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1 Introduction

In the second half of the last century, research commenced and developed in what is

now called ”non-commutative geometry”. As a matter of fact, this term concentrates

on a circle of problems and tools which originally was based on the quite simple idea

of re-formulating topological properties of spaces and continuous mappings in terms of

appropriate algebras of continuous functions.

This idea looks very old (it goes back to the theorem of I.M. Gelfand and M.A.

Naimark (see, for example [1]) on the one-to-one correspondence between the category

of compact topological spaces and the category of commutative unital C∗-algebras), and

was developed by different authors both in the commutative and in the non-commutative

cases. The first to clearly proclaim it as an action program was Alain Connes in his book

”non-commutative geometry” [2].

The idea, along with commutative C∗-algebras (which can be interpreted as algebras of

continuous functions on the spaces of maximal ideals), to also consider non-commutative
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algebras as functions on a non-existing ”non-commutative” space was so fruitful that

it allowed the joining together of a variety of methods and conceptions from different

areas such as topology, differential geometry, functional analysis, representation theory,

asymptotic methods in analysis and resulted in mutual enrichment by new properties and

theorems.

One of classical problems of smooth topology, which consists in the description of

topological and homotopy properties of characteristic classes of smooth and piecewise-

linear manifolds, has been almost completely and exclusively shaped by the different

methods of functional analysis that were brought to bear on it. Vice versa, attempts to

formulate and to solve classical topological problems have led to the enrichment of the

methods of functional analysis. It is typical that solutions of particular problems of a new

area lead to the discovery of new horizons in the development of mathematical methods

and new properties of classical mathematical objects.

The following notes should not be considered as a complete exposition of the subject

of non-commutative geometry. The lectures were devoted to topics of interest to the

author and are indicative of his point of view in the subject. Consequently, the contents

of the lectures were distributed as follows:

(1) Topological K–theory as a cohomology theory. Bott periodicity. Relation between

the real, the complex and the quaternionic K–theories.

(2) Elliptic operators as the homology K–theory, Atiyah homology K–theory as an

ancestor of KK–theory.

(3) C∗–algebras, Hilbert C∗-modules and Fredholm operators. Homotopical point of

view.

(4) Higher signature, C∗–signature of non-simply connected manifolds.

2 Some historical remarks on the formation of non-commutative

geometry

2.1 From Poincare duality to the Hirzebruch formula.

The Pontryagin characteristic classes, though not homotopy invariants, are neverthe-

less closely connected with the problem of the description of smooth structures of given

homotopy type. Therefore, the problem of finding all homotopy invariant Pontryagin

characteristic classes was a very actual one. However, in reality, another problem turned

out to be more natural. It is clear that Pontryagin classes are invariants of smooth

structures on a manifold. For the purpose of the classification of smooth structures, the

most suitable objects are not the smooth structures but the so-called inner homology of

manifolds or, using contemporary terms, bordisms of manifolds.

Already L.S. Pontryagin [3] conjectured that inner homology could be described in

terms of some algebraic expression of Pontryagin classes, the so-called Pontryagin num-

bers. He established that the Pontryagin numbers are at least invariants of inner homology

[4, Theorem 3]. W. Browder and S.P. Novikov were the first to prove that only the Pon-
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tryagin number which coincides with the signature of an oriented manifold is homotopy

invariant. This fact was established by means of surgery theory developed in [5], [6].

The formula that asserts the coincidence of the signature with a Pontryagin number

is known now as the Hirzebruch formula [7], though its special case was obtained by V.A.

Rokhlin [8] a year before. Investigations of the Poincare duality and the Hirzebruch for-

mula have a long history, which is partly related to the development of non-commutative

geometry. Here we shall describe only some aspects that were typical of the Moscow

school of topology.

The start of that history should be located in the famous manuscript of Poincare in

1895 [9], where Poincare duality was formulated. Although the complete statement and

its full proof were presented much later, one can, without reservations, regard Poincare

as the founder of the theory.

After that was required the discovery of homology groups (E. Noether, 1925) and

cohomology groups (J.W. Alexander, A.N. Kolmogorov, 1934). The most essential was,

probably, the discovery of characteristic classes (E.L. Stiefel, Y. Whitney (1935); L. Pon-

tryagin (1947); S.S. Chern (1948)).

The Hirzebruch formula is an excellent example of the application of categorical

method as a basic tool in algebraic and differential topology. Indeed, Poincare seems

always to indicate when he had proved the coincidence of the Betti numbers of manifolds

which are equidistant from the ends. But after the introduction of the notion of homology

groups, Poincare duality began to be expressed a little differently: as the equality of the

ranks of the corresponding homology groups. At that time it was not significant what

type of homology groups were employed, whether with integer or with rational coeffi-

cients, since the rank of an integer homology group coincides with the dimension of the

homology group over rational coefficients. But the notion of homology groups allowed to

enrich⇒ to expand Poincare duality by consideration of the homology groups over finite

fields. Taking into account torsions of the homology groups, one obtained isomorphisms

of some homology groups, but not in the same dimensions where the Betti numbers coin-

cide. This apparent inconsistency was understood after the discovery of the cohomology

groups and their duality to the homology groups. Thus finally, Poincare duality became

sound as an isomorphism between the homology groups and the cohomology groups

Hk(M ;Z) = Hn−k(M ;Z). (1)

The crucial understanding here is that the Poincare duality is not an abstract isomor-

phism of groups, but the isomorphism generated by a natural operation in the category

of manifolds. For instance, in a special case of middle dimension for even-dimensional

manifolds (dimM = n = 2m) with rational coefficients, the condition (1) becomes trivial

since

Hm(M ;Q) = Hom (Hm(M ;Q), Q) ≡ Hm(M ;Q). (2)

But in the equation (2), the isomorphism between the homology groups and the

cohomology groups is not chosen at will. Poincare duality says that there is the definite
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homomorphism generated by the intersection of the fundamental cycle [M ]

∩[M ] : Hn−k(M ;Q)−→Hk(M ;Q).

This means that the manifold M gives rise to a non-degenerate quadratic form which

has an additional invariant — the signature of the quadratic form. The signature plays

a crucial role in many problems of differential topology.

2.2 Homotopy invariants of non-simply connected manifolds.

This collection of problems is devoted to finding the most complete system of invariants

of smooth manifolds. In a natural way the smooth structure generates on a manifold a

system of so-called characteristic classes, which take values in the cohomology groups with

a different system of coefficients. Characteristic classes not only have natural descriptions

and representations in differential geometric terms, but their properties also allow us to

classify the structures of smooth manifolds in practically an exhaustive way modulo a

finite number of possibilities. Consequently, the theory of characteristic classes is a most

essential tool for the study of geometrical and topological properties of manifolds.

