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Abstract. The Fredholm representation theory is well adapted to the construction of homo-
topy invariants of non-simply-connected manifolds by means of the generalized Hirzebruch
formula [σ(M)] = 〈L(M) chA f∗ξ, [M ]〉 ∈ K0

A(pt) ⊗ Q, where A = C∗[π] is the C∗-algebra

of the group π, π = π1(M). The bundle ξ ∈ K0
A(Bπ) is the canonical A-bundle generated by

the natural representation π −→ A.
Recently, the first author constructed a natural family of Fredholm representations that

lead to a symmetric vector bundle on the completion of the fundamental group with a mod-
ification of the Higson–Roe corona, provided that the completion is a closed manifold.

In the present paper, a homology version of symmetry is discussed for the case in which
the completion, with a modification of the Higson–Roe corona, is a manifold with boundary.
The results were developed during the visit of the first author to Ancona on March, 2007.
The last version is supplemented by details considering the case of manifolds with boundary.
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The Fredholm representation theory is well adapted to the construction of homotopy invariants
of non-simply-connected manifolds by means of the generalized Hirzebruch formula

[σ(M)] = 〈L(M) chA f∗ξ, [M ]〉 ∈ K0
A(pt) ⊗ Q, (1)

where A = C∗[π] is the group C∗-algebra of the group π, π = π1(M). The bundle ξ ∈ K0
A(Bπ) is the

canonical A-bundle generated by the natural representation π −→ A. The mapping f : M −→ Bπ
induces an isomorphism of fundamental groups. The element [σ(M)] ∈ K0

A(pt) is the noncommu-
tative signature of the manifold M ; here we assume that Z[12 ][π] ⊂ A.

Let ρ = (T1, F, T2) be a Fredholm representation of the group π, i.e., a pair of unitary represen-
tations T1, T2 : π −→ B(H) and a Fredholm operator F : H −→ H such that

FT1(g) − T2(g)F ∈ Comp(H), g ∈ π. (2)

Replacing the algebra B(H) by the Calkin algebra K = B(H)/Comp(H), one obtains a repre-
sentation ρ̂ of π × Z in the Calkin algebra,

ρ̂ : π × Z −→ K, ρ̂(g, n) = T2(g)Fn = FnT1(g), g ∈ π, n ∈ Z,

ρ∗ : KA(X)
Id⊗β

−−−−→ K
A⊗̂C(S1)

(X × S1)
ρ̂

−−−−→ KK(X × S1). (3)

Here β ∈ KC(S1)(S
1) stands for the canonical element related to the regular representation of Z.

Combining (3) with the Hirzebruch formula (1), one proves the homotopy invariance of the
corresponding higher signature.

1. CONSTRUCTION OF FREDHOLM REPRESENTATIONS

Let T be a sum of finitely many copies of the regular representation of π and let Φ be the
block-diagonal operator defined as a matrix-valued function F (g), g ∈ π,

F (g) : V −→ V. (4)
Let H =

⊕
g∈π Vg, Vg ≡ V and Th : H −→ H, Vg −→ Vhg. The condition ‘Φ is a Fredholm

operator’ means that
‖F (g)‖ 6 C, ‖F−1(g)‖ 6 C (5)

for any g ∈ π, possibly except for finitely many elements. Condition (2) means that
lim
|g|−→∞

‖F (g) − F (hg)‖ = 0. (6)
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If the pair
ρ = (T,Φ) (7)

satisfies conditions (5) and (6), then ρ is said to be a Fredholm representation of π.

