserving for the self-dual Hilbert pA∗∗-
odule pN because the orthogonal projection of N onto pN and the operator T commute, and

oth they are orthogonality-preserving.
In the sequel we have to consider the multiplier algebra M(A) and the left multiplier algebra

M(A) of the C∗-algebra A. By [21] every non-degenerate injective ∗-representation of A in a
on Neumann algebra B extends to an injective ∗-representation of the multiplier algebra M(A)

n B and to an isometric algebraic representation of the left multiplier algebra LM(A) of A pre-
erving the strict and the left strict topologies on M(A) and on LM(A), respectively. In particular,
he injective ∗-representation ρ ◦ φ extends to M(A) and to LM(A) in such a way that

ρ ◦ φ
(
M(A)

) = {
b ∈ pA∗∗: bρ ◦ φ(a) ∈ A, ρ ◦ φ(a)b ∈ A for every a ∈ A

}
,

ρ ◦ φ
(
LM(A)

) = {
b ∈ pA∗∗: bρ ◦ φ(a) ∈ A for every a ∈ A

}
.

ince Z(LM(A)) = Z(M(A)) for the multiplier algebra of A of every C∗-algebra A, we have
he description

ρ ◦ φ
(
Z

(
M(A)

)) = {
b ∈ pA∗∗: bρ ◦ φ(a) = ρ ◦ φ(a)b ∈ A for every a ∈ A

}
.
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Since the von Neumann algebra pA∗∗ is discrete the identity p can be represented as the
w∗-sum of a maximal set of pairwise orthogonal atomic projections {qα: α ∈ I } of the center
Z(pA∗∗) of pA∗∗. Note, that

∑
α∈I qα = p. Select a single atomic projection qα ∈ Z(pA∗∗)

of this collection and consider the part {qαpA∗∗, qαpN , qαpT } of the problem for every single
α ∈ I .

By [14, Thm. 3.1] the operator qαpT can be described as a non-negative constant λqα mul-
tiplied by an isometry Vqα on the Hilbert qαpA∗∗-module qαpN , where the isometry Vqα

preserves the qαpA-submodule qαpM inside qαpN since the operator qαpT preserves it, and
multiplication by a positive number does not change this fact. In case λqα = 0 we set simply
Vqα = 0.

We have to show the existence of global operators on the Hilbert pA∗∗-module pN build as
w∗-limits of nets of finite sums with pairwise distinct summands of the sets {λqαqα: α ∈ I } and
{qαVqα : α ∈ I }, respectively. Additionally, we have to establish key properties of them. First,
note that the collection of all finite sums with pairwise distinct summands of {λqαqα: α ∈ I }
form an increasingly directed net of positive elements of the center of the operator algebra
EndpA∗∗(pN ), which is ∗-isomorphic to the von Neumann algebra Z(pA∗∗). This net is bounded
by ‖pT ‖ · idpN since the operator pT admits an adjoint operator on the self-dual Hilbert
pA∗∗-module pN by [20, Prop. 3.4] and since for any finite subset I0 of I the inequality

0 �
∑
α∈I0

λ2
qα

· idqαpN =
∑
α∈I0

qαpT ∗T � pT ∗T � ‖pT ‖2 · idpN

holds in the operator algebra EndpA∗∗(pN ), the center of which is ∗-isomorphic to Z(pA∗∗).
Therefore, the supremum of this increasingly directed bounded net of positive elements exists
as an element of the center of the operator algebra EndpA∗∗(pN ), which is ∗-isomorphic to the
von Neumann algebra Z(pA∗∗). We denote the supremum of this net by λp . By construction and
by the w∗-continuity of transfers to suprema of increasingly directed bounded nets of self-adjoint
elements of von Neumann algebras we have the equality

λp = w∗- lim
I0⊆I

∑
α∈I0

λqα · qα ∈ Z
(
pA∗∗) ≡ Z

(
EndpA∗∗(pN )

