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Programme

1. Initial notions of smooth manifolds.

(a) Non linear coordinate systems.

(b) Coordinate homeomorphisms, the Jacobi matrix, jacobian.

(c) Charts, atlas of charts. Smooth structure of the class Ck. Class C∞,
real and complex analytic manifolds.

(d) Invariance of the dimension of the smooth manifolds.

(e) Smooth functions on manifolds.

(f) Smooth mapping from manifold to a manifold. The Jacobi matrix of
the smooth mapping.

(g) Examples. Sphere, projective space, torus. Cartesian product of
manifolds.

(h) Implicit function theorem. Regular points, regular values. Inverse
image of regular value.

(i) Description of manifold by a graph.

(j) Partition of the unit.

2. Submanifolds.

(a) Examples of different types of submanifolds.

(b) Embedding and immersion of manifolds. The Whitney theorem.

(c) Transversal mappings. The Sard lemma, the Abraham theorem.

(d) Weak and strong Whitney theorem.

3. Tangent vectors and vector fields. 3 definitions of tangent vectors.

(a) Linear approximation of a submanifold. Tangent subspace.

(b) Tangent vector as a tensor.

(c) Tangent vector as a sheaf of osculating curves.

(d) Tangent vector as a differentiation operator. The smooth remainder
of the Taylor formula.

(e) Tangent bundle of smooth manifold.

4. Some application of the theory of manifolds.

(a) The mapping degree of orientable manifolds, the main algebra theo-
rem.

(b) Submersions and smooth bundles.

(c) The Pontryagin–Thom construction, the bordism theory.

(d) The Morse functions, handles, surgery of manifolds.
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5. Vector fields, the Lie brackets, the Lie algebra structure, integrable distri-
butions, foliations.

6. Differential forms, calculus, de Rham complex, de Rham cohomology, the
Hodge theory.

7. Integration of differential forms, the general Stokes formula. Special cases:
Newton–Leibniz, Green, Gauss-Ostrogradsky, 3-dimensional Stokes for-
mula.

8. Application to the mapping degree and the Gauss-Bonnet formula.

9. Locally trivial bundles

(a) The structure groups

(b) Vector bundles

(c) Linear transformations of vector bundles

(d) Vector bundles related to manifolds

(e) Linear groups and related bundles

(f) Classifying theorems

(g) Exact homotopy sequence

(h) Constructions of classifying spaces

(i) Characteristic classes

10. K-theory.

(a) K–theory and the Chern classes

(b) The difference construction

(c) The Bott periodicity

(d) Periodic K–theory

(e) Linear representations and bundles

(f) Equivariant bundles

(g) Complex, real and quaternionic vector bundles

(h) Spectral sequences

(i) Cohomological operations in K–theory

(j) The Thom isomorphism and direct image

(k) The Riemann–Roch theorem

(l) Elliptic operators on manifolds

(m) Fredholm operators and the Sobolev norms

(n) The Atiyah–Singer formula

(o) Signature of manifolds

(p) C∗–algebras and K–theory
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1 Initial notions of smooth manifolds.

1.1 Non linear coordinate systems.

Let us consider an n-dimensional Euclidean space which is usually denoted
by Rn. We assume that this space is provided with Cartesian coordinates
x1, . . . , xn which permit a unique determination of the position of any point in
Rn by associating with it a set of real numbers, the coordinates relative to a
fixed orthogonal basis formed by mutually orthogonal unit vectors e1, e2, . . . en.

The idea of describing a point in an Euclidean space by a set of real numbers
(which may also be considered as the coordinates of the radius vector emerging
from the origin to the point) underlies analytic geometry which solves various
geometric problems by purely algebraic methods. This important approach was
first, introduced (explicitly) into mathematics by des Cartes in whose honor we
now say ”Cartesian coordinates”. Algebraization of geometry has played a key
role in the development not only of geometry as such but also of mathematics
as a whole.

We shall not concentrate on the problems which are easily and elegantly
solved by algebraic-analytic methods (viz. classification of second-order surfaces
in a three-dimensional space) and refer the reader to numerous courses of algebra
and analytic geometry. Let us only recall that Cartesian coordinates in Rn are
closely related to the concept of the Euclidean scalar product, a bilinear form
which associates with each pair of vectors ξ, η ∈ Rn a real number usually
denoted by 〈ξ, η〉. This operation is symmetric and linear in each argument,
and the form itself is positive definite. In a Cartesian coordinate system we
have

〈ξ, η〉 = ξ1η1 + . . . + ξnηn,

where
ξ =

(

ξ1, . . . , ξn)

,

η =
(

η1, . . . , ηn)

.

Simple examples however show that Cartesian coordinates are not always the
most convenient ones to solve analytically many particular problems. We shall
demonstrate this by writing the equations of curves on a plane in Cartesian
coordinates x, y. Of course, for rather simple curves, viz. a circle or ellipse, the
analytic expressions in Cartesian coordinates are simple. Indeed, the equation
of a circle of radius R with centre at point A is

(

x−A1)2
+

(

y −A2)2
= R2,

where A =
(

A1, A2
)

. The equation of an ellipse is also simple:

(

x−A1
)2

a2 +

(

y −A2
)2

b2 = R2,

where a and b are the principal semi-axes.
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However, in various applications and concrete mechanical and physical prob-
lems we often deal with smooth curves (say, trajectories of the motion of a
particle in a force field) whose equations in Cartesian coordinates are rather
cumbersome. For example, the equation

√

x2 + y2 − eλ(tan−1 y
x ) = 0

defines a spiral in Cartesian coordinates. Although this equation is rather sim-
ple, it could be written in a simpler form in so called polar coordinates (r, ϕ)
related to the Cartesian coordinates (x, y) by

x = r cos ϕ
y = r sin ϕ. (1)

In polar coordinates the equation of a spiral becomes r = eλϕ, thereby clearly
demonstrating the character of the motion along this trajectory.

Below we shall return to a polar coordinate system, and here we just note
that the introduction of such coordinates (called curvilinear coordinates) is not a
caprice of mathematicians trying to devise new entities but a practical necessity,
sometimes quite useful in particular calculations. In this connection, we shall
briefly discuss a problem where polar coordinates appear to be quite useful.

1.1.1 A practical example

Let us consider the motion of a particle on a plane in a central force field.
Suppose the centre is at the point O and (r, ϕ) are polar coordinates on the
plane. Let r be the radius vector of the moving particle (this vector originates
from O), r = |r| be its length, and t be the time (the motion parameter); then
the coordinates r and ϕ are functions of time. Consider at a point r(t) with
polar coordinates r = |r|, ϕ two orthogonal unit vectors: a vector er,. along
the radius vector of the particle (note that the relation r = r · er holds in this
case) and a vector eϕ orthogonal to er and so directed that the polar angle ϕ
increases. Differentiation of a radius vector r(t) with respect to time will be
denoted by a dot. As is known from mechanics the motion of a particle (its
mass is taken equal to 1 for simplicity) in a central force field on a plane is
described by the following differential equation:

··
r= f(r)er,

where f is a smooth function of a single argument r. Incidentally, here is a useful
exercise for the reader: write this differential equation in Cartesian coordinates
on a plane.

The motion of a particle can be described by two functions: r = r(t) and
ϕ = ϕ(t), that is, in a polar coordinate system. It is a simple matter to verify
that when a material particle moves in a central force field the quantity r2ϕ is
conserved. This is one of Kepler’s laws which he discovered while studying the
motion of the planets of the Solar system (at that time Kepler already employed
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the tables of the coordinates of the planets on the celestial sphere as a function
of time). This conserving quantity can be given clear geometrical meaning.

Kepler introduced a convenient notion of areal velocity u as the time rate of
change of the area s(t) swept out by the radius vector r(t), i.e. υ = ds(t)

dt . In
terms of the areal velocity Kepler’s law can be formulated as follows: the radius
vector sweeps out equal areas in equal times; in other words, the areal velocity
is constant, ds(t)

dt = const. We can also prove (the proof is omitted here) that
this law is one of the formulations of the principle of conservation of angular
momentum. The reader can easily see that this law is much simpler to derive
in polar coordinates rather than in Cartesian coordinates (though calculations
may, of course, be performed in the latter as well).

Solution of particular problems in mechanics and physics has called for the
invention of other curvilinear coordinate systems: cylindrical, spherical, and so
on. Close examination of all the ways above of associating a point in space with
a set of real numbers (the coordinates of this point) shows that this association
is based on a general idea admitting a reasonable formalization which comprises
all the ”curvilinear” coordinates mentioned (inverted commas are used for the
word curvilinear, since we have not yet defined the concept strictly, but consider
only graphic examples).