Consider the universal covering B̃π of the classifying space Bπ endowed with the left action of π.
In accordance with the construction in [2], the vector bundle generated by the representation ρ on
the space Bπ can be seen as an equivariant continuous family of Fredholm operators on the space

Eπ = B̃π. The equivariance property refers to the diagonal action on the Cartesian product
Th : Eπ × H, (x, ξ) −→ (hx, Th(ξ)). (8)

Namely, let the space Bπ be endowed with a simplicial structure and let Eπ = B̃π be endowed

with the induced simplicial structure induced by the covering Eπ = B̃π
p

−→Bπ. Let {xi} be a

family of vertices of Eπ = B̃π, one for each orbit of the action of π. Then each simplex σ of

Eπ = B̃π is completely defined by its vertices σ = (h0xi0 , . . . , hnxin
), h0, . . . , hn ∈ π. Any point

x ∈ σ is uniquely defined as a convex linear combination of vertices x =
∑n

k=0 λkhkxik
. Then the

equivariant family of Fredholm operators corresponding to the Fredholm representation ρ (7) is
defined by the formula

Φx = Φx(ρ) =
n∑

k=0

λkΦhkxik
=

n∑

k=0

λkThk
Φxik

T−1
hk

=
n∑

k=0

λkThk
ΦT−1

hk
. (9)

Hence
(Φx)g =

n∑

k=0

λkFh−1

k
g. (10)

It is clear that the family (9) is equivariant. Indeed, hx =
∑n

k=0 λkhhkxik
. Hence

Φhx =
n∑

k=0

λkThhk
ΦT−1

hhk
= Th

( n∑

k=0

λkThk
ΦT−1

hk

)
T−1

h = ThΦxT−1
h .

Relations (10), (6), and (5) imply that the operators (9) are Fredholm ones.

On the other hand, the operators (4) generate the continuous family Fx : V −→ V, x ∈ Eπ, where
Fx =

∑n
k=0 λkF (h−1

k ). This family can be regarded as a linear mapping of the trivial bundle,
Fx : Eπ × V −→ Eπ × V. (11)

Consider the universal covering p : Eπ −→ Bπ. Write Ki(Eπ) = lim←Ki
c(p
−1(X)), where the

inverse limit is taken with respect to the family of all compact subsets X ⊂ Bπ.

Theorem 1. The mapping (11) defines the element F (ρ) ∈ K0(Eπ).

Consider the direct image of the bundle (11) over Bπ,
A −→ Bπ, (12)

where the fiber is the direct sum of the fibers of the bundle (11) over each orbit of the action of the
group π on the space Eπ. The total space A is defined as A =

{
(u, ξ) : u ∈ Bπ, ξ ∈ ⊕x∈u(x× V )

}
.

Let
Ã −→ Eπ (13)

be the inverse image of the bundle (12). The total space Ã is defined as Ã =
{
(x, ξ) : x ∈ Eπ,

ξ ∈ ⊕y∈[x](y × V )
}

=
{
(x, ξ), x ∈ Eπ, ξ ∈ ⊕g∈π(gx × V )

}
. Define the action of the group

π on the total space Ã by the formula fh(x, ξ) = (hx, η), where ξ = ⊕ξg ∈ ⊕g∈π(gx × V ),

η = ⊕ηg ∈ ⊕g∈π(ghx × V ), and ηg = ξgh. It is clear that A = Ã/π. On the other hand, there is an
isomorphism ϕ between the bundle (13) and the bundle (8),

ϕ : Eπ ×
⊕

g∈π

Vg −→ Ã, ϕ(x,⊕ξg) = (x,⊕ξg−1). (14)

This isomorphism is equivariant. By means of this isomorphism, the mapping (11) goes to the
mapping

F̃ : Ã −→ Ã, F̃ (x,⊕ξg) = (x,⊕Fgx(ξg)) =
(
x,⊕

n∑

k=0

λkFh−1

k
g−1(ξg)

)
. (15)

It is clear that the mapping (15) goes to (9) under the isomorphism (14).
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Thus, the following theorem holds.

Theorem 2. Consider the Fredholm representation of π of the form (7). Let ξρ ∈ K(Bπ) be the

element defined by the mapping (9). Then p!(F (ρ)) = ξρ ∈ K0(Bπ), where p! : K0(Eπ) −→ K0(Bπ)
is the direct image in K-theory.