)

where I0 runs over the partially ordered net of all finite subsets of I . Since 〈qαpT ∗T (z), z〉 =
λ2

qα
qα〈z, z〉 for any z ∈ qα N and for any α ∈ I , we arrive at the equality

〈
pT ∗T (z), z

〉 = λ2
p · p〈z, z〉

for any z ∈ pN and for the constructed positive element λp ∈ Z(pA∗∗) ≡ Z(EndpA∗∗(pN )).
Consequently, the operator pT can be written as pT = λpVp for some isometric pA∗∗-linear
map Vp ∈ EndpA∗∗(pN ), cf. [14, Prop. 2.3].

Consider the operator pT on pN . Since the formula

〈
pT (x),pT (x)

〉 = λ2
p〈x, x〉 ∈ ρ ◦ π(A) (1)

holds for any x ∈ ρ′ ◦ π ′(M) ⊆ pN and since the range of the A-valued inner product on M is
supposed to be the entire C∗-algebra A, the right side of this equality and the multiplier theory
of C∗-algebras forces λ2

p ∈ LM(pA) ∩ Z(pA∗∗) = Z(M(ρ ◦ π(A))) = ρ ◦ π(Z(M(A))) [21].
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aking the square root of λ2
p in a C∗-algebraical sense is an operation which results in a (unique)

ositive element of the C∗-algebra itself. So we arrive at λp ∈ ρ ◦π(Z(M(A))) as the square root
f λ2

p � 0. In particular, the operator λp · idpN preserves the ρ ◦ π(A)-submodule ρ′ ◦ π ′(M).
As a consequence, we can lift the bounded pA∗∗-linear orthogonality-preserving operator pT

n pN back to M# since A∗∗ allows polar decomposition for any element, the embedding
◦ π :A → pA∗∗ and the module and operator mappings, induced by ρ ◦ π and by Paschke’s

mbedding were isometrically and algebraically, just by multiplying with or, respectively, acting
y p in the second step. So we obtain a decomposition T = λV of T ∈ EndA(M) with a pos-
tive function λ ∈ Z(M(A)) ≡ Z(EndA(M)) derived from λp , and with an isometric A-linear
mbedding V ∈ EndA(M#), V derived from Vp .

In case any element λ′ ∈ Z(M(A)) with |λ′| = λ admits a polar decomposition inside
(M(A)) then the operator V preserves π ′(M) ⊂ M#. So T = λ · V on M.
For completeness just note, that the adjointability of V goes lost on this last step of the proof

n case T has not been adjointable on M in the very beginning. �
heorem 4. Let A be a C∗-algebra and M be a Hilbert A-module. Any orthogonality-preserving
ounded A-linear operator T on M fulfills the equality

〈
T (x), T (y)

〉 = κ〈x, y〉

or a certain T -specific positive element κ ∈ Z(M(A)) and for any x, y ∈ M.

roof. We have only to remark that the values of the A-valued inner product on M do not
hange if M is canonically embedded into M# or N . Then the obtained formula works in the
idual situation, cf. (1). �
roblem 1. We conjecture that any orthogonality-preserving map T on Hilbert A-modules M
ver C∗-algebras A are of the form T = λV for some element λ ∈ Z(M(A)) and some A-linear
sometry V : M → M. To solve this problem one has possibly to solve the problem of general
olar decomposition of arbitrary elements of (commutative) C∗-algebras inside corresponding
ocal multiplier algebras or in similarly derived algebras.

orollary 5. Let A be a C∗-algebra and M be a Hilbert A-module. Let T be an orthogonality-
reserving bounded A-linear operator on M of the form T = λV , where V : M → M is an
sometric bounded A-linear embedding and λ is an element of the center Z(M(A)) of the multi-
lier algebra M(A) of A. Then the following conditions are equivalent:

(i) T is adjointable.
(ii) V is adjointable.
iii) The graph of the isometric embedding V is a direct orthogonal summand of the Hilbert