1.1.2 Cartesian and curvilinear coordinates

Let us consider an arbitrary domain in a Euclidean space Rn. We recall that,
just as in mathematical analysis, by a domain we mean an arbitrary set U in
a Euclidean space whose every point P is contained in U together with a ball
of sufficiently small radius with centre at P . Consider also a second copy of
the Euclidean space, which is denoted by Rn

1 . To define the coordinates of the
point P in the domain U is to associate with this point a set of numbers, called
coordinates. Obviously, an arbitrary association (i.e. the one without additional
requirements) will not lead to a good result in that such a correspondence may
be devoid of sense (it is desirable that mathematical concepts should be of some
use, for instance in computations, just as was the case with Cartesian coordi-
nates). Here is an example of senseless association: the same set of numbers,
say (0, 0, 0, . . . , 0), is associated with each point P in U . Thus, we arrive at the
first requirement to the association: it is desirable that distinct sets of numbers
(coordinates) should correspond to different points of the domain. The example
just mentioned does not satisfy this requirement (all the points of the domain
C have the same ”coordinates”, zeros).

Thus, our aim is to associate with each point P of a domain U a set of
n real numbers. Apparently, this operation gives rise to a set of n functions
(

x1(P ), . . . , xn(P )
)

defined in the domain U ; here
(

x1, . . . , xn
)

are coordinates
in the Euclidean space Rn

1 .
These functions are usually required to be continuous and even smooth (at

least for almost all points of the domain U), that is, a small change in the
position of P should lead to a small change in its coordinates, and a smooth
deformation of P should generate a smooth variation of its coordinates.
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So, let us consider two copies of Euclidean space: Rn with Cartesian coor-
dinates

(

y1, . . . , yn
)

and Rn
1 with Cartesian coordinates

(

x1, . . . , xn
)

; let U be
a domain in Rn.

Remark. The Euclidean space Rn
1 could be considered as an ”arithmetic

space” by identifying its points with real sequences of length n.

Definition 1 A continuous coordinate system in a domain U of Euclidean space
Rn is said to be a system of functions

{

x1 = x1 (

y1, . . . , yn)

, . . . , xn = xn (

y1, . . . , yn)}

which maps the domain U continuously and bijectively onto a certain domain
V of Rn

1 . In other words, the system of functions
(

x1(P ), . . . , xn(P )
)

defines a
mapping, sometimes called a homeomorphism of U onto V .

Definition 1 is a formal expression of our desire that as a point P moves
continuously in U its coordinates should also change continuously. The functions
(

x1(P ), . . . , xn(P )
)

are called the coordinates of point P with respect to the
coordinate mapping f : U → V .

For instance, the coordinate mapping f : U → V may be chosen in the form
of an identity mapping defined by the linear functions,

{

x1 = y1, . . . , xn = yn
}

.
Sometimes we shall write a point P with coordinates

(

x1(P ), . . . , xn(P )
)

in
the form P

(

x1, . . . , xn
)

assuming that the coordinate mapping f : U → V has
already been defined and fixed.

1.2 Coordinate homeomorphisms, the Jacobi matrix, ja-
cobian.

Among all continuous coordinate mappings of special interest are those that
define a smooth mapping of a domain U onto V , i.e. when all functions
{

x1
(

y1, . . . , yn
)

, . . . , xn
(

y1, . . . , yn
)}

are continuously smooth functions of their
arguments

(

y1, . . . , yn
)

. But the smoothness of the coordinate mapping f with-
out the assumption of the smoothness of the inverse mapping f−1 does not lead
to a meaningful coordinate system. Therefore, we now turn to defining coordi-
nate systems in which f and f−1 are both smooth. To this end, we shall need
a new concept, the Jacobi matrix of a smooth mapping.

Let f : U → V be a smooth mapping defined by a family of functions
{

x1 (

y1, . . . , yn)

, . . . , xn (

y1, . . . , yn)}

.

Definition 2 The Jacobi matrix of a mapping f is a functional matrix

df =
∂x
∂y

=







∂x1

∂y1 · · · ∂x1

∂yn

· · · · · · · · ·
∂xn

∂y1 · · · ∂xn

∂yn





 ,

composed of partial derivatives of the coordinates
(

x1(P ), . . . , xn(P )
)

. The de-
terminant of this matrix is denoted by J(f) and called the Jacobian of the map-
ping f .
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Remark. We hope that the notation df for the Jacobi matrix will not be
confused with the differential of a smooth function f , since this differential (when
interpreted appropriately) coincides with the Jacobi matrix in this particular
case. Let us note once more that a Jacobi matrix is a variable matrix, i.e. it
depends on a point P in a domain U . Similarly the Jacobian J(f) is a smooth
function on U .

Definition 3 A regular coordinate system in a domain U of Euclidean space Rn

is a system of smooth functions
{

x1
(

y1, . . . , yn
)

), . . . , xn
(

y1, . . . , yn
)}

which
map bijectively the domain U onto a domain V in Rn and are such that the
Jacobian J(f) is not zero at all points of U .

Let us note that the condition that the Jacobian does not vanish at all
points of U means that the inverse mapping f−1 is not only continuous, but
also smooth. This follows from the implicit function theorem. Thus, a reg-
ular coordinate system is defined by two smooth mutually inverse mappings
establishing a homeomorphism between the domains U and V . Definition 3
makes formal our desire that when a point P changes smoothly in U its coordi-
nates should also change smoothly; moreover, smooth variation of a ”coordinate
point” Q in V should also result in smooth variation of the point P induced
by the mapping . The definitions presented above clearly show that the very
concept of a ”smooth and regular coordinate system” automatically implies that
at least two copies of a standard Euclidean space should be considered. Certain
domains of these copies are identified by a continuous and bijective mapping
with an additional requirement of smoothness (in both directions).

These definitions can be interpreted from another point of view. We could
assume that a Cartesian coordinate system is initially introduced in a domain
U of Euclidean space Rn (via an identity mapping of U onto V under natural
identification of both copies, Rn and Rn

1 ). Then, the introduction in U of
another coordinate system defined by a regular mapping f (i.e. a smooth, one-
to-one mapping with a non-zero Jacobian) may be considered as a coordinate
transformation: we simply pass from the initial Cartesian coordinate system to
a new one in the same domain U .

Definition 4 A regular coordinate system in a domain U is sometimes called
a curvilinear coordinate system in U .

Consider two arbitrary curvilinear coordinate systems in a domain U :
(

x1(P ), . . . , xn(P )
)

and
(

z1(P ), . . . , zn(P )
)

.

This means that two regular mappings

f : U → V ⊂ Rn
1

(

x1, . . . , xn)

and g : U → W ⊂ Rn
2

(

z1, . . . , zn)

are defined which map smoothly and bijectively the domains U to V and U
to W , respectively. In other words, each point P in U is associated with two
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sets of curvilinear coordinates {xi(P )} and {zi(P )}, 1 ≤ i ≤ n. Since these
correspondences are bijective, we may consider a correspondence which relates
the coordinates {xi(P )} of point P to the coordinates {zi(P )} , this operation
defining the mapping ψx,z : V → W , i.e. ψx,z : xi(p) → zi(p), 1 ≤ i ≤ n. The
mapping ψx,z is called coordinate transformation in the domain U . Under this
transformation the initial curvilinear coordinates {xi(P )} of point P change to
new curvilinear coordinates {zi(P )}.

Lemma 1 The transformation ψx,z is a bijective and smooth mapping of the
domain V onto W with a non-zero Jacobian.

Proof. That ψx,z is one-to-one directly follows from Definition 3. The
smoothness of ψx,z follows from the fact that the composition of two smooth
mappings is also a smooth mapping. It remains to verify that the Jacobian
J(ψx,z) of ψx,z is non-zero at each point of the domain W .

Indeed, the mapping ψx,z splits into the composition of two mappings:

ψx,z = g ◦ f−1 : V → W.

The Jacobi matrix of ψx,z splits into the product of Jacobi matrices of the
mappings f−1 and g. One has dψx,z = dz

dx . Consider the derivative ∂zi

∂xj . Since

zi = zi (

y1, . . . , yn)

= zi (

y1 (

x1, . . . , xn)

, . . . , yn (

x1, . . . , xn))

where the functions {yα(x1, . . . , xn), 1 ≤ i ≤ n} define the smooth mapping
f−1 : V → U , we obtain from the formula for differentiation of a composite
function

∂zi

∂xj =
n

∑

k=1

∂zi

∂yk

∂yk

∂xj

which means that the Jacobi matrix dψx,z splits into the product of two matrices
dg and df−1. We have used here the formula which expresses the elements of
the product of two matrices in terms of the elements of each matrix.

It remains to establish a relation between the Jacobi matrices df and d(f−1).
Since the composition f−1 ◦f is an identity mapping of the domain U into itself
(see the definition of a regular coordinate system), we find from the formula just
proved that d(f−1 ◦ f) = d

(

f−1
)

◦ df = E, where E is an identity matrix of
order n, i.e. finally

(

d(f−1)
)

= (df)−1. Thus, we have proved that the identity
dψx,z = (df) · (df)−1 holds for the matrix dψx,z, i.e. J(ψx,z) = J(g)/J(f), and
since the Jacobians J(g) and J(f) are both non-zero, J(ψx,z) is also non-zero.
The lemma is proved.

If the mapping f : U → V defines curvilinear coordinates in U , the mapping
f : U → V defines curvilinear coordinates in U (through Cartesian coordinates
in U). We shall often use this simple remark, when passing from the mapping
f to f−1.