Consider the action of π on the Cartesian product Eπ × V given by the left action on the first
factor and the identity action on the other one.

Consider a metric on the space Eπ such that r(xg, yg) −→ 0 and |g| −→ ∞. Let Eπ be
the completion of the space Eπ (with respect to the metric r). Then any continuous mapping
f : (Eπ,Eπ\Eπ) −→ (B(V ), U(V )) defines a continuous family of Fredholm representations ρ(x),
x ∈ Eπ.

By Theorem 1, the family ρ(x) generates an equivariant family Fx,y : Eπ × Eπ × V −→ Eπ ×
Eπ × V , and therefore an element F (ρ(x)) ∈ K0 ((Eπ × Eπ)/π) . Let p! : K

0 ((Eπ × Eπ)/π) −→
K0(Bπ × Bπ) be the direct image in K-theory. Then p!(F (ρ(x))) = ξρ(x) ∈ K0(Bπ × Bπ).

A symmetric property holds for the element ξρ(x), (1 ⊗ u)ξρ(x) = (u ⊗ 1)ξρ(x) ∈ K0(Bπ × Bπ),

u ∈ K0(Bπ).

2. SYMMETRIC COHOMOLOGY CLASSES IN H∗(M × M)

If the space Bπ is a compact manifold and the space Eπ is compactified to a disk with an
extension of the action of π, we obtain a new proof of the Novikov conjecture proven in [3].

For this purpose, consider a closed orientable compact manifold M and a cohomology class
w ∈ H∗(M × M ;Q). Assume that w has the symmetric property,

w · (1 ⊗ x) = (x ⊗ 1) · w, ∀x ∈ H∗(M ;Q). (16)

Our aim is to describe symmetric elements w of this kind. Let xi, 0 6 i 6 N , be a homogeneous
basis in H∗(M ;Q), x0 = 1 ∈ H0(M ;Q), xN ∈ Hn(M ;Q), dimM = n, and 〈xN , [M ]〉 = 1.

The multiplication tensor λk
ij is defined by the formula xi · xj = λk

ijxk, where λk
i0 = λk

0i = δk
i

and λN
ij = 〈xi · xj , [M ]〉.

The associativity of the multiplication, (xi · xj) · xk = xi · (xj · xk), means that λl
ijλ

s
lkxs =

(λl
ijxl) · xk = (xi · xj) · xk = xi · (xj · xk) = xi · (λ

l
jkxl) = λs

ilλ
l
jkxs, i.e.,

λl
ijλ

s
lk = λs

ilλ
l
jk. (17)

The element w can be represented as w = µijxi ⊗ xj . Then condition (16) implies

µilxi⊗xl ·xk = µljxk ·xl ⊗xj , µilxi⊗ (λj
lkxj) = µlj(λi

klxi)⊗xj , or µilλj
lk = µljλi

kl. (18)

Assume that
µNj = µjN = δj

0. (19)

Then it follows from (18) that µilλN
lk = µlNλi

kl or µilλN
lk = δl

0λ
i
kl = λi

k0 = δi
k. This means that

the matrix ‖µij‖ is inverse to the matrix ‖λN
ij ‖,

‖µij‖ = ‖λN
ij ‖
−1. (20)

Relations (18) imply a part of the associativity relations (17),

λN
i′iµ

ilλj
lk = λN

i′iµ
ljλi

kl, δi′

l λj
lk = λN

i′iµ
ljλi

kl, λj
i′k = µljλi

klλ
N
i′i,

λN
jj′λ

j
i′k = λN

jj′µljλi
klλ

N
i′i, λN

jj′λ
j
i′k = δl

j′λi
klλ

N
i′i, λN

jj′λ
j
i′k = λi

kj′λN
i′i, λj

i′kλN
jj′ = λN

i′iλ
i
kj′ .

Compare with (17); this gives λl
ijλ

s
lk = λs

ilλ
l
jk.