However, the system of characteristic classes is in some sense an over-determined

system of data. More precisely, this means that for some characteristic classes their de-

pendence on the choice of smooth structure is inessential. Therefore, one of the problems

was to find out to what extent one or other characteristic class is invariant with respect

to an equivalence relation on manifolds. The best known topological equivalence rela-

tions between manifolds are piece-linear homeomorphisms, continuous homeomorphisms,

homotopy equivalences and bordisms. For such kinds of relations one can formulate a

problem: which characteristic classes are: a) combinatorially invariant, b) topologically

invariant, c) homotopy invariant. The last relation (bordism) gives a trivial description

of the invariance of characteristic classes: only characteristic numbers are invariant with

respect to bordisms.

Let us now restrict our considerations to rational Pontryagin classes. S.P. Novikov has

proved (1965) that all rational Pontryagin classes are topologically invariant. In the case

of homotopy invariance, at the present time the problem is very far from being solved.

On the other hand, the problem of homotopy invariance of characteristic classes seems

to be quite important on account of the fact that the homotopy type of manifolds seems

to be more accessible to classification in comparison with its topological type. Moreover,

existing methods of classification of smooth structures on a manifold can reduce this

problem to a description of its homotopy type and its homology invariants.

Thus, the problem of homotopy invariance of characteristic classes seemed to be one

of the essential problems in differential topology. In particular, the problem of homo-

topy invariance of rational Pontryagin classes happened to be the most interesting (and

probably the most difficult) from the point of view of mutual relations. For example,

the importance of the problem is confirmed by that fact that the classification of smooth

structures on a manifold by means the Morse surgeries demands a description of all
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homotopy invariant rational Pontryagin classes.

In the case of simply connected manifolds, the problem was solved by Browder and

Novikov who have proved that only signature is a homotopy invariant rational Pontrya-

gin number. For non-simply connected manifolds, the problem of the description of all

homotopy invariant rational Pontryagin classes which are responsible for obstructions to

surgeries of normal mappings to homotopy equivalence, turned out to be more difficult.

The difficulties are connected with the essential role that the structure of the fundamen-

tal group of the manifold plays here. This circumstance is as interesting as the fact that

the description and identification of fundamental groups in finite terms is impossible. In

some simple cases when the fundamental group is, for instance, free abelian, the problem

could be solved directly in terms of differential geometric tools.

In the general case, it turned out that the problem can be reduced to the one that

the so-called higher signatures are homotopy invariant. The accurate formulation of this

problem is known as the Novikov conjecture. A positive solution of the Novikov conjecture

may permit, at least partly, the avoidance of algorithmic difficulties of description and

the recognition of fundamental groups in the problem of the classification of smooth

structures on non-simply connected manifolds.

The Novikov conjecture says that any characteristic number of kind signx(M) =

〈L(M)f ∗(x), [M ]〉 is a homotopy invariant of the manifold M , where L(M) is the full

Hirzebruch class, x ∈ H∗(Bπ;Q) is an arbitrary rational cohomology class of the clas-

sifying space of the fundamental group π = π1(M) of the manifold M , f : M−→Bπ is

the isomorphism of fundamental groups induced by the natural mapping. The numbers

signx(M) are called higher signatures of the manifold M to indicate that when x = 1 the

number sign1(M) coincides with the classical signature of the manifold M .

The situation with non-simply connected manifolds turns out to be quite different

from the case of simply connected manifolds in spite of the fact that C. T. C. Wall had

constructed a non-simply connected analogue of Morse surgeries. The obstructions to

such kinds of surgeries does not have an effective description. One way to avoid this

difficulty is to find out which rational characteristic classes for non-simply connected

manifolds are homotopy invariant. Here we should define more accurately what we mean

by characteristic classes for non-simply connected manifolds. As was mentioned above,

we should consider only such invariants for a non-simply connected manifold as a) can

be expressed in terms of the cohomology of the manifold and b) are invariants of non-

simply connected bordisms. In other words, each non-simply connected manifold M

with fundamental group π = π1(M) has a natural continuous map fM : M−→Bπ which

induces an isomorphism of fundamental groups

(fM)∗ : π = π1(M)
≈
−→π1(Bπ) = π. (3)

Then the bordism of a non-simply connected manifoldM is the singular bordism [M, fM ] ∈

Ω(Bπ) of the space Bπ. Hence, from the point of view of bordism theory, a rational char-

acteristic number for the singular bordism [M, fM ] is a number of the following form

α([M, fM ]) = 〈P (p1(M), . . . , pn(M); f ∗
M(x1), . . . , f

∗
M(xk)) , [M ]〉 , (4)
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where pj(M) are the Pontryagin classes of the manifold M , xj ∈ H
∗(Bπ;Q) are arbitrary

cohomology classes. Following the classical paper of R.Thom ([14]) one can obtain the

result that the characteristic numbers of the type (4) form a complete system of invariants

of the group Ω∗(Bπ)⊗Q. Using the methods developed by C. T. C. Wall ([13]) one can

prove that only higher signatures of the form

sign x(M) = 〈L(M)f ∗
M (x); [M ]〉 (5)

may be homotopy invariant rational characteristic numbers for a non-simply connected

manifold [M ].

3 Topological K–theory

3.1 Locally trivial bundles, their structure groups, principal bundles

Definition 3.1. Let E and B be two topological spaces with a continuous map

p : E−→B.

The map p is said to define a locally trivial bundle if there is a topological space F such

that for any point x ∈ B there is a neighborhood U ∋ x for which the inverse image

p−1(U) is homeomorphic to the Cartesian product U × F . Moreover, it is required that

the homeomorphism ϕ preserves fibers. This means in algebraic terms that the diagram

U × F
ϕ
−→ p−1(U) ⊂ E

yπ
yp

yp

U = U ⊂ B

is commutative where

π : U × F−→U, π(x, f) = x

is the projection onto the first factor. The space E is called total space of the bundle or

the fiberspace, the space B is called the base of the bundle, the space F is called the fiber

of the bundle and the mapping p is called the projection.

One can give an equivalent definition using the so-called transition functions:

Definition 3.2. Let B and F be two topological spaces and {Uα} be a covering of

the space B by a family of open sets. The system of homeomorphisms which form the

commutative diagram

(Uα ∩ Uβ)× F
ϕαβ

−→ (Uα ∩ Uβ)× F
y

y

(Uα ∩ Uβ) = (Uα ∩ Uβ

(6)
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and satisfy the relations

ϕαγϕγβϕβα = id, for any three indices α, β, γ

on the intersection (Uα ∩ Uβ ∩ Uγ)× F

ϕαα = id for each α.

(7)

By analogy with the terminology for smooth manifolds, the open sets Uα are called

charts, the family {Uα} is called the atlas of charts, the homeomorphisms

Uα × F
ϕα
−→ p−1(Uα) ⊂ E

y
y

y

Uα = Uα ⊂ B

(8)

are called the coordinate homeomorphisms and the ϕαβ are called the transition functions

or the sewing functions.