Let a set of smooth functions {xi(P )}, 1 ≤ i ≤ n, be given on a domain U .
A question arises: does this set define a regular coordinate system in U?
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Lemma 2 Let the family of smooth functions {xi(P )}, 1 ≤ i ≤ n be such that
the Jacobian of this system of functions,

J(f = {xi(P ), 1 ≤ i ≤ n}),

is non-zero in the domain U . Then, for each point P in U there exists an open
neighbourhood such that system of functions {xi(P )} defines in this neighbour-
hood a regular coordinate system (such a coordinate system may be called a local
coordinate system).

Proof. The lemma does not presuppose that the set of functions {xi(P )}
defines (at least locally) a one-to-one mapping of the domain U onto a domain V
of Euclidean space Rn

1 . Using the implicit function theorem (and the existence
theorem for inverse mapping), we see that a non-zero Jacobian implies the
existence (at least in an open neighbourhood) of an inverse mapping which is
also smooth. Thus, the proof of the lemma follows from the definition of a
regular coordinate system.

Let us note that the set of functions satisfying Lemma 2 may not define a
regular coordinate system in the whole domain U , i.e. the smooth mapping f−1

of the domain V onto U may not exist. Here is a simple example.

1.2.1 Example

Let a two-dimensional Cartesian plane with punctured origin O be chosen as
the domain U and let the mapping f (defined by two functions x1(P ) and
x2(P )) represent the smooth mapping f(y1, y2) =

(

x1(y1, y2), x2(y1, y2)
)

, where
x1(y1, y2) = (y1)2 − (y2)2 and x2(y1, y2) = 2y1y2, i.e. if we put z = y1 + iy2,
w = x1 + ix2 (i is the imaginary unit), then w = z2. This mapping transforms a
complex number z into this number squared (for convenience, one may assume
that the two copies of the Euclidean plane, R2(y) and R2(x), are identified with
each other).

The same mapping can easily be written in the polar coordinates (r, ϕ) to
give f(r, ϕ) = (r2, 2ϕ). Calculate the Jacobian J(f) (we shall calculate it, for
example, in the initial Cartesian coordinate system y1, y2 on R2(y)). The Jacobi
matrix df is of the form

df =
(

2y1 2y2

−2y2 2y1

)T

,

i.e. J(f) = 4((y1)2 + (y2)2) > 0.
We see that the Jacobian is positive at all points of U (since the origin is

punctured). Hence, according to Lemma 2, our mapping establishes a local
(regular) coordinate system in an open neighbourhood of each point in U . At
the same time, the mapping f does not have the inverse mapping f−1 because
f is not bijective. Indeed, every point w = x1 + ix2 ∈ R2(x), other than the
origin, always has exactly two inverse images under the mapping f : namely, the
points (r, ϕ) and (r, ϕ + π) which are, of course, distinct points of the domain
U .
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Thus, if a set of functions is chosen as a regular coordinate system in an
Euclidean domain U , we should not only verify that the Jacobian of this system
is non-zero (at every point of U), but also that the mapping defined by this set
is bijective. Note also that in the above example the Jacobian of the system of
functions vanishes as the point P tends to zero.

1.3 Definition of manifold

A metric space M is called an n-dimensional manifold (or simply manifold) if
any point P of the space is contained in a neighbourhood U ⊂ M homeomorphic
to a domain V of an Euclidean space Rn. This condition can be formulated
in brief as follows: an n-dimensional manifold M is locally homeomorphic to a
domain in an Euclidean space Rn, in which case the dimension of M is said to
be equal to n or dim M = n. Thus, if M is an n-dimensional manifold, we can
find in M a system of open sets {Uα} numbered by finitely (or infinitely) many
indices α and a system of homeomorphisms ϕα : Uα → Vα ⊂ Rn of sets Uα on
the domains Vα. The system {Uα} must cover the space M , i.e. M =

⋃

α
Uα,

and the domains Vα may in general, intersect one another.
Fix a Cartesian coordinate system (x1, ..., xn) in a Euclidean space Rn. Then

for any point P ∈ Uα the Cartesian coordinates of the point ϕα(P ) ∈ Vα can
be considered as a numerical k = 1, ..., n. The system of functions

xk
α = xk

α(P ) = xk
α (ϕα(P ))

given on an open set Uα is called a local coordinate system, and the open set
Uα together with a local coordinate system defined on it is called a chart of a
manifold M. Thus, a chart is a pair (Uα, ϕα), and we shall denote it, for brevity,
only by the first symbol, Uα. A set of charts {Uα} covering the entire manifold
M is called an atlas. It is convenient to number local coordinates of a point
P ∈ M by an additional index α characterizing the chart Uα : xk

α = xk
α(P ).

Since the point P can belong simultaneously to several charts, it has several
sets of local coordinates.

The same manifold M can admit distinct atlases. Even though the charts, as
open sets, remain unchanged, we can alter the local coordinate system in a chart
by choosing another coordinate homeomorphism. In particular, the following,
lemma holds.

Lemma 3 Let M be an n-dimensional manifold and let U be its chart with
a coordinate homeomorphism ϕ and a local coordinate system (x1, ..., xn) . If
U ′ ⊂ U is an open subset of U, a coordinate homeomorphism ϕ′ and a local
coordinate system (y1, ..., yn) can also be defined on U ′. More over one can put
ϕ′(P ) = ϕ(P ), yk(P ) = xk(P ) for P ∈ U ′.

Proof of the lemma 3 follows from the fact that the homeomorphism ϕ : U →
V maps homeomorphically any open subset U ′ ⊂ U . It is sufficient therefore to
take the restriction of ϕ to U ′ as ϕ′ and the restriction of coordinate functions
xk to the same subset U ′ as yk.
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Lemma 3 shows that using a given atlas {Uα} we can construct a new atlas
consisting of finer charts. On the other hand, the union of two atlases {Uα} and
{U ′

β} is again an atlas of the manifold.
Thus, there exists a maximal atlas consisting of all the charts of a given

manifold. A maximal atlas may be considered as a union of all atlases on a
manifold.

Now we shall prove another useful lemma.

Lemma 4 Let {Uα} and {U ′
β} be two atlases on a manifold M. Then there

exists a third atlas which refines these two atlases.

To prove the lemma, we put Wαβ = Uα ∩ U ′
β . According to the lemma 3, a

local coordinate system can be introduced on each open set Wαβ . On the other
hand, Wαβ ⊂ Uα and Wαβ ⊂ U ′

β , so the system of sets {Wαβ} covers M . Hence,
{Wαβ} is an atlas refining both {Uα} and {U ′

β}.

1.4 Functions on manifolds, transition functions.

Any continuous function f : M → R1 defined on an n-dimensional manifold
M in the neighbourhood of each point P ∈ M can be identified with an ordi-
nary continuous real-valued function h(x1, ..., xn) of n independent real variables
(x1, ..., xn), the function h being defined in a domain of a Euclidean space Rn.
Indeed, let U be a chart containing a point , let ϕ : U → V ∈ Rn be a coordinate
homeomorphism of this chart, and let

(

x1(P ), ..., xn(P )
)

be a local coordinate
system in U . If x = (x1, ...xn) is a vector with coordinates (x1, ...xn), we put
h(x1, ...xn) = f

(

ϕ−1(x)
)

. Conversely, if h is a continuous function of n real vari-
ables defined in a domain V ⊂ Rn, we can associate with h a continuous function
f defined in the domain U of the manifold M : f(P ) = h

(

x1(P )...., xn(p)
)

.
More generally, let f : M1 → M2 be a continuous mapping of an n-dimensional

manifold M1 into an m-dimensional manifold M2 . Suppose Q0 = f(P0),
P0 ∈ M1 and Q0 ∈ M2. Then in a small neighbourhood U 3 P0 the map-
ping f can be identified with a continuous vector function h of n independent
variables.

Indeed, let U ′ 3 Q0 be a chart of the manifold M2 and let (y1, ..., yn) be
a local coordinate system. Since the mapping f is continuous, there exists,
according to Lemma 3, a chart U of point P0 such that f(U) ⊂ U ′.

Suppose (x1, ..., xn) is a local coordinate system in U . Since points of the
chart U are in a one-to-one correspondence with their coordinates

(

x1(P ), ..., xn(P )
)

,
and points Q of the chart U ′ are also in a one-to-one correspondence with their
coordinates

(

y1(Q), ..., yn(Q)
)

the equality Q = f(P ) means

yk(Q) = yk (f(P )) = yk (

h
(

x1(P ), ..., xn(P )
))

= hk (

x1(P ), ..., xn(P )
)

.

The functions hk(x1, ..., xn) are continuous, and the mapping f is uniquely
reconstructed in U by these functions.