As a consequence of (20), one can obtain relations for the symmetric elements of the form
w = (x ⊗ 1)(µijxi ⊗ xj)(1 ⊗ y) = (µijxi ⊗ xj)(1 ⊗ xy).

3. MANIFOLDS WITH BOUNDARY

Assume now that a closed orientable compact manifold M has a nonempty boundary ∂M . Then
the Poincaré duality leads to the commutative diagram
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· · · −−−−→ Hk+1(M)
j

−−−−→ Hk+1(M,∂M)
δ

−−−−→ Hk(∂M)
i

−−−−→
xD

xD

xD

· · · −−−−→ Hn−k(M,∂M)
j∗

−−−−→ Hn−k(M)
i∗

−−−−→ Hn−k(∂M)
δ∗

−−−−→

i
−−−−→ Hk(M)

j
−−−−→ Hk(M,∂M) −−−−→ · · ·

xD

xD

δ∗

−−−−→ Hn+1−k(M,∂M)
j∗

−−−−→ Hn+1−k(M) −−−−→ · · ·

The Poincaré duality relates the multiplication in cohomology with the evaluation on the funda-
mental class by the formula 〈x∧ y, [M ]〉 = (x,Dy) for any x ∈ H∗(M) and y ∈ H∗(M,∂M) (or for
any y ∈ H∗(M) and x ∈ H∗(M,∂M)), and the operation ∧ defines a pairing

∧ : Hi(M) × Hj(M,∂M) −→ Hi+j(M,∂M). (21)

Hence, the pairing (21) defines a module structure over the ring H∗(M) on H∗(M,∂M),

y ∧ (x1 · x2) = (y ∧ x1) · x2 = ±x1 · (y ∧ x2) for y ∈ H∗(M) and x1, x2 ∈ H∗(M,∂M).

Consider the Cartesian product M × M . The boundary ∂(M × M) is given by the union

∂(M × M) = (M × ∂M) ∪ (∂M × M), (M × ∂M) ∩ (∂M × M) = ∂M × ∂M.

Consider a cohomology class w ∈ H∗(M × M,∂M × M ;Q) ≈ H∗(M,∂M ;Q) ⊗ H∗(M ;Q).
Assume that w has the symmetric property

w · (1 ⊗ y) = (y ⊗ 1) · w ∈ H∗(M × M,∂M × M), ∀y ∈ H∗(M ;Q). (22)

The result is similar to that in the case of manifolds without boundary:

Theorem 3. Let w ∈ H∗(M × M,∂M × M) have the symmetric property (22). Let xi ∈
H∗(M,∂M) and yj ∈ H∗(M) be bases and let w = µijxi ⊗ yj . Then ‖µij‖ = ‖λN

ij‖
−1, where

λN
ij = 〈yi ∧ xj , [M,∂M ]〉.

To prove this fact, consider homogenous bases in the cohomology groups H∗(M ;Q) and
H∗(M,∂M ;Q), say, xi ∈ H∗(M,∂M) and yj ∈ H∗(M).

Let y0 = 1 ∈ H0(M ;Q) ≈ Q, xN ∈ Hn(M,∂M ;Q) ≈ Q, dim M = n, and 〈xN , [M,∂M ]〉 = 1.
The pairing (21) is defined by the formula yi ∧ xj = λk

ijxk. If yi, yk ∈ H∗(M), then yi ∧ yk = νs
ikys

is such that νs
0k = νs

k0 = δs
k. Property (22) can be represented as µijxi ⊗ yjyk = µijyk ∧ xi ⊗ yj or

µijνs
jkxi ⊗ ys = µijλs

kixs ⊗ yj . Hence, µijνs
jk = µlsλi

kl.

In particular, if i = N , then µNjνs
jk = µlsλN

kl.

As in the case of manifolds without boundary, assume that the element w satisfies condition (19),

µNj = δj
0. Then δs

k = µlsλN
kl.
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