Two systems of the transition functions ϕβα, and ϕ′
βα define isomorphic locally trivial

bundles iff there exist fiber-preserving homeomorphisms

Uα × F
hα−→ Uα × Fy

y

Uα = Uα

such that

ϕβα = h−1
β ϕ′

βαhα. (9)

Let Homeo (F ) be the group of all homeomorphisms of the fiber F . Each fiberwise

homeomorphism

ϕ : U × F−→U × F, (10)

defines a map

ϕ : U−→Homeo (F ), (11)

So instead of ϕαβ a family of functions

ϕαβ : Uα ∩ Uβ−→Homeo (F ),

can be defined on the intersection Uα ∩ Uβ and having values in the group Homeo (F ).

The condition (7) means that

ϕαα(x) = id,

ϕαγ(x)ϕγβ(x)ϕβα(x) = id.

x ∈ Uα ∩ Uβ ∩ Uγ .
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and we say that the cochain {ϕαβ} is a cocycle.

The condition (9) means that there is a zero-dimensional cochain hα : Uα−→Homeo (F )

such that

ϕβα(x) = h−1
β (x)ϕ′

βα(x)hα(x), x ∈ Uα ∩ Uβ .

Using the language of homological algebra the condition (9) means that cocycles {ϕβα}

and {ϕ′
βα} are cohomologous. Thus the family of locally trivial bundles with fiber F and

base B is in one-to-one correspondence with the one-dimensional cohomology of the space

B with coefficients in the sheaf of germs of continuous Homeo (F )–valued functions for

the given open covering {Uα}. Despite obtaining a simple description of the family of

locally trivial bundles in terms of homological algebra, it is ineffective since there is no

simple method for calculating cohomologies of this kind.

Nevertheless, this representation of the transition functions as a cocycle turns out to

be very useful because of the situation described below.

First of all, notice that using the new interpretation, a locally trivial bundle is de-

termined by the base B, the atlas {Uα} and the functions {ϕαβ} taking values in the

group G = Homeo (F ). The fiber F itself does not directly take part in the description

of the bundle. Hence, one can at first describe a locally trivial bundle as a family of

functions {ϕαβ} with values in some topological group G, and thereafter construct the

total space of the bundle with fiber F by additionally defining an action of the group G

on the space F , that is, defining a continuous homomorphism of the group G into the

group Homeo (F ).

Secondly, the notion of locally trivial bundle can be generalized and the structure of

bundle made richer by requiring that both the transition functions ϕαβ and the functions

hα not be arbitrary but take values in some subgroup of the homeomorphism group

Homeo (F ).

Thirdly, sometimes information about locally trivial bundle may be obtained by sub-

stituting some other fiber F ′ for the fiber F but using the ‘same’ transition functions.

Thus, we come to a new definition of a locally trivial bundle with additional structure

— the group where the transition functions take their values, the so-called the structure

group.

Definition 3.3. A locally trivial bundle with the structure group G is called a principal

G–bundle if F = G and the action of the group G on F is defined by the left translations.

Theorem 3.4. Let p : E−→B be a principal G–bundle. Then there is a right action of

the group G on the total space E such that:

1) the right action of the group G is fiberwise,

2) the homeomorphism ϕ−1
α transforms the right action of the group G on the total

space into right translations on the second factor.

Using the transition functions it is very easy to define the inverse image of the bundle.

Namely, let p : E−→B be a locally trivial bundle with structure group G and the collec-
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tion of transition functions ϕαβ : Uαβ−→G and let f : B′−→B be a continuous mapping.

Then the inverse image f ∗(p : E−→B) is defined as a collection of charts U ′
α = f−1(Uα)

and a collection of transition functions ϕ′
αβ(x) = ϕαβ(f(x)).

Another geometric definition of the inverse bundle arises from the diagram

E ′ = f ∗(E) ⊂ E ×B′ −→ E
y

y
y

B′ = B′ f
−→ B

(12)

where E ′ consists of points (e, b′) ∈ E×B′ such that f(b′) = p(e). The map f̂ : f ∗(E)−→E

is canonically defined by the map f .

Theorem 3.5. Let

ψ : E ′−→E (13)

be a continuous map of total spaces for principal G–bundles over bases B′ and B. The

map (13) is generated by a continuous map f : B′−→B if and only if the map ψ is

equvivariant (with respect to right actions of the structure group G on the total spaces).

3.2 Homotopy properties, classifying spaces

Theorem 3.6. The inverse images with respect to homotopic mappings are isomorphic

bundles.

Therefore, the category of all bundles with structure group G, BndlsG(B) forms a

homotopy functor from the category of CW-spaces to the category of sets.

Definition 3.7. A principal bundle p : EG−→BG is called a classifying bundle iff for any

CW–space B there is a one-to-one correspondence

BndlsG(B) ≈ [B,BG] (14)

generated by the map

ϕ : [B,BG]−→BndlsG(B),

ϕ(f) = f ∗(p : EG−→BG).

(15)

Theorem 3.8. The principal G–bundle,

pG : EG−→BG (16)

is a classifying bundle if all homotopy groups of the total space EG are trivial:

πi(EG) = 0, 0 ≤ i <∞. (17)



A.S. Mishchenko / Central European Journal of Mathematics 3(4) 2005 766–793 775

3.3 Characteristic classes

Definition 3.9. A mapping α : BndlsG(B)−→H∗(B) is called a characteristic class if

the following diagram is commutative

BndlsG(B)
α
−→ H∗(B)

yf ∗
yf ∗

BndlsG(B′)
α
−→ H∗(B′)

(18)

for any continuous mapping f : B′−→B, that is, α is a natural transformation of functors.

Theorem 3.10. The family of all characteristic classes is in one-to-one correspondence

with the cohomology H∗(BG) by the assignment

α(x)(ξ) = f ∗(x) for

x ∈ H∗(BG), f : B−→BG, ξ = f ∗(p : EG−→BG).
(19)

3.4 Vector bundles, K–theory, Bott periodicity

Members of the special (and very important) class of locally trivial bundles are called

(real) vector bundles with structure groups GL(n,R) and fiber Rn. The structure group

can be reduced to the subgroup O(n). If the structure group O(1) can be reduced to the

subgroup G = SO(1) then the vector bundle is trivial and is denoted by 1.

Similar versions arise for other structure groups:

1) Complex vector bundles with the structure group GL(n,C) and fiber Cn.

2) Quaternionic vector bundles with structure group GL(n,K) and fiber Kn, where

K is the (non-commutative) field of quaternions.

All of them admit useful algebraic operations:

1. Direct sum, ξ = ξ1 ⊕ ξ2,

2. tensor product,ξ = ξ1 ⊗ ξ2,

3. other tensor operations, HOM (ξ1, ξ2),Λk(ξ). etc.

Let ξ be a vector bundle over the field F = R,C,K. Let Γ(ξ) be the space of all

sections ξ of the bundle. Then Γ(1) = C(B) — the ring of continuous functions with

values in F .

Theorem 3.11. The space Γ(ξ) has a natural structure of (left) C(B)–module by fiberwise

multiplication. If B is a compact space, then Γ(ξ) is a finitely generated projective C(B)–

module. Conversely, each finitely generated projective C(B)–module can be presented as

a space Γ(ξ) for a vector bundle ξ.