In particular any continuous function f on a manifold M in a local coordinate
system can be represented by a real-valued function h of n independent variables.
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If we alter the local coordinate system, the function h will also be modified.
What is the law of modification of h under coordinate transformation? Let
(x1, ..., xn) and (y1, ..., yn) be two local coordinate systems. Without loss of
generality, we may assume that these coordinate systems are defined in the
same chart U . Suppose h and h′ are functions of coordinates

(

x1, ..., xn
)

and
(

y1, ..., yn
)

, respectively, which represent the function f . Then

f(P ) = h
(

x1(P ), ..., xn(P )
)

= h′
(

y1(P ), ..., yn(P )
)

. (2)

Since the coordinates
(

y1, ..., yn
)

are also continuous functions in U , they can
in turn be represented as functions of n independent variables (x1, ..., xn), i.e.











y1(P ) = y1
(

x1(P ), . . . , xn(P )
)

,
...
yn(P ) = yn

(

x1(P ), . . . , xn(P )
)

.

(3)

In these equations we deliberately use the same symbol y to denote both the
coordinate of point P and its representation as a function of (x1, ..., xn) : yk =
yk(x1, ..., xn). Then from equation 2 we obtain the identity

h(x1, . . . , xn) = h′
(

y1(x1, . . . , xn), . . . , yn(x1, . . . , xn)
)

(4)

The functions yk = yk(x1, ..., xn) on the right-hand side of relations (3) are
called the functions of the coordiaate transformation or the transition functions,
provided the set U is a domain in an Euclidean space.

Definition 5 Let M be an n-dimensional manifold, {Uα} be its atlas, ϕα be the
coordinate homeomorphisms, and {xk

α} be a set of local coordinate systems. In
each intersection of two charts Uαβ = Uα∩Uβ two local coordinate systems {xk

α}
and {xk

β} have the relation xk
α(P ) = xk

α

(

x1
β(P ), . . . , xn

β(P )
)

, P ∈ Uαβ. The

functions xk
α = xk

α(x1
β , . . . , xn

β) are called functions of coordinate transformation
or functions of transition from the coordinates {xk

α} to the coordinates {xk
β}.

Transition functions are not defined in the entire domain Vβ , but only in
its part Vβα = ϕβ(Uαβ) where it is meaningful to speak about two coordinate
systems.

The transition functions xk
α = xk

α

(

x1
β , . . . , xn

β

)

map the domain Vβα onto
Vαβ in Rn:

xα = {xk
α(x1

β , . . . , xn
β)} =

= {xk
α(xβ)} = xα(xβ) =

= ϕαϕ−1
β (xβ) = ϕαβ(xβ).

(5)

The mappings ϕαβ : Vβα → Vαβ given by equation (5) are, in fact, another
writing of transition functions, and represent a homeomorphism of the domain
Vβα onto Vαβ . Note that if α = β, then Uαβ = Uα = Uβ , Vαβ = Vβα = Vα = Vβ

and
xk

α = xk
α

(

x1
β , . . . , xn

β

)

= xk
β .
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1.5 Examples

Here are simple examples of manifolds.
Example 1. Consider a circle S1 ∈ R2 defined by the equation x2+y2 = 1.

Let us cover S1 with an atlas consisting of four charts

U1 = {(x, y) ∈ S1 : y > 0},
U2 = {(x, y) ∈ S1 : y < 0},
U3 = {(x, y) ∈ S1 : x > 0},
U4 = {(x, y) ∈ S1 : x < 0}.

(6)

The corresponding domains V1, V2, V3, and V4 on the real axis R1 coincide and
are equal to the open interval (-1, 1).

Homeomorphisms ϕ1 and ϕ2 are constructed as projections of the circle onto
the x-axis:

ϕ1(x, y) = ϕ2(x, y) = x,

and homeomorphisms ϕ3 and ϕ4 as projections onto the y-axis:

ϕ3(x, y) = ϕ4(x, y) = y.

In order to prove that the mappings ϕk, k = 1, . . . , 4, are homeomorphisms, it
is sufficient to write explicitly the inverse mappings

ϕ−1
1 (x) = (x,

√
1− x2) ∈ S1,

ϕ−1
2 (x) = (x,−

√
1− x2) ∈ S1,

ϕ−1
3 (x) = (

√

1− y2, y) ∈ S1,
ϕ−1

3 (x) = (−
√

1− y2, y) ∈ S1.

(7)

and demonstrate that they are continuous. Then we obtain on the circle four
local coordinate systems, each consisting only of one coordinate:

x1 = ϕ1(x, y) = x,
x2 = ϕ2(x, y) = x,
x3 = ϕ3(x, y) = y,
x4 = ϕ4(x, y) = y.

(8)

Certain points are supplied with two local coordinate systems. For instance,
for points P of the intersection U1 ∩ U2 the coordinates x1(P ) and x3(P ) are
defined.

There are other ways of introducing an atlas on a circle. For example we
can consider polar coordinates (r, ϕ) on a plane. The equation of a circle in
these coordinates is very simple: r = 1. Strictly speaking, polar coordinates on
a plane are not a coordinate system. We introduce therefore two charts on a
circle S1, namely

U1 = {(x, y) ∈ S1 : x 6= −1},
U2 = {(x, y) ∈ S1 : x 6= 1}. (9)
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Let ϕ1(P ) = ϕ1(x, y) be the value of ϕ in the interval (−π, π) and ϕ2(P ) =
ϕ2(x, y) be the value of ϕ in the interval (0, 2π), i.e. V1 = (−π, π), V2 = (0, 2π).

Obviously, the local coordinates ϕ1 = ϕ1(P ) and ϕ2 = ϕ2(P ) coincide for
points of the upper semicircle and do not coincide for points of the lower semi-
circle, that is, ϕ1(x, y) = ϕ2(x, y) for y > 0 and ϕ1(x, y) = ϕ2(x, y) − 2π for
y < 0.

Example 2. The circle S1 considered in Example 1 is a rather complicated
manifold. The simplest example is represented by Euclidean space Rn. We may
take an atlas consisting of only one chart U = Rn, the coordinate homeomor-
phism ϕ is the identity mapping ϕ : U → V = Rn, the local coordinate system
is Cartesian coordinates of points in Rn. Similarly, any domain U ⊂ Rn is an
n-dimensional manifold whose atlas also consists of one chart with a Cartesian
coordinate system.

Example 3. Let f : Rn → R1 be a continuous function and Γf ⊂ Rn+1 be
its graph, i.e. the set of points

(x1, ..., xn, xn+1) : xn+1 = f (x1, ..., xn).

The space Γf is an n-dimensional manifold with an atlas consisting of one chart
U = Γf . The coordinate homeomorphism ϕ : U → V = Rn is defined as a
projection along the last coordinate:

ϕ(x1, ..., xn, xn+1) = (x1, ..., xn) ∈ Rn.

Then the inverse mapping ϕ−1 is given by

ϕ−1(x1, ..., xn) = (x1, ..., xn, f (x1, ..., xn))

and is, apparently, a continuous mapping.
Example 4. Let us consider an n-dimensional sphere Sn of unit radius

defined as a set of points in Rn+1 satisfying the equation

(x1)2 + ... + (xn)2 = 1.

We shall demonstrate that an n-dimensional sphere is an n-dimensional mani-
fold. The open sets

U+
i = {(x1, ..., xn+1) ∈ Sn : xi > 0},

U−
i = {(x1, ..., xn+1) ∈ Sn : xi < 0} (10)

can be taken as an atlas. We obtain 2n + 2 open sets covering the entire sphere
Sn. Indeed, if the point P = (x1, ..., xn+1) belongs neither to charts U+

i nor
to charts U−

i for all i, then the inequalities xi ≤ 0 and xi ≥ 0 are satisfied,
i.e. xi = 0, i = 1, 2, . . . , n + 1. Then (x1)2 + · · · + (xn)2 = 0, that is the point
P does not lie on the sphere Sn. The coordinate homeomorphisms ϕ+

i and
ϕ−i are defined as projections of the Euclidean space Rn+1 onto Rn along the
coordinate xi. In this case the domains V +

i and V −
i coincide and are equal to

a unit ball, and the coordinate homeomorphisms are given by

ϕ+
i (x1, ..., xn+1) = ϕ−i

(

x1, ..., xn+1) = (x1, ..., xi−1, xi+1, ..., xn+1) ∈ Rn.
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The inverse homeomorphisms are defined by the formulas

(ϕ+
i )−1(y1, ..., yn) = (y1, ..., yi−1,

√

1− (y1)2 − ...− (yn)2, yi, ..., yn) ∈ Rn+1,

(ϕ−i )−1(y1, ..., yn) = (y1, ..., yi−1,−
√

1− (y1)2 − ...− (yn)2, yi, ..., yn) ∈ Rn+1,

and are apparently continuous.
Example 5. Let us consider a projective plane RP2 . By this we mean a

space the points of which are straight lines through the origin in R3. Define
the distance between two straight lines as the least angle between them. Then
RP2 becomes a metric space. We now prove that RP2 is a two-dimensional
manifold. It is convenient to describe any straight line P ∈ RP2 by three
homogeneous coordinates [x : y : z] which admit multiplication by a number λ 6=
0. Homogeneous coordinates do not vanish simultaneously, i.e. x2 +y2 +z2 > 0.
Cover RP2 with three charts:

U1 = {[x : y : z] : x 6= 0},
U2 = {[x : y : z] : y 6= 0},
U3 = {[x : y : z] : z 6= 0}.