A-module M ⊕ M.
iv) The range Im(V ) of V is a direct orthogonal summand of M.

roof. Note, that a multiplication operator by an element λ ∈ Z(M(A)) is always adjointable.
o, if T is supposed to be adjointable, then the operator V has to be adjointable, and vice versa.
y [10, Cor. 3.2] the bounded operator V is adjointable if and only if its graph is a direct or-

hogonal summand of the Hilbert A-module M ⊕ M. Moreover, since the range of the isometric
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A-linear embedding V is always closed, adjointability of V forces V to admit a bounded A-linear
generalized inverse operator on M, cf. [11, Prop. 3.5]. The kernel of this inverse to V mapping
serves as the orthogonal complement of Im(V ), and M = Im(V ) ⊕ Im(V )⊥ as an orthogonal
direct sum by [11, Thm. 3.1]. Conversely, if the range Im(V ) of V is a direct orthogonal sum-
mand of M, then there exists an orthogonal projection of M onto this range and, therefore, V is
adjointable. �
2. C∗-conformal and conformal mappings

We want to describe generalized C∗-conformal mappings on Hilbert C∗-modules. A full char-
acterization of such maps involves isometries as for the orthogonality-preserving case since we
resort to a particular case of the latter.

Let M be a Hilbert module over a C∗-algebra A. An injective bounded module map T on M
is said to be C∗-conformal if the identity

〈T x,T y〉
‖T x‖‖Ty‖ = 〈x, y〉

‖x‖‖y‖ (2)

holds for all non-zero vectors x, y ∈ M. It is said to be conformal if the identity

‖〈T x,T y〉‖
‖T x‖‖Ty‖ = ‖〈x, y〉‖

‖x‖‖y‖ (3)

holds for all non-zero vectors x, y ∈ M.

Theorem 6. Let M be a Hilbert A-module over a C∗-algebra A and T be an injective bounded
module map. The following conditions are equivalent:

(i) T is C∗-conformal;
(ii) T = λU for some non-zero positive λ ∈ R and for some isometrical module operator U

on M.

Proof. The condition (ii) implies condition (i) because the condition ‖Ux‖ = ‖x‖ for all x ∈ M

implies the condition 〈Ux,Uy〉 = 〈x, y〉 for all x, y ∈ M by [14, Prop. 2.3]. So we have only to
verify the implication (i) → (ii).

Assume an injective bounded module map T on M to be C∗-conformal. We can rewrite (2)
in the following equivalent form:

〈T x,T y〉 = 〈x, y〉‖T x‖‖Ty‖
‖x‖‖y‖ , x, y �= 0. (4)

Consider the left part of this equality as a new A-valued inner product on M. Consequently, the
right part of (4) has to satisfy all the conditions of a C∗-valued inner product, too. In particular,
the right part of (4) has to be additive in the second variable, what exactly means

〈x, y1 + y2〉‖T x‖‖T (y1 + y2)‖ = 〈x, y1〉‖T x‖‖Ty1‖ + 〈x, y2〉‖T x‖‖Ty2‖

‖x‖‖y1 + y2‖ ‖x‖‖y1‖ ‖x‖‖y2‖
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or all non-zero x, y1, y2 ∈ M . Therefore,

(y1 + y2)
‖T (y1 + y2)‖

‖y1 + y2‖ = y1
‖Ty1‖
‖y1‖ + y2

‖Ty2‖
‖y2‖ ,

y the arbitrarity of x ∈ M, which can be rewritten as

y1

(‖T (y1 + y2)‖
‖y1 + y2‖ − ‖Ty1‖

‖y1‖
)

+ y2

(‖T (y1 + y2)‖
‖y1 + y2‖ − ‖Ty2‖

‖y2‖
)

= 0 (5)

or all non-zero y1, y2 ∈ M . In case the elements y1 and y2 are not complex multiples of each
ther both the complex numbers inside the brackets have to equal to zero. So we arrive at

‖T (y1)‖
‖y1‖ = ‖T (y2)‖

‖y2‖ (6)

or any y1, y2 ∈ M which are not complex multiples of one another. Now, if the elements would
e non-trivial complex multiples of each other both the coefficients would have to be equal, what
gain forces equality (6).