The property of compactness of B is essential for Γ(ξ) to be a finitely generated

module.
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Definition 3.12. Let K(X) denotes the abelian group where the generators are (isomor-

phism classes of) vector bundles over the base X subject to the following relations:

[ξ] + [η]− [ξ ⊕ η] = 0 (20)

for vector bundles ξ and η, and where [ξ] denotes the element of the group K(X) defined

by the vector bundle ξ.

The group defined in Definition 3.12 is called the Grothendieck group of the category

of all vector bundles over the base X.

To avoid confusion, the group generated by all real vector bundles will be denoted by

KO(X), the group generated by all complex vector bundles will be denoted by KU(X)

and the group generated by all quaternionic vector bundles will be denoted by KSp(X).

Let K0(X, x0) denote the kernel of the homomorphism K(X)−→K(x0):

K0(X, x0) = Ker (K(X)−→K(x0)) .

Elements of the subringK0(X, x0) are represented by differences [ξ]−[η] for which dim ξ =

dim η. The elements of the ring K(X) are called virtual bundles and elements of the

ring K0(X, x0) are virtual bundles of trivial dimension over the point x0.

Now consider a pair (X, Y ) of the cellular spaces, Y ⊂ X. Denote by K0(X, Y ) the

ring

K0(X, Y ) = K0(X/Y, [Y ]) = ker(K(X/Y )−→K([Y ]))

where X/Y is the quotient space where the subspace Y is collapsed to a point [Y ]. For

any negative integer −n, let

K−n(X, Y ) = K0(SnX,SnY )

where Sn(X) denotes the n–times suspension of the space X:

SnX = (Sn ×X)/(Sn ∨X).

Theorem 3.13. The pair (X, Y ) induces an exact sequence

K0(Y, x0)←−K
0(X, x0)←−K

0(X, Y )←−

←−K−1(Y, x0)←−K
−1(X, x0)←−K

−1(X, Y )←−

←−K−2(Y, x0)←−K
−2(X, x0)←−K

−2(X, Y )←− . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . ←−K−n(Y, x0)←−K
−n(X, x0)←−K

−n(X, Y )←− . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (21)

Consider a complex n–dimensional vector bundle ξ over the base X and let p : E−→X

be the projection of the total space E onto the base X. Consider the space E, as a new

base space, and a complex of vector bundles

0−→Λ0η
ϕ0
−→Λ1η

ϕ1
−→Λ2η

ϕ2
−→ . . .

ϕn−1
−→Λnη−→0, (22)
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where η = p∗ξ is the inverse image of the bundle ξ, Λkη is the k-skew power of the vector

bundle η and the homomorphism

ϕk : Λkη−→Λk+1η

is defined as exterior multiplication by the vector y ∈ E, y ∈ ξx, x = p(y). It is known

that if the vector y ∈ ξx is non-zero, y 6= 0, then the complex (22) is exact. Consider the

subspace D(ξ) ⊂ E consisting of all vectors y ∈ E such that |y| ≤ 1 with respect to a

fixed Hermitian structure on the vector bundle ξ. Then the subspace S(ξ) ⊂ D(ξ) of all

unit vectors gives the pair (Dξ), S(ξ)) for which the complex (22) is exact on S(ξ). Denote

the element defined by (22) by β(ξ) ∈ K0(D(ξ), S(ξ)). Then, one has the homomorphism

given by multiplication by the element β(ξ)

β : K(X)−→K0 (D(ξ), S(ξ)) . (23)

The homomorphism (23) is an isomorphism called the Bott homomorphism.

In particular the Bott element β ∈ K0(S2, s0) = K−2(S0, s0) = Z generates a homo-

morphism h̃:

K−n(X, Y )
⊗β
−→K−(n+2)(X, Y ) (24)

which is called the Bott periodicity isomorphism and hence forms a periodic cohomology

K–theory.

3.5 Relations between complex, symplectic and real bundles

Let G be a compact Lie group. A G–space X is a topological space X with continuous

action of the group G on it. The map f : X−→Y is said to be equivariant if

f(gx) = gf(x), g ∈ G.

Similarly, if f is a locally trivial bundle and also equivariant then f is called an equivariant

locally trivial bundle. An equivariant vector bundle is defined similarly. The theory of

equivariant vector bundles is very similar to the classical theory. In particular, equivariant

vector bundles admit the operations of direct sum and tensor product. In certain simple

cases the description of equivariant vector bundles is reduced to the description of the

usual vector bundles.

The category of G– equivariant vector bundles is good place to give consistent de-

scriptions of three different structures on vector bundles — complex, real and symplectic.

Consider the group G = Z2 and a complex vector bundle ξ over the G–space X. This

means that the group G acts on the space X. Let E be the total space of the bundle ξ

and let

p : E−→X

be the projection in the definition of the vector bundle ξ. Let G act on the total space

E as a fiberwise operator which is linear over the real numbers and anti-complex over

complex numbers, that is, if τ ∈ G = Z2 is the generator then

τ(λx) = λτ(x), λ ∈ C, x ∈ E. (25)
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A vector bundle ξ with the action of the group G satisfying the condition (25) is called

a KR–bundle . The operator τ is called the anti-complex involution. The corresponding

Grothendieck group of KR–bundles is denoted by KR(X).

Below we describe some of the relations with classical real and complex vector bundles.

Proposition 3.14. Suppose that the G–space X has the form X = Y × Z2 and the

involution τ transposes the second factor. Then the group KR(X) is naturally isomorphic

to the group KU(Y ) and this isomorphism coincides with restriction of a vector bundle to

the summand Y × {1}, 1 ∈ G = Z2, ignoring the involution τ .

Proposition 3.15. Suppose the involution τ on X is trivial. Then

KR(X) ≈ KO(X). (26)

The isomorphism (26) associates to any KR–bundle the fixed points of the involution τ .

Proposition 3.16. The operation of forgetting the involution induces a homomorphism

KR(X)−→KU(X)

and when the involution is trivial on the base X this homomorphism coincides with com-

plexification

c : KO(X)−→KU(X).

Moreover, the proof of Bott periodicity can be extended word by word to KR–theory:

Theorem 3.17. There is an element β ∈ KR(D1,1, S1,1) = KR−1,−1(pt) such that the

homomorphism given by multiplication by β

β : KRp,q(X, Y )−→KRp−1,q−1(X.Y ) (27)

is an isomorphism.

It turns out that this scheme can be modified so that it includes another type of

K–theory – that of quaternionic vector bundles.

Let K be the (non-commutative) field of quaternions. As for real or complex vector

bundles, we can consider locally trivial vector bundles with fiber Kn and structure group

GL(n,K), the so called quaternionic vector bundles. Each quaternionic vector bundle can

be considered as a complex vector bundle p : E−→X with additional structure defined

by a fiberwise anti-complex linear operator J such that

J2 = −1, IJ + JI = 0,

where I is fiberwise multiplication by the imaginary unit.