(11)

Let V1 = V2 = V3 = R2. The mappings ϕk : Uk → Vk = R2 are taken as
coordinate homeomorphisms, namely

ϕ1(x, y, z) = (y/x, z/x),
ϕ2(x, y, z) = (x/y, z/y),
ϕ3(x, y, z) = (x/z, y/z).

(12)

Thus, we have constructed three local coordinate systems

x1
1 = y/x, x2

1 = z/x;

x1
2 = x/y, x2

2 = z/y;

x1
3 = x/z, x2

3 = y/z.

To verify that the mappings ϕk are homeomorphisms, it is sufficient to construct
the inverse mappings

ϕ−1
1 (x1

1, x
2
1) = [1 : x1

1 : x2
1],

ϕ−1
2 (x1

2, x
2
2) = [x1

2 : 1 : x2
2],

ϕ−1
3 (x1

3, x
2
3) = [x1

3 : x2
3 : 1]

and prove that they are continuous.
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1.6 Smooth structure of the class Ck. Class C∞, real and
complex analytic manifolds.

Let us now return to the representation of a continuous function f defined on
an n-dimensional manifold M as a function h of n independent variables, lo-
cal coordinates of a point of the manifold. It is known that a narrower class
of function - differentiable functions - is of great significance in mathematical
analysis. We now transfer this important concept to functions defined on a
manifold. If a function h

(

x1, . . . , xn
)

is continuously differentiable, we cannot
say the same about the function h′

(

y1, . . . , yn
)

representing f in another lo-
cal coordinate system

(

y1, . . . , yn
)

. Indeed, the functions h and h′ are related
by equation (4). Thus, the condition that h′ is also continuously differentiable
is that the functions of coordinate transformation xk = xk(y1, ..., yn) should
be continuously differentiable. If these functions are not continuously differen-
tiable, there exists a function f such that its representation h in the coordinates
(

x1, . . . , xn
)

is a continuously differentiable function, while the representation h′

in the coordinates
(

y1, . . . , yn
)

is not. As an example, we consider the function
f(P ) = xk(P ), P ∈ U ⊂ M . Then h

(

x1, . . . , xn
)

≡ xk, apparently, a contin-
uously differentiable function, while h′

(

y1, . . . , yn
)

= xk
(

y1, . . . , yn
)

does not
possess this property.

We thus arrive at the following definition.

Definition 6 A smooth n-dimensional manifold is an n-dimensional manifold
M with an atlas {Uα} having local coordinate systems {xk

α} satisfying the con-

dition: the transition functions xk
α = xk

α

(

x1
β , . . . , xn

β

)

are continuously differen-
tiable for any pair of charts Uα and Uβ in the entire domain of definition. One
says that the atlas {Uα} with fixed local coordinate systems {xk

α} represents a
smooth structure on the manifold M .

This definition enables a class of continuously differentiable functions to be
distinguished among all functions valid on a manifold M.

Definition 7 A function f : M → R1 defined on a smooth manifold M is called
continuously differentiable at a point P0 ∈ M (with respect to a smooth structure
on the manifold M) if in any local coordinate system (x1

α, . . . , xn
β) (the charts

Uα 3 P0 belong to a fixed atlas which represents the smooth structure) the func-
tion f can be represented as a continuously differentiable function h(x1

α, . . . , xn
α)

of n independent variables in a neighbourhood of the point
(

x1
α(P0), ..., xn

α(P0)
)

.

Note that the condition of continuously differentiability of the transition
function in Definition 6 is essential for Definition 7. As we have already pointed
out, if the transition functions were not (continuously) differentiable, the con-
dition of continuously differentiability of f at the point P0 ∈ M would depend
on the choice of the chart Ui containing P0.

Example 6. We now consider the following atlas on a manifold M . Let
M = R1 be a real axis and let the atlas consist of two identical charts Uα =
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Uβ = M = R1, but with distinct coordinate systems. On Uα we define the
coordinate xα = x, x ∈ R1, and on Uβ the coordinate xβ = x3 . Then the
transition functions are

xβ = xβ(xα) = (xα)3, (13)

xα = xα(xβ) = 3
√

xβ (14)

While the transitions function (13) is continuously differentiable (a polynomial),
the function (14) has a discontinuous derivative. Thus, according to the defini-
tion 3, the manifold M with the atlas {Uα, Uβ} is not a smooth manifold.

Remark. If an atlas on a manifold M consists of only one chart (i.e. M is
homeomorphic to a domain in Euclidean space), M is a smooth manifold (with
respect to this atlas).

Definition 8 Let on a manifold M there be given two atlases {Uα} and {U ′
β}

such that M is smooth with respect to each atlas. Two atlases {Uα} and {U ′
β} are

called equivalent (or represent the same smooth structure on the manifold M)
if every function of coordinate transformation from any local coordinate system
in {Uα} to any local coordinate system in {U ′

β} is continuously differentiable.

A substantiation of this definition lies in the fact that any function f on
the manifold M is continuously differentiable in the atlas {Uα} if and only
if it is continuously differentiable in {U ′

β}. Thus, from the point of view of
continuously differentiable functions on a manifold M equivalent atlases ”have
equal rights”, so that any of the equivalent atlases can he used to represent
a function as a continuously differentiable real-valued function of independent
variables (coordinates of a point). Definition 8 admits another formulation: two
atlases {Uα} and {U ′

β} are equivalent if M is a smooth manifold with respect
to a new atlas equal to the union of two initial atlases, {Uα} ∪ {U ′

β}.
We often have to deal with narrower classes of functions. Recall that a

real-valued function h(x1, ...xn) is smooth of classes Cr(r = 1, 2, ...,∞) in a
neighbourhood of a point (x1

0, ..., x
n
0 ) if in this neighbourhood all partial deriva-

tives of h up to order r exist and are continuous. For r = ∞ this means that
the function h has continuous partial derivatives of any order. Consequently,
we shall impose on atlases of a manifold M the conditions formulated in the
following definition.

Definition 9 (6a) A manifold M with a fixed atlas {Uα} is called a smooth
manifold of the class Cr(r = 1, 2, ...,∞) (or Cr-manifold) if all the transition
functions are smooth of class Cr at all points of the domain of their definition.

Definition 10 (7a) Let M be a Cr-manifold and let f be a continuous function
on this manifold. The function f is called smooth of class Cs, s ≤ r (or Cs-
function) in a neighbourhood of a point P0 ∈ M if any representation of f as a
function h of local coordinates (x1, . . . , xn) (from a fixed atlas) is a Cs-function
in neighbourhood of the point (x1(P0), ..., xn(P0)). The function f is smooth of
class Cs if it is of class Cs in a neighbourhood of each point P0 in the domain
of definition.
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Example 7. Let us modify Example 6 by choosing the coordinate xβ = x |x|
in the second chart Uβ . Then M is a C1-manifold, but it is not C2-manifold.

Remark. Below, if not stated otherwise, we shall consider only C∞-manifolds
and C∞-functions on these manifolds.

In examples 1-4 we have considered manifolds with such atlases that these
manifolds are always of class C∞.

Geometry may also deal with more strict conditions on atlases and their
transition functions. For example, if all transition functions are real-analytic,
i.e. in a neighbourhood of each point in their domain these functions can be
expanded into convergent Taylor series, the manifold is called a real-analytic
manifold. A real-analytic manifold is C∞-manifold.

A more important class of manifolds is represented by complex-analytic
manifolds. Let M be a 2n-dimensional manifold, {Uα} its atlas, and ϕα :
Uα → Vα ⊂ R2n its coordinate homeomorphisms. Identify a 2n-dimensional
Euclidean space R2n with an n-dimensional complex linear space Cn, assuming
that complex coordinates of a point (z1, . . . , zn) give rise to 2n real coordi-
nates (x1, . . . , xn, y1, . . . , yn), zk = xk + iyk . Then, 2n coordinate functions
(

x1
α(P ), . . . , xn

α(P ), y1
α(P ), ..., yn

α(P )
)

in the chart Uα are transformed into n
complex-valued functions

(

zk
α(P ) = xk

α(P ) + iyk
α(P )

)

. The functions zk
α(P ) are

called complex coordinates of a point in the chart Uα. In the intersection of two
charts Uα ∩ Uβ the transition functions are given by







































x1
α = x1

α(x1
β , . . . , xn

β , y1
β , . . . , yn

β ),
...
xn

α = xn
α(x1

β , . . . , xn
β , y1

β , . . . , yn
β ),

y1
α = y1

α(x1
β , . . . , xn

β , y1
β , . . . , yn

β ),
...
yn

α = yn
α(x1

β , . . . , xn
β , y1

β , . . . , yn
β ).

(15)

These functions can be represented as complex-valued functions of n inde-
pendent variables











z1
α = z1

α(z1
β , . . . , zn

β ),
...
z1
α = z1

α(z1
β , . . . , zn

β ).

(16)

Functions (16) are called transition functions or functions of transformation
of complex coordinates.

A manifold M with a fixed atlas {Uα} and local complex coordinate systems
(z1

α, . . . , zn
α) is called a complex-analytic manifold, provided all transition func-

tions (16) are complex-analytic, i.e. they can be expanded in convergent Taylor
series of complex variables in a neighbourhood of each point in the corresponding
domain of definition.

As an example of a manifold admitting a complex-analytic structure, we shall
consider a two-dimensional sphere S2 with a specially defined atlas. We can
construct the stereographic projection of the sphere S2 = x2 + y2 + z2 = 1 from
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the north pole P0 = (0, 0, 1) onto the coordinate plane (x, y). This projection,
denoted by ϕα, maps all the points of S2 except for the pole Pα (i.e. the open set
Uα = S2\(Pα)) homeomorphically onto the entire plane Vα = R2. In Cartesian

coordinates the homeomorphism ϕα is of the form ϕα(x, y, z) =
(

x
1−z , y

1−z

)

.

We introduce therefore in the chart Uα one complex coordinate wα = x+iy
1−z

expressed in terms of the Cartesian coordinates on a sphere. Furthermore, we
shall consider the south pole Pβ = (0, 0,−1) and the stereographic projection ϕβ

from the south pole onto the same coordinate plane (x, y). The projection ϕβ
maps homeomorphically the set Uβ = S2\(Pβ) onto the entire plane Vβ = R2.

In Cartesian coordinates ϕ1 takes the form ϕβ(x, y, z) =
(

x
1+z , y

1+z

)

. Introduce

in the chart U1 a complex coordinate wβ = x+iy
1+z .

Then, in the intersection Uα ∩ Uβ we obtain wαwβ = x2+y2

1−z2 = 1. Hence,

wα = wα(wβ) = 1
wβ

,
wβ = wβ(wα) = 1

wα
.

(17)

Functions (17) are complex-analytic, so the sphere S2 is a complex-analytic
manifold. Each chart Uα and Uβ covers the entire sphere S2 , except for one
point, and is identified by virtue of the coordinate homeomorphisms ϕα and ϕβ

with the complex plane C1 = R2. Thus, the sphere S2 is usually identified with
the so-called completed complex plane obtained from C1 by addition an extra
”infinitely distant” point.

An arbitrary smooth manifold need not necessarily be a complex-analytic
one. For example, if its dimension is odd, the manifold is not complex-analytic
by trivial arguments. Yet, there exist manifolds of even dimension which do not
admit a complex-analytic structure either.

1.7 Invariance of the dimension of the smooth manifolds.

Let M1 and M2 be smooth manifolds and let f : M1 → M2 be a continuous
mapping. As was already noted, in a neighbourhood of any point P0 ∈ M1 the
mapping f can be represented as a vector function , yk = hk(x1, ..., xn), where
(x1, ..., xn) is a local coordinate system in the neighbourhood of P0 ∈ M1 and
(y1, ..., yn) is a local coordinate system in the neighbourhood of point Q0 =
f(P0) ∈ M2.

Definition 11 The mapping f : M1 → M2 smooth manifolds is called a smooth
mapping of class Cr(r = 1, 2, ...,∞) (or Cr-(x1, ..., xn) in the neighbourhood of
any point P0 ∈ M1 and (y1, ..., yn) in the neighbourhood of point Q0 = f(P0) ∈
M2 the representation of f as a vector function y = (yk) = (hk(x1, ..., xn)) =
h(x) is a vector function of class Cr.

Note that the definition of a Cr-manifold has a meaning if only the manifolds
M1 and M2 are smooth of class not less than Cr.
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Let f : M1 → M2 be a homeomorphism of manifolds. If f is a Cr- map-
ping, the inverse mapping f−1 need not be a smooth mapping. Therefore, if
the inverse mapping f−1 : M2 → M1 is also a Cr -mapping the homemorphism
f is called a smooth homeomorphism of class Cr or Cr-diffeomorphism. Dif-
feomorphisms of smooth manifolds play the same role as homeomorphisms of
topological spaces.

If f : M1 → M2 is a diffeomorphism, the manifolds M1 and M2 are called dif-
feomorphic. The set of all manifolds is subdivided into non-intersecting classes
of pairwise diffeomorphic manifolds. Any general property of smooth manifolds,
smooth functions or mappings on a manifold can be transferred to any other dif-
feomorphic manifold. We shall not therefore distinguish between diffeomorphic
manifolds.

There are however such properties of manifolds that their ”identity” for a
pair of diffeomorphisms is not quite obvious. In particular, we have assigned
to each manifold a numerical characteristic, the dimension. Do diffeomorphic
manifolds have the same dimension?

Theorem 1 Let f : M1 → M2 be a Cr–homeomorphism (r ≥ 1) of smooth
manifolds. Then dim M1 = dim M2.

Proof.
Suppose P0 ∈ M1 is an arbitrary point, Q0 = f(P0), and g = f−1 is the inverse
mapping. Choose local coordinates (x1, ..., xn) in the neighbourhood U0 of point
P0 and local coordinates (y1, ..., ym) in the neighbourhood V0 of point Q0. Then
the mappings f and g can be represented as vector functions x = h−1(y) and
y = h(x), with h(h−1(x)) ≡ x and h−1(h(y)) ≡ y. The mapping h consists of m
functions yl = hl

(

x1, . . . , xn
)

of n independent variables
(

x1, . . . , xn
)

. Consider
the Jacobi matrix of all partial derivatives of h:

dh =







∂h1

∂x1 . . . ∂h1

∂xn

...
...

∂hm

∂x1 . . . ∂hm

∂xn







The matrix dh is a rectangular one of order (m × n), i.e. it has m rows and n
columns.

Lemma 5 Let U0 ⊂ Rn, V0 ⊂ Rm, and W0 ⊂ Rk be open Euclidean domains,
let f : U0 → V0 and g : V0 → W0 be continuously differentiable mappings, and
let h : U0 → W0 be the composition of f and g, i.e. h(P ) = g(f(P )). Then

dh(P ) = dg(f(P )) · df(P ), P ∈ U0.

In other words, the Jacobi matrix of the composition h = g ◦ f is the product of
the Jacobi matrices of the mappings g and f .

We now apply Lemma 5 to a pair of mappings h and h−1 . Let e0 be the
composition of the mappings h and h−1 and let e1 be the composition of h−1

and h, i.e. e0(Q) = h(h−1(Q)) Q ∈ V0, and e1(P ) = h−1(h(P ) P ∈ U0.
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The mappings e0 : V0 → V0 and e1 : U0 → U0 are both identity mappings, so
that their Jacobi matrices are identity matrices of order m and n, respectively.
In particular, rankde0 = m and rankde1 = n. On the other hand, by Lemma 5
we have

de0(Q) = dh(h−1(Q)) · dh−1(Q), Q ∈ V0.

de1(P ) = dh−1(h(P )) · dh(P ), P ∈ U0.

It is known from linear algebra that the rank of the product of two matrices does
not exceed the rank of each matrix. Since rank dh ≤ min(m,n) and rank dh−1 ≤
min(m,n) (the matrices dh and dh−1 are rectangular!), rank de0 ≤ min(m, n)
and rank de1 ≤ min(m, n). Hence, m ≤ min(m,n) and n ≤ min(m,n) or
max(m,n) ≤ min(m,n) that is, m = n. The theorem 1 is proved.

The concept of dimension has a sense not only for smooth manifolds, but
for arbitrary manifolds as well. A question naturally arises: do the dimensions
of homeomorphic manifolds coincide? The answer is yes, i.e. if M1 and M2 are
two homeomorphic manifolds,then dim M1 = dim M2.

1.8 Implicit function theorem. Regular points, regular
values. Inverse image of regular value.

There is a conventional way, used most frequently in practice, to describe and
construct manifolds.

Many examples of manifolds appear as a set of solutions of a non-linear
equation given in a Euclidean space. For instance, an n-dimensional sphere Sn

in a Euclidean space Rn+1 is defined by the equation (x1)2 + ... + (xn+1)2 = 1;
a pseudosphere S2

1 is given by x2 + y2 − z2 = −1. In general, if f(x1, ..., xn)
is a continuously differentiable function, the set of solutions of the equation
f(x1, ..., xn) − c = 0 is called a manifold of level c of the function f . Thus,
the Euclidean space Rn is decomposed into a union of level manifolds for the
function f . In the case of a function of two variables, the solutions of the
equation are called level lines for f and in the case of a function of three variables
level surface.

To justify the term the level manifold for a function f, one should prove that
the level manifold for f is really a manifold. However, this is not always the
case.

Nevertheless, a level manifold for a continuously differentiable function f is
almost always a manifold.

Theorem 2 Let f = f(x1, ..., xn) be a function of class C∞ defined in the
entire Euclidean space Rn and let

Mc = {(x1, ..., xn) : f(x1, ..., xn) = c}.
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If the gradient of f is non-zero at each point of the set Mc, this set is a smooth
(n − 1)-dimensional manifold of class C∞, and we can choose (n − 1) Carte-
sian coordinates of the ambient Euclidean space Rn as local coordinates in a
neighbourhood of a point P0 ∈ Mc.

Proof.
The theorem is, in fact, the implicit function theorem formulated in convenient
terms. Fix a point P0 ∈ Mc, P0 = (x1

o, ..., x
n
0 ). Since

gradP0f 6= 0, grad f =
(

∂f
∂x1 , ...,

∂f
∂xn

)

,

there exists a non-zero partial derivative at point P0. Without loss of generality,
we may assume

− ∂f
∂xn (x1

o, ..., x
n
0 ) 6= 0.

Let Q0 = (x1
o, ..., x

n−1
0 ) be a point in Rn−1 which is the image of P0 under pro-

jection along the coordinate axis x. According to the implicit function theorem,
there exists a neighbourhood V0 3 P0 of point Q0 an interval (x− δ, x + δ), and
a continuous function y = y(x1, ..., xn−1) of class C∞ defined in V0 such that:

1. f
(

x1, . . . , xn−1, y
(

x1, . . . , xn−1
))

≡ c in V0,

2. xn
0 = y

(

x1
0, ..., x

n
0

)

,

3.
∣

∣xn
0 − y(x1, ..., xn−1)

∣

∣ < δ in the domain V0,

4. any solution (x1, ..., xn) ∈ V0×(xn
0−δ, xn

0 +δ) of the equation f (x1, ..., xn)
= c is of the form xn = y(x1, ..., xn−1).

Let
U0 = Mc ∩ (V0 × (xn

0 − δ, xn
0 + δ))

is a neighbourhood of the point P0 ∈ Mc. This neighbourhood is the chart in
question which contains P0. Take the restriction of the projection Rn → Rn−1

to U0 as a coordinate homeomorphism

ϕ0(x1, ..., xn) = (x1, ..., xn−1) ∈ V0

and define the inverse mapping ϕ−1
0 by the relation

ϕ−1
0 (x1, ..., xn−1) = (x1, ..., xn−1, y(x1, ..., xn−1)).

It follows from condition (3) that

ϕ−1
0 (x1, ..., xn−1) ∈ V0 × (xn

0 − δ, xn
0 + δ)

and from condition (1) that

ϕ−1
0 (x1, ..., xn−1) ∈ Mc.
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Thus,
ϕ−1

0 (x1, ..., xn−1) ∈ U0,

i.e. the mappings ϕ0 and ϕ−1
0 , are continuous and mutually inverse.

We have proved that Mc is an (n−1)-dimensional manifold and found in the
neighbourhood of each point P0 ∈ Mc a local coordinate system formed by some
Cartesian coordinates in the Euclidean space Rn. We now prove that the transi-
tion functions are smooth. Let P0 be also contained in another chart U1 and let
Cartesian coordinates (x1, ..., xi−1, xi+1, ..., xn) be chosen as local coordinates
in U1. Then in the intersection U0∩U1 the coordinates (x1, ..., xi−1, xi+1, ..., xn)
are expressed in terms of (x1, ..., xn−1) as















































x1 = x1,
...
xi−1 = xi−1,
xi+1 = xi+1,
...
xn−1 = xn−1,
xn = y(x1, ..., xn−1).

(18)

Since the function y = y(x1, ..., xn−1) is smooth of class C∞, all the functions
(18) are also of class C∞. This completes the proof of Theorem 2.

1.8.1 Examples

1. Consider an n-dimensional sphere Sn given by the equation

f (x1, ..., xn) =
n+1
∑

k=1

(xk)2 = 1.

The gradient of f is

gradf =
(

2x1, 2x2, ..., 2xn+1) .

If the point P = (x1, ..., xn+1) lies on Sn then not all of its coordinates vanish,
that is, one of the gradient coordinates is non-zero. Conditions of Theorem 2
are satisfied, hence Sn is a C∞-manifold.

2. Consider an Euclidean space Rn2
of dimension n2 and represent the points

of Rn2
as square matrices of order n with the coordinates A = (aij). Consider

also the set SL(n,R) of all matrices A ∈ Rn2
with the determinant equal to

unity, det A = 1.The set SL(n,R) is a group with respect to multiplication
of matrices and is called a special linear group. We shall demonstrate that
SL(n,R) is a C∞-manifold of dimension n2 − 1. Consider a function f of n2

variables, f(aij) = det(aij). This function is a polynomial and is therefore of
class C∞. In order to apply Theorem 2, we have to calculate gradf at all
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points of the group SL(n,R). Let E be an identity matrix. Since det E = 1,
E ∈ SL(n,R). Calculate gradf at the point E. One has

det A = a11 detA11 − a12 det A12 + . . . + (−1)n+1 detA1n · a1n. (19)

This expression contains the determinants of the matrices A1k which are
polynomials of all variables (aij) except those in the first row. Then the partial
derivative of f with respect to a11 is of the form ∂f

∂a11
= ∂

∂a11
(a11 detA11) =

det A11. At point E we obtain

∂f
∂a11

(E) = 1. (20)

Thus, the gradient of f at the point E is non-zero. We now demonstrate that
at arbitrary point A0 ∈ SL(n,R) the gradient gradf is also non-zero. Introduce
new variables bij defined by (bij) = B = A−1

0 A = A−1
0 · (aij). If A = A0, then

B = E and

f(A) = f(A0B) = det A0 · detB = det A0 · f(B).

Differentiating the superposition of functions, we obtain

∂f
∂b11

(E) =
∑

i,j

∂f
∂aij

(A0) ·
∂aij

∂b11
(21)

The left-hand side of Eq. (21) is equal to unity according to formula (20);
hence, at least one of the terms on the right-hand side of Eq. (21) is non-zero
and therefore one of the partial derivatives ∂f

∂aij
(A0), as well as gradf , is also

non-zero. Thus, the conditions of Theorem 2 are satisfied, so that the group
SL(n,R) is a smooth manifold of dimension (n2 − 1).

Theorem 2 can easily be extended to a system of non-linear equations. Note
that Theorem 2 admits another formulation. The gradient of a function f can
be represented as a column of partial derivatives of f and is therefore the Jacobi
matrix of f . Then the condition of nontriviality of gradf at a point P0 ∈ Rn is
equivalent to the condition that the rank of the Jacobi matrix df of the function
f is equal to unity, i.e. is maximal.

Consider a system of equations


















f 1(x1, ..., xn) = c1,
f 2(x1, ..., xn) = c2,
...
f k(x1, ..., xn) = ck.

(22)

which can be written in compact form as f(x) = c, where

x = (x1, ..., xn) ∈ Rn,

c = (c1, ..., ck) ∈ Rk,

and f is a mapping defined by functions (f1, . . . , fk). The set Mc of solutions
of system (22) is called a level manifold for the system of functions (f1, . . . , fk).
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Theorem 3 Let f : Rn → Rk be a C∞-mapping and let Mc be a set of solutions
of the system of equations f(x) = c. If the rank of the Jacobi matrix of f is
maximal at every point P0 ∈ Mc (i.e. rankdf(P0) = k), Mc is an (n − k)-
dimensional smooth manifold of class C∞, and (n − k) Cartesian coordinates
of the surrounding Euclidean space Rn can be taken as local coordinates in the
neighbourhood of each point P0 ∈ Mc.

.
The proof of Theorem 23is exactly analogous to that of Theorem 2 with the

only difference that instead of one variable xn we choose k variables (xi1 , ..., xik).
Denoting this group of variables by one symbol, say y = (xi1 , ..., xik), we obtain
the same formulas as in Theorem 2.

4. Let us consider in Euclidean space R4 with the coordinates (x1, x2, x3, x4)
the system of equations

(x1)2 + (x2)2 = 1,
(x3)2 + (x4)2 = 1. (23)

The corresponding functions f1 and f2 are of the form

f1(x1, x2, x3, x4) = (x1)2 + (x2)2,
f2(x1, x2, x3, x4) = (x3)2 + (x4)2. (24)

In order to apply Theorem 3, we shall calculate the Jacobi matrix of the mapping
f = (f 1, f 2)

df =

(

∂f 1

∂x1
∂f 1

∂x2
∂f 1

∂x3
∂f 1

∂x4

∂f 2

∂x1
∂f 2

∂x2
∂f 2

∂x3
∂f 2

∂x4

)

=
(

2x1 2x2 0 0
0 0 2x3 2x4

)

. (25)

Clearly, rankdf ≤ 1 if only one of the rows of the Jacobi matrix is zero, which
is impossible at the points representing solutions of system (24). Thus, the
solutions of this system form a two-dimensional manifold of class C∞. Since
system (23) splits into two equations, each for its own group of variables, the set
of the solutions of this system can also be expressed as the Cartesian product of
the solutions of each equation, i.e. the solutions of system (23) are represented as
the product of two copies of a circle. This manifold is called a (two-dimensional)
torus.