Let us denote the positive real number ‖T x‖
‖x‖ by t . Then the equality (6) provides

∥∥∥∥
(

1

t
T

)
(z)

∥∥∥∥ = ‖z‖,

hich means U = 1
t
T is an isometrical operator. The proof is complete. �

xample 7. Let A = C0((0,1]) = M and T be a C∗-conformal mapping on M. Our aim is
o demonstrate that T = tU for some non-zero positive t ∈ R and for some isometrical module
perator U on M. To begin with, let us recall that the Banach algebra EndA(M) of all bounded
odule maps on M is isomorphic to the algebra LM(A) of left multipliers of A under the given

ircumstances. Moreover, LM(A) = Cb((0,1]), the C∗-algebra of all bounded continuous func-
ions on (0,1]. So any A-linear bounded operator on M is just a multiplication by a certain
unction of Cb((0,1]). In particular,

T (g) = fT · g, g ∈ A,

or some fT ∈ Cb((0,1]). Let us denote by x0 the point of (0,1], where the function |fT | achieves
ts supremum, i.e. |fT (x0)| = ‖fT ‖, and set t := ‖fT ‖. We claim that the operator 1

t
T is an

sometry, what exactly means

|fT (x)|
‖fT ‖ = 1 (7)

or all x ∈ (0,1]. Indeed, consider any point x �= x0. Let θx ∈ C0((0,1]) be an Urysohn function
or x, i.e. 0 � θx � 1, θx(x) = 1 and θx = 0 outside of some neighborhood of x, and let θx0 be an
rysohn function for x0. Moreover, we can assume that the supports of θx and θx do not intersect
0
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each other. Now the condition (2) written for T and for coinciding vectors x = y = θx +θx0 yields
the equality

|fT |2(θx + θx0)
2

‖fT (θx + θx0)‖2
= (θx + θx0)

2

‖θx + θx0‖2
,

which implies

|fT |2(θx + θx0)
2

‖fT ‖2
= (θx + θx0)

2.

This equality at point x takes the form (7) for any x ∈ (0,1].

Theorem 8. Let M be a Hilbert A-module over a C∗-algebra A and T be an injective bounded
module map. The following conditions are equivalent:

(i) T is conformal;
(ii) T = λU for some non-zero positive λ ∈ R and for some isometrical module operator U

on M.

Proof. As in the proof of the theorem on orthogonality-preserving mappings we switch from
the setting {A, M, T } to its faithful isometric representation in {pA∗∗,pM# ⊆ pN , T }, where
p ∈ A∗∗ is the central projection of A∗∗ mapping A∗∗ to its discrete part.

First, consider a minimal projections e ∈ pA∗∗. Then the equality (3) gives

‖〈ex, ey〉‖
‖ex‖‖ey‖ = ‖〈T (ex), T (ey)〉‖

‖T (ex)‖‖T (ey)‖

for any x, y ∈ pM#. Since {eM#, 〈·,·〉} becomes a Hilbert space after factorization by the set
{x ∈ pM#: e〈x, x〉e = 0}, the map T acts as a positive scalar multiple of a linear isometry
on eM#, i.e. eT = λeUe .

Secondly, every two minimal projections e,f ∈ pA∗∗ with the same minimal central sup-
port projection q ∈ pZ(A∗∗) are connected by a (unique) partial isometry u ∈ pA∗∗ such that
u∗u = f and uu∗ = e. Arguments analogous to those given at [14, p. 303] show

λ2
e · e〈x, x〉e = uf u∗〈T (x), T (x)

〉
uf u∗

= uf
〈
T

(
u∗x

)
t
(
u∗x

)〉
f u∗

= uλ2
f f

〈
u∗x,u∗x

〉
f

= λ2
f · e〈x, x〉e.