More generally, let J be a fiberwise anti-complex linear operator which acts on a

complex vector bundles ξ and satisfies

J4 = 1, IJ + JI = 0. (28)
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Then, the vector bundle ξ can be split into two summands ξ = ξ1 ⊕ ξ2 both invariant

under the action of J , that is, J = J1 ⊕ J2 such that

J2
1 = 1, J2

2 = −1. (29)

Hence, the vector bundle ξ1 is the complexification of a real vector bundle and ξ2 is a

quaternionic vector bundle.

Consider a similar situation over a base X with an involution τ such that the operator

(28) commutes with τ . Such a vector bundle will be called a KRS–bundle .

Lemma 3.18. A KRS–bundle ξ is split into an equivariant direct sum ξ = ξ1 ⊕ ξ2 such

that J2 = 1 on ξ1 and J2 = −1 on ξ2.

Lemma 3.18 shows that the Grothendieck groupKRS(X) generated byKRS–bundles

has a Z2–grading, that is,

KRS(X) = KRS0(X)⊕KRS1(X).

It is clear that KRS0(X) = KR(X). In the case when the involution τ acts trivially,

KRS1(X) = KQ(X), that is,

KRS(X) = KO(X)⊕KQ(X)

where KQ(X) is the group generated by quaternionic bundles.

KQ

Z

uγ2
00

Z2

h2γ

Z2

hγ

Z

γ
0 0 0

Z

u

Z

α = γ2
0 0 0

Z

uγ
0

Z2

h2

Z2

h

Z

u2 = 4
KO

q -8 -7 -6 -5 -4 -3 -2 -1 0

Fig. 1 A list of the groups KO and KQ.

4 Elliptic operators as the homology K–theory, Atiyah homol-

ogy K–theory as an ancestor of KK–theory

4.1 Homology K–theory. Algebraic categorical setting

A naive point of view of homology theory is that the homology groups dual to the coho-

mology groups h∗(X) should be considered as

h∗(X)
def
= Hom (h∗(X),Z). (30)
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This naive definition is not good since it gives a non-exact functor. A more appropriate

definition is the following.

Consider a natural transformation of functors

αY : h∗(X × Y )−→h∗(Y ) (31)

which is the homomorphism of h∗(Y )–modules and for a continuous mapping f : Y ′−→Y

gives the commutative diagram

h∗(X × Y )
α
−→ h∗(Y )

y(id× f)∗
yf ∗

h∗(X × Y ′)
α
−→ h∗(Y ′)

(32)

Let be the family of all natural transformations of the type (31, 32). The functor

h∗(X) defines a homology theory.

4.2 PDO

Consider a linear differential operator A which acts on the space of smooth functions of

n real variables:

A : C∞(Rn)−→C∞(Rn).

and is presented as a finite linear combination of partial derivatives

A =
∑

|α|≤m

aα(x)
∂|α|

∂xα
. (33)

Put

a(x, ξ) =
∑

|α|≤m

aα(x)ξαi|α|.

The function a(x, ξ) is called the symbol of a differential operator A. The operator A can

be reconstructed from its symbol as

A = a

(
x,

1

i

∂

∂x

)
.

Since the symbol is a polynomial with respect to the variables ξ, it can be split into

homogeneous summands

a(x, ξ) = am(x, ξ) + am−1(x, ξ) + · · ·+ a0(x, ξ).

The highest term am(x, x) is called the principal symbol of the operator A while whole

symbol is sometimes called the full symbol.
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Proposition 4.1. Let y = y(x) be a smooth change of variables. Then, in the new

coordinate system the operator B defined by the formula

(Bu)(y) = (Au (y(x)))x=x(y)

is again a differential operator of order m for which the principal symbol is

bm(y, η) = am

(
x(y), η

∂y(x(y))

∂x

)
. (34)

The formula (34) shows that the variables ξ change as a tensor of valency (0, 1), that

is, as components of a cotangent vector.

The concept of a differential operator exists on an arbitrary smooth manifold M . The

concept of a whole symbol is not well defined but the principal symbol can be defined as a

function on the total space of the cotangent bundle T ∗M . It is clear that the differential

operator A does not depend on the principal symbol alone but only up to the addition of

an operator of smaller order.

The notion of a differential operator can be generalized in various directions. First of

all, notice that

(Au) (x) = Fξ−→x (a(x, ξ) (Fx−→ξ(u)(ξ))) , (35)

where F is the Fourier transform.

Hence, we can enlarge the family of symbols to include some functions which are not

polynomials.

Then the operator A defined by formula (35) with non-polynomial symbol is called a

pseudodifferential operator of order m (more exactly, not greater than m). The pseudod-

ifferential operator A acts on the Schwartz space S.

This definition of a pseudodifferential operator can be extended to the Schwartz space

of functions on an arbitrary compact manifold M . Let {Uα} be an atlas of charts with a

local coordinate system xα. Let {ϕα} be a partition of unity subordinate to the atlas of

charts, that is,

0 ≤ ϕα(x) ≤ 1,
∑

α

ϕα(x) ≡ 1, supp ϕα ⊂ Uα.

Let ψα(x) be functions such that

supp ψα ⊂ Uα, ϕα(x)ψα(x) ≡ ϕα(x).

Define an operator A by the formula

A(u)(x) =
∑

α

ψα(x)Aα (ϕα(x)u(x)) , (36)

where Aα is a pseudodifferential operator on the chart Uα (which is diffeomorphic to Rn)

with principal symbol aα(xα, ξα) = a(x, ξ).

In general, the operator A depends on the choice of functions ψα, ϕα and the local

coordinate system xα, uniquely up to the addition of a pseudodifferential operator of

order strictly less than m.
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The next useful generalization consists of a change from functions on the manifold M

to smooth sections of vector bundles.

The crucial property of the definition (36) is the following

Proposition 4.2. Let

a : π∗(ξ1)−→π
∗(ξ2), b : π∗(ξa)−→π

∗(ξ3)

be two symbols of orders m1, m2. Let c = ba be the composition of the symbols. Then the

operator

b(D)a(D)− c(D) : Γ∞(ξ1)−→Γ∞(ξ3)

is a pseudodifferential operator of order m1 +m2 − 1.

Proposition 4.2 leads to a way of solving equations of the form

Au = f (37)

for certain pseudodifferential operators A. To find a solution of (37), it suffices to con-

struct a left inverse operator B, that is, BA = 1. Usually, this is not possible, but a

weaker condition can be realized.

Condition 4.3. a(x, ξ) is invertible for sufficiently large |ξ| ≥ C.

The pseudodifferential operator A = a(D) is called an elliptic if Condition 4.3 holds.

If A is elliptic operator than there is an (elliptic) operator B = b(D) such that AD − id

is the operator of order -1.