1.8.2 Regular points

Definition 12 Let f : M1 → M2 be a smooth mapping. The point P0 ∈ M1 is
called a regular point of f if the differential of the mapping dfP0 : TP0(M1) →
TQ0(M2), Q0 = f (P0), is an epimorphism, i.e. a mapping onto the entire space
TQ0(M2). The point Q0 ∈ M2 is called a regular point of the mapping f if any
point P0 of the inverse image f −1(Q0) is a regular point of f .
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This definition is, in fact, the condition of the implicit function theorem
formulated in terms of the differential of a mapping. Indeed, in the local coordi-
nate systems (x1, ..., xn) and (y1, ..., ym) in the neighbourhoods of points P0 and
Q0, respectively, the mapping f is written as the following system of functions
yk = f k(x1, ..., xn):











f 1(x1, ..., xn) = y1
0

...
f m(x1, ..., xn) = ym

0 .

(26)

Since f (P0) = Q0 , P0 = (x1
0, ..., x

n
0 ), Q0 = (y1

0 , ..., ym
0 ), the point P0 is a

solution of system (26). The implicit function theorem (Theorem 3) gives the
condition for the existence of a solution in the form: rankdf = m. Hence, the
rank of the Jacobi matrix dfP0 of f is equal to the dimension of the tangent
space TQ0(M2). This means that the linear mapping dfP0 is an epimorphism.
We come therefore to a generalization of Theorem 3.

Theorem 4 Let f : M1 → M2 be a smooth mapping of smooth manifolds,
Q0 ∈ M2 a regular point of f . Then the inverse image M3 = f−1(Q0) is a
smooth manifold, dim M3 = dim M1−dim M2, and, moreover, some of the local
coordinates in M1 can be chosen as local coordinates in M3

1.9 Partition of the unit.

Theorem 5 (Urysohn’s lemma) Let X be a normal topological space, F be
a closed subset, and f : F−→R a continuous function on F . Then the function
f is extendable to the continuous function g : X−→R . If the function f is
bounded, a ≤ f(x) ≤ b, the function g can also be chosen bounded by the same
constant, a ≤ g(x) ≤ b.

The support of a continuous function f on a topological space X is the closure
of the set of those points x ∈ X for which f(x) 6= 0. The support of a function f
is denoted by supp f . Thus, a function f is identically zero outside the support.

Theorem 6 Let X be a normal space and {Uα} a finite open covering. Then
there exist functions ϕα : X−→R such that

0 ≤ ϕα(x) ≤ 1, x ∈ X,

supp ϕα ⊂ Uα,

∑

α ϕα(x) ≡ 1.

(27)

The system of functions {ϕα} is called a partition of unity subordinate to
the covering {Uα}. Here we do not assume that the covering is finite, but only
require that any point x ∈ X should have a neighbourhood O(x) intersecting
finitely many supports supp ϕα.
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If a topological space X is actually a smooth manifolds we would like to
formulate stronger result assuming that the partition of unity consists of smooth
functions.

By definition, an atlas on a manifold M consists of open sets Ui homeomor-
phic to domains Vi ⊂ Rn. If M is a smooth manifold, the coordinate homeo-
morphisms ϕi : Ui → Vi are also smooth. It is convenient sometimes to simplify
the form of domains Vi in Rn, though by the expense of an increased number
of charts in the atlas.

Lemma 6 In a smooth manifold M there exists an atlas {Ui} such that any
chart Ui is diffeomorphic to Rn

Proof.
First, we notice that there exists an atlas such that any chart is diffeomorphic
to an open ball of radius ε in Rn. The last we demonstrate that an ε-ball is
diffeomorphic to Rn. It is sufficient to consider the case ε = 1. Let (x1, ..., xn)
be a point in a unit ball, i.e. (x1)2 + ... + (xn)2 < 1. Put

yk =
xk

√

1− (x1)2 − ...− (xn)2
, (28)

xk =
yk

√

1 + (y1)2 + ... + (yn)2
. (29)

Functions (28) and (29) are smooth and map a ball of radius 1 into Rn and
vice versa.

Lemma 7 Let M be a smooth compact manifold equipped with an atlas {Uα}.
Then there exists a smooth partition of unity ψα subordinate to the covering
{Uα}.

Proof.
According to Lemma 6, it suffices to assume that all charts are homeomorphic to
Rn. Then for any point x ∈ M here is an index α = α(x) and a homeomorphism

ϕx : Uα(x)−→Rn, ϕx(x) = 0 ∈ Rn.

Let f : Rn−→R1 be a smooth function such that

0 ≤ f(x) ≤ 1, f(0) = 1, supp f is compact.

Put

ψx(P ) =
{

f(ϕx(P )), P ∈ Uα(x),
0, P /∈ Uα(x).

The open subsets Vx = {P : ψx(P ) > 0} ⊂ Uα(x) cover the manifold M . So
due to compactness there is a finite family of points, xβ , such that

⋃

β

Vxβ = M.
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Hence the sum ψ(P ) =
∑

β
ψxβ (P ) is strictly positive at each point. We take

then

ψβ(P ) =
ψxβ (P )

ψ(P )
.

The functions ψβ(P ) form a smooth partition of unity subordinate to the cov-
ering {Vxβ} which is a refinement of the atlas {Uα}. Hence the partition of
unity subordinate to {Uα} can be obtain from functions ψβ(P ) by grouping of
functions ψβ(P ).

To finish the proof one can take a function f by the formula

f(x) =

{

e−(〈x,x〉−1)2)−1

, ‖x‖ < 1,
0, ‖x‖ ≥ 1.

1.10 The Whitney theorem.

Definition 13 Let f : M1 → M2 be a smooth mapping. The mapping f is
called an immersion if at each point P ∈ M1 the differential dfP : Tp(M1) →
Tf (P )(M2) is a monomorphism, i.e. a one-to-one mapping onto its image. If
moreover f maps bijectively M1 onto its image f(M1) and this image is a closed
subset, the mapping f is called an embedding. The image f(M1) (as well as
(M1)) is called in this case a submanifold in M2.

Example. The inverse image of a regular point of f : M1 → M2 is, according
to Theorem 4, a submanifold. Indeed, since some of the local coordinates of the
enveloping manifold M1 can be taken as a local coordinate system in M3, the
identity mapping ϕ : M3 → M1 in the local coordinates takes the form







































x1 = x1,
...
xn−m = xn−m,
xn−m+1 = xn−m+1(x1, ..., xn−m),
...
xn = xn(x1, ..., xn−m).

Therefore, the Jacobi matrix dϕ contains an identity square matrix. Hence,
rank dϕ = n−m, i.e. dϕ is a monomorphism.

Example. Let us consider a mapping f : S1 → R2 given by f(ϕ) =
{cos ϕ, sin 2ϕ}. The velocity vectors df

dϕ = {− sin ϕ, 2 cos 2ϕ} does not vanish at
any point, that is, the rank of the Jacobi matrix is equal to unity. Thus, f is
an immersion (so called a Lissajous’ figure).

Theorem 7 Let M be a smooth compact manifold. Then for a proper dimen-
sion N there exists an embedding ϕ : M → RN .
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Proof.
Let {Uα}M

α=1 be a finite atlas and (x1
α, ..., xn

α) a local coordinate system in the
chart Uα. We may assume without loss of generality that the Uα are homeo-
morphic to a ball Dn ⊂ Rn of radius 1 and the coordinates (x1

α, ..., xn
α) perform

a homeomorphism ϕα of Uα onto the ball Dn. We may also assume that Dn

lies in Rn and does not contain the origin (this can be achieved by a translation
in Rn). Further, let Dn

1 ⊂ Dn be a ball of smaller radius with the same centre
as Dn, let the manifold M be covered with open sets U ′

α = ϕ−1
α (Dn

1 ) ⊂ Uα, and
let f be a smooth function in Rn such that it is identically unity on Dn

1 and
supp f ⊂ DN .. We put then

yk
α(P ) =

{

f (ϕα(P ))xk
α(P ) if P ∈ Uα,

0 if P 6∈ Uα.

Obviously, yk
α(P ) = xk

α(P ) if P ∈ U ′
α. We have obtained a system of N = n ·M

smooth functions,
{

yk
α(P )

}

. This system defines the mapping g of M into a
Euclidean space RN , g(P ) =

{

yk
α(P )

}

∈ RN . We now demonstrate that the
differential of g is of rank n at each point. Let P ∈ M be an arbitrary point,
Uα 3 P , and (x1

α, ..., xn
α) a local coordinate system. The Jacobi matrix of g at

point P in the local coordinate system (x1
α, ..., xn

α) consists of partial derivatives
{

∂yk
β

∂xj
α
(P )

}

. In particular for β = α,

∂yk
β

∂xj
α

(P ) =
∂xk

α

∂xj
α

(P ) = δk
j ,

i.e. the Jacobi matrix of g contains an identity matrix of order n. Hence,
rank dg = n.

The mapping g is thus an immersion. In order that g be an embedding, it is
necessary that distinct points P and Q be mapped into distinct points g(P ) and
g(Q). Construct a new mapping g(P ) =

{

yk
α(P ), f (ϕα(P ))

}

∈ RN+M . Owing
to the same arguments as for , this mapping is an immersion. Let P 6= Q be
two points on a manifold. Consider a number α such that f (ϕα