Therefore, qT = λqU for some positive λq ∈ R, for a qA-linear isometric mapping U :qM# →
qM# and for any minimal central projection q ∈ pA∗∗.
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Thirdly, suppose e, f are two minimal central projections of pA∗∗ that are orthogonal. For
ny x, y ∈ pM# consider the supposed equality

‖〈(e + f )x, (e + f )y〉‖
‖(e + f )x‖‖(e + f )y‖ = ‖〈T ((e + f )x), T ((e + f )y)〉‖

‖T ((e + f )x)‖‖T ((e + f )y)‖ .

ince T is a bounded module mapping which acts on epM# like λe · id and on fpM# like λf · id
e arrive at the equality

‖〈(e + f )x, (e + f )y〉‖
‖(e + f )x‖‖(e + f )y‖ = ‖〈(λee + λf f )x, (λee + λf f )y〉‖

‖(λee + λf f )x‖‖(λee + λf f )y‖ .

nvolving the properties of e, f to be central and orthogonal to each other and exploiting modular
inear properties of the pA∗∗-valued inner product we transform the equality further to

‖〈ex, ey〉 + 〈f x,fy〉‖
‖〈ex, ex〉 + 〈f x,f x〉‖1/2 · ‖〈ey, ey〉 + 〈fy,fy〉‖1/2

= ‖λ2
e〈ex, ey〉 + λ2

f 〈f x,fy〉‖
‖λ2

e〈ex, ex〉 + λ2
f 〈f x,f x〉‖1/2 · ‖λ2

e〈ey, ey〉 + λ2
f 〈fy,fy〉‖1/2

.

ince e, f are pairwise orthogonal central projections we can transform the equality further to

sup{‖〈ex, ey〉‖,‖〈f x,fy〉‖}
sup{‖〈ex, ex〉‖,‖〈f x,f x〉‖}1/2 · sup{‖〈ey, ey〉‖,‖〈fy,fy〉‖}1/2

= sup{‖λ2
e〈ex, ey〉‖,‖λ2

f 〈f x,fy〉‖}
sup{‖λ2

e〈ex, ex〉‖,‖λ2
f 〈f x,f x〉‖}1/2 · sup{‖λ2

e〈ey, ey〉‖,‖λ2
f 〈fy,fy〉‖}1/2

.

y the w∗-density of pM# in pN we can distinguish a finite number of cases at which of the
entral parts the respective six suprema may be admitted, at epA∗∗ or at fpA∗∗. For this aim we
ay assume, in particular, that x, y belong to pN to have a larger set for these elements to be

elected specifically. Most interesting are the cases when (i) both (e + f )x and (λee + λf f )x

dmit their norm at the e-part, (ii) both (e + f )y and (λee + λf f )y admit their norm at the
-part, and (iii) both 〈(e + f )x, (e + f )y〉 and 〈(λee + λf f )x, (λee + λf f )y〉 admit their norm

either) at the e-part (or at the f -part). In these cases the equality above gives λe = λf . (All the
ther cases either give the same result or do not give any new information on the interrelation
f λe and λf .)

Finally, if for any central minimal projection f ∈ pA∗∗ the operator T acts on fpN as λU for
certain (fixed) positive constant λ and a certain module-linear isometry U then T acts on pN

n the same way. Consequently, T acts on M in the same manner since U preserves pM#

nside pN . �
emark 1. Obviously, the C∗-conformity of a bounded module map follows from the conformity

∗
 47f it, but the converse is not obvious, even it is true for Hilbert C -modules.
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[5] J. Chmieliński, On an ε-Birkhoff orthogonality, JIPAM. J. Inequal. Pure Appl. Math. 6 (3) (2005), article 79.
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