The final generalization for elliptic operators is the substitution of a sequence of

pseudodifferential operators for a single elliptic operator. Let ξ1, ξ2, . . . , ξk be a sequence

of vector bundles over the manifold M and let

0−→π∗(ξ1)
a1−→π∗(ξ2)

a2−→ . . .
ak−1
−→π∗(ξk)−→0 (38)

be a sequence of symbols of order (m1, . . . , mk−1). Suppose the sequence (38) forms a

complex, that is, asas−1 = 0. Then the sequence of operators

0−→Γ∞(ξ1)
a1(D)
−→Γ∞(ξ2)−→ . . .−→Γ∞(ξk)−→0 (39)

in general, does not form a complex because we can only know that the composition

ak(D)ak−1(D) is a pseudodifferential operator of the order less then ms +ms−1.

If the sequence of pseudodifferential operators forms a complex and the sequence of

symbols (38) is exact away from a neighborhood of the zero section in T ∗M then the

sequence (39) is called an elliptic complex of pseudodifferential operators.
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4.3 Fredholm operators

The bounded operator K : H−→H is said to be compact if any bounded subset X ⊂ H is

mapped to a precompact set, that is, the set F (X) is compact. If dim Im (K) <∞ then

K is called a finite-dimensional operator. Each finite-dimensional operator is compact.

If limn→∞ ‖Kn −K‖ = 0 and the Kn are compact operators, then K is again a compact

operator. Moreover, each compact operator K can be presented as K = limn→∞Kn,

where the Kn are finite-dimensional operators.

The operator F is said to be Fredholm if there is an operator G such that both

K = FG− 1 and K ′ = GF − 1 are compact.

Theorem 4.4. Let F be a Fredholm operator. Then

(1) dimKer F < ∞, dim Coker F < ∞ and the image, Im F , is closed. The number

index F = dimKer F − dimCoker F is called the index of the Fredholm operator

F .

(2) index F = dim Ker F − dimKer F ∗, where F ∗ is the adjoint operator.

(3) there exists ε > 0 such that if ‖F −G‖ < ε then G is a Fredholm operator and

index F = index G,

(4) if K is compact then F +K is also Fredholm and

index (F +K) = index F. (40)

(5) If F and G are Fredholm operators, then the composition FG is Fredholm and

index (FG) = index F + index G.

The notion of a Fredholm operator has an interpretation in terms of the finite-

dimensional homology groups of a complex of Hilbert spaces. In general, consider a

sequence of Hilbert spaces and bounded operators

0−→C0
d0−→C1

d1−→ . . .
dn−1
−→Cn−→0. (41)

We say that the sequence (41) is a Fredholm complex if dkdk−10, Im dk is a closed subspace

and

dim (Ker dk/Coker dk−1) = dimH (Ck, dk) <∞.

Then the index of Fredholm complex (41) is defined by the following formula:

index (C, d) =
∑

k

(−1)k dimH(Ck, dk).

Theorem 4.5. Let

0−→C0
d0−→C1

d1−→ . . .
dn−1
−→Cn−→0 (42)

be a sequence satisfying the condition that each dkdk−1 is compact. Then the following

conditions are equivalent:
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(1) There exist operators fk : Ck−→Ck−1 such that fk+1dk + dk−1fk = 1 + rk where each

rk is compact.

(2) There exist compact operators sk such that the sequence of operators d′k = dk + sk

forms a Fredholm complex. The index of this Fredholm complex is independent of

the operators sk.

4.4 Sobolev spaces

Consider an arbitrary compact manifold M and a vector bundle ξ. One can define a

Sobolev norm on the space of the sections Γ∞(M, ξ), using the formula

‖u‖2s =

∫

Rn

u(x)(1 + ∆)su(x)dx,

where ∆ is the Laplace-Beltrami operator on the manifold M with respect to a Rieman-

nian metric. The Sobolev norm depends on the choice of Riemannian metric, inclusion

of the bundle ξ in the trivial bundle uniquely equivalent norms. Hence, the completion

of the space of sections Γ∞(M, ξ) is defined correctly. We shall denote this completion

by Hs(M, ξ).

Theorem 4.6. Let M be a compact manifold, ξ be a vector bundle over M and s1 < s2.

Then the natural inclusion

Hs2(M, ξ)−→Hs1(M, ξ) (43)

is a compact operator.

Theorem 4.7. Let

a(D) : Γ∞(M, ξ1)−→Γ∞(M, ξ2) (44)

be a pseudodifferential operator of order m. Then there is a constant C such that

‖a(D)u‖s−m ≤ C‖u‖s, (45)

that is, the operator a(D) can be extended to a bounded operator on Sobolev spaces:

a(D) : Hs(M, ξ1)−→Hs−m(M, ξ2). (46)

Using theorems 4.6 and 4.7 it can be shown that an elliptic operator is Fredholm for

appropriate choices of Sobolev spaces.

Theorem 4.8. Let a(D) be an elliptic pseudodifferential operator of order m as in (44).

Then its extension (46) is Fredholm. The index of the operator (46) is independent of the

choice of the number s.
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4.5 Index of elliptic operators

An elliptic operator σ(D) is defined by a symbol

σ : π∗(ξ1)−→π
∗(ξ2) (47)

which is an isomorphism away from a neighborhood of the zero section of the cotan-

gent bundle T ∗M . Since M is a compact manifold, the symbol (47) defines a triple

(π∗(ξ1), σ, π
∗(ξ2)) which in turn defines an element

[σ] ∈ K(D(T ∗M), S(T ∗M)) = Kc(T
∗M),

where Kc(T
∗M) denotes the K–groups with compact supports.

Theorem 4.9. The index index σ(D) of the Fredholm operator σ(D) depends only on

the element [σ] ∈ Kc(T
∗M). The mapping

index : Kc(T
∗M)−→Z

is an additive homomorphism.

In addition,

index σ(D) = p∗[σ], (48)

where

p∗ : Kc(T
∗M)−→Kc(pt) = Z

is the direct image homomorphism induced by the trivial mapping p : M−→pt.

4.6 The Atiyah homology theory

The naive idea is that cohomology K–group (with compact supports) of the total space

of cotangent bundle of the manifold M , Kc(T
∗M), should be isomorphic to a homology

K–group due to a Poincare duality, K∗(T
∗M) ≈ K∗(M). This identification can be

arranged to be a natural transformation of functors

D : Kc(T
∗M) ≈ K∗(M),

D(σ) : K∗(M ×N) −→ K∗(N)

D(σ)(ξ) = index (σ ⊗ ξ) ∈ K∗(N).

(49)

Therefore, the homology K–groups, K∗(M) can be identified with the collection

of triples σ = (H,F, ρ), where H is a Hilbert space, F is a Fredholm operator, ρ :

C(M)−→B(H) is a representation of the algebra C(M) of all continuous functions to

the algebra B(H) of bounded operators, such that for any function f ∈ C(M) the

operator Ff − fF : H−→H is compact. If ξ is a vector bundle on M then the
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space Γ(ξ) is a finitely generated projective module over C(M). Therefore the opera-

tor F ⊗ idξ : H ⊗C(M) Γ(ξ)−→H ⊗C(M) Γ(ξ) is Fredholm. Hence, one obtains a natural

transformation

σ : K∗(M ×N) −→ K∗(N),

σ(ξ) = index (F ⊗ idξ) ∈ K
∗(N).

(50)

This definition was an ancestor of KK–theory.

5 C∗–algebras, Hilbert C∗–modules and C∗–Fredholm operators

5.1 Hilbert C∗–modules

The simplest case of C∗–algebras is the case of commutative C∗–algebras. The Gelfand–

Naimark theorem ([1]) says that any commutative C∗–algebra with unit is isomorphic to

an algebra C(X) of continuous functions on a compact space X.

This crucial observation leads to a simple but very useful definition of Hilbert modules

over the C∗–algebra A. Following Paschke ([21]), the Hilbert A–module M is a Banach

A–module with an additional structure of inner product 〈x, y〉 ∈ A, x, y ∈ M which

possesses the natural properties of inner products.

If ξ is a finite-dimensional vector bundle over a compact spaceX, then Γ(ξ) is a finitely

generated projective Hilbert C(X)–module. And conversely, each finitely generated pro-

jective Hilbert module P over the algebra C(X) is isomorphic to a section module Γ(ξ)

for some finite-dimensional vector bundle ξ. Therefore

K0(C(X)) ∼= K(X).

5.2 Fredholm operators, Calkin algebra

A finite-dimensional vector bundle ξ over a compact spaceX, can be described as a contin-

uous family of projectors, that is a continuous matrix-valued function P = P (x), x ∈ X,

P (x) ∈ Mat(N,N), P (x)P (x) = P (x), P (x) : CN−→CN . This means that ξ = Im P .

Here Mat(N,N) denotes the space of N ×N matrices.

Hence if η = kerP then

ξ ⊕ η = N. (51)

Then ξ⊕
∑∞

k=1 Nk ≈
∑∞

k=1 Nk ≈ H×X whereH is a Hilbert space, or ξ⊕H⊗X = H×X.

Hence, there is a continuous Fredholm family

F (x) : H−→H,

Ker (F ) = ξ,

Coker (F ) = 0.

(52)
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And conversely, if we have a continuous family of Fredholm operators F (x) : H−→H

such that dimKer F (x) = const , dimCoker F (x) = const then both ξ = Ker F

and η = Coker F are locally trivial vector bundles. More generally, for an arbitrary

continuous family of Fredholm operators F (x) : H−→H there is a continuous compact

family K(x) : H−→H such that the new family F̃ (x) = F (x) + K(x) satisfies the

conditions dimKer F̃ (x) = const , dimCoker F̃ (x) = const consequently defining

two vector bundles ξ and η which generate an element [ξ]− [η] ∈ K(X) not depending on

the choice of compact family. This correspondence is actually one-to-one. In fact, if two

vector bundles ξ and η are isomorphic then there is a compact deformation of F (x) such

that Ker F (x) = 0, Coker F (x) = 0, that is F (x) is an isomorphism, F (x) ∈ G(H).

The remarkable fact discovered by Kuiper ([22]) is that the group G(H) as a topolog-

ical space is contractible, i.e. the space F(H) of Fredholm operators is a representative of

the classifying space BU for vector bundles. In other words, one can consider the Hilbert

space H and the group of invertible operators GL(H) ⊂ B(H). The Kuiper theorem says

that

πi(GL(H)) = 0, 0 ≤ i <∞. (53)

5.3 K–theory for C∗–algebras, Chern character

Generalization of K–theory for C∗–algebra A. KA(X) is the Grothendieck group gen-

erated by vector bundles whose fibers M are finitely generated projective A–modules,

and the structure groups Aut A(M). K∗
A(X) are the corresponding periodic cohomology

theory.

For example, let us consider the quotient algebra Q(H) = B(H)/K(H), the so-called

Calkin algebra, where B(H) is the algebra of bounded operators of the Hilbert space

H , K(H) is the algebra of compact operators. Let p : B(H)−→Q(H) be the natural

projector. Then the Fredholm family F (x) : H−→H generates the family F : X−→Q(H),

F (x) = p(F (x)), F (x) is invertible that is

F : X−→G(Q(H)).

So, one can prove that the space G(Q(H)) represents the classifying space BU for vector

bundles. In other words,

K0(X) ∼= K1
Q(H)(X).

A generalization of the Kuiper theorem for the group GL∗
A(l2(A)) of all invertible

operators which admit adjoint operators. Let F be the space of all Fredholm operators.

Then

K∗(X) ≈ [X,F ]. (54)

Let Q = B(H)/K be the Calkin algebra, where K is the subalgebra of all compact

operators. Let G(Q) be the group of invertible elements in the algebra Q. Then one has

a homomorphism

[X,F ]−→[X,Q],
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hence a homomorphism

K0(X)−→K1
Q(X)

which is an isomorphism.

The Chern character

chA : K∗
A(X)−→H∗(X;K∗

A(pt)⊗Q)

is defined in a tautological way: let us consider the natural pairing

K∗(X)⊗K∗
A(pt)−→K∗

A(X) (55)

which generates the isomorphism

K∗(X)⊗K∗
A(pt)⊗Q

θ
−→K∗

A(X)⊗Q (56)

due to the classical uniqueness theorem in axiomatic homology theory. Then, the Chern

character is defined as the composition

chA : K∗
A(X) ⊂ K∗

A(X)⊗Q
θ−1

−→K∗(X)⊗ (K∗
A(pt)⊗Q)

ch
−→

ch
−→H∗(X;K∗

A(pt)⊗Q).

(57)

Therefore, the next theorem is also tautological:

Theorem 5.1. If X is a finite CW–space, the Chern character induces the isomorphism

chA : K∗
A(X)⊗Q−→H∗(X;K∗

A(pt)⊗Q).

5.4 Non-simply connected manifolds and canonical line vector bundle

Let π be a finitely presented group which can serve as a fundamental group of a compact

connected manifold M , π = π1(M,x0). Let Bπ be the classifying space for the group π.

Then there is a continuous mapping

fM : M−→Bπ (58)

such that the induced homomorphism

(fM)∗ : π1(M,x0)−→π1(Bπ, b0) = π (59)

is an isomorphism. One can then construct the line vector bundle ξA over M with

fiber A, a one-dimensional free module over the group C∗–algebra A = C∗[π] using the

representation π ⊂ C∗[π]. This canonical line vector bundle can be used to construct the

so-called assembly map

µ : K∗(Bπ)−→K∗(C
∗[π]) (60)
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5.5 Symmetric equivariant C∗–signature

Let M be a closed oriented non-simply connected manifold with fundamental group π.

Let Bπ be the classifying space for the group π and let

fM : M−→Bπ,

be a map inducing the isomorphism of fundamental groups.

Let Ω∗(Bπ) denote the bordism group of pairs (M, fM ). Recall that Ω∗(Bπ) is a

module over the ring Ω∗ = Ω∗( pt ).

One can construct a homomorphism

σ : Ω∗(Bπ)−→L∗(Cπ) (61)

which for every manifold (M, fM) assigns the element σ(M) ∈ L∗(Cπ), the so-called

symmetric Cπ–signature, where L∗(Cπ) is the Wall group for the group ring Cπ.

The homomorphism σ satisfies the following conditions:

(a) σ is homotopy invariant,

(b) if N is a simply connected manifold and τ(N) is its signature then

σ(M ×N) = σ(M)τ(N) ∈ L∗(Cπ).

We shall be interested only in the groups after tensor multiplication with the field Q,

in other words, in the homomorphism

σ : Ω∗(Bπ)⊗Q−→L∗(Cπ)⊗Q.

However,

Ω∗(Bπ)⊗Q ≈ H∗(Bπ;Q)⊗ Ω∗.

Hence one has

σ : H∗(Bπ;Q)−→L∗(Cπ)⊗Q.

Thus, the homomorphism σ represents the cohomology class

σ ∈ H∗(Bπ;L∗(Cπ)⊗Q).

Then, for any manifold (M, fM) one has

σ(M, fM) = 〈L(M)f ∗
M (σ), [M ]〉 ∈ L∗(Cπ)⊗Q. (62)

Hence, if α : L∗(Cπ)⊗Q−→Q is an additive functional and α(σ) = x ∈ H∗(Bπ;Q) then

signx(M, fM) = 〈L(M)f ∗
M (x), [M ]〉 ∈ Q

should be the homotopy-invariant higher signature. This gives a description of the family

of all homotopy-invariant higher signatures. Hence, one should study the cohomology

class

σ ∈ H∗(Bπ;L∗(Cπ)⊗Q) = H∗(Bπ;Q)⊗ L∗(Cπ)⊗Q

and look for all elements of the form α(σ) = x ∈ H∗(Bπ;Q).



790 A.S. Mishchenko / Central European Journal of Mathematics 3(4) 2005 766–793

5.5.1 Combinatorial description of symmetric Cπ–signature

Here we give an economical description of algebraic Poincare complexes as a graded free

Cπ–module with the boundary operator and the Poincare duality operator. Consider a

chain complex of Cπ–modules C, d:

C =
n⊕

k=0

Ck,

d =

n⊕

k=1

dk,

dk : Ck−→Ck−1

and a Poincare duality homomorphism

D : C∗−→C, degD = n.

They form the diagram

C0
d1←− C1

d2←− · · ·
dn←− CnxD0

xD1

xDn

C∗
n

d∗n←− C∗
n−1

d∗n−1
←− · · ·

d∗1←− C∗
0

with the following properties:

dk−1dk = 0,

dkDk + (−1)k+1Dk−1d
∗
n−k+1 = 0,

Dk = (−1)k(n−k)D∗
n−k. (63)

Assume that the Poincare duality homomorphism induces an isomorphism of homology

groups. Then the triple (C, d,D) is called a algebraic Poincare complex. This definition

permits the construction of the algebraic Poincare complex σ(X) for each triangulation

of the combinatorial manifold X: σ(X) = (C, d,D), where

C = C∗(X;Cπ)

is the graded chain complex of the manifold X with local system of coefficients induced

by the natural inclusion of the fundamental group π = π1(X) in the group ring Cπ, d is

the boundary homomorphism,

D = ⊕Dk, Dk =
1

2

(
∩[X] + (−1)k(n−k)(∩[X])∗

)
,

where ∩[X] is the intersection with the open fundamental cycle of the manifold X.

Put

Fk = ik(k−1)Dk. (64)
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Then the diagram

C0
d1←− C1

d2←− · · ·
dn←− CnxF0

xF1

xFn

C∗
n

d∗n←− C∗
n−1

d∗n−1
←− · · ·

d∗1←− C∗
0

(65)

possesses more natural conditions of commutativity and conjugacy

dkFk + Fk−1d
∗
n−k+1 = 0,

Fk = (−1)
n(n−1)

2 F ∗
n−k. (66)

Let

F = ⊕n
k=0Fk, F, degF = n.

Over completion to a regular C∗–algebra C∗[π], one can define an element of hermitian

K–theory using the non-degenerate self-adjoint operator

G = d+ d∗ + F : C−→C.

Then

sign [C,G] = sign (C, d,D) ∈ Kh
0 (C∗[π]). (67)

6 Additional historical remarks

The only candidates which are homotopy invariant characteristic numbers are the higher

signatures. Moreover, any homotopy invariant higher signature can be expressed from a

universal symmetric equivariant signature of the non-simply connected manifold. There-

fore, to look for homotopy invariant higher signatures, one can search through different

geometric homomorphisms α : L∗(Cπ)⊗Q−→Q. On of them is the so-called Fredholm

representation of the fundamental group.

Application of the representation theory in the finite-dimensional case leads to Hirzebruch-

type formulas for signatures with local system of coefficients. But the collection of charac-

teristic numbers which can be represented by means of finite-dimensional representations

is not very large and in many cases reduces to the classical signature. The most signif-

icant here is the contribution by Lusztig ([28]) where the class of representations with

indefinite metric is considered.

The crucial step was to find a class of infinite-dimensional representations which pre-

serve natural properties of the finite-dimensional representations. This infinite-dimensional

analogue consists of a new functional-analytic construction as a pair of unitary infinite

dimensional representations (T1, T2) of the fundamental group π in the Hilbert space H

and a Fredholm operator F which braids the representations T1 and T2 upto compact

operators. The triple ρ = (T1, F, T2) is called the Fredholm representation of the group

π.
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From the categorical point of view, the Fredholm representation is a relative represen-

tation of the group C∗–algebra C∗[π] in the pair of Banach algebras (B(H),Q(H) where

B(H) is the algebra of bounded operators on the Hilbert space H and Q(H) is the Calkin

algebra Q(H) = B(H)/K(H). Then, for different classes of manifolds one can construct

a sufficiently rich resource of Fredholm representations. For one class of examples from

amongst many others, there are the manifolds with Riemannian metric of nonpositive

sectional curvature, the so-called hyperbolic fundamental groups. For the most complete

description of the state of these problems, one may consult ([29]) and the book ([2]).
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combinatorial Hirzebruch formula”, Acta. Appl. Math., Vol. 68, (2001), pp. 5–37.

[28] G. Lusztig: “Novikov’s higher signature and families of elliptic operators””, J.Diff.
Geometry, Vol. 7, (1972), pp. 229–256.

[29] S.C. Ferry, A. Ranicki and J. Rosenberg (Eds.): Proceedings of the Conference
’Novikov Conjectures, Index Theorems and Rigidity, Cambridge Univ. Press, 1995.

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0020-9910(1988)91L.147[aid=6893647]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0020-9910(1988)91L.147[aid=6893647]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=0167-8019(2001)68L.5[aid=6893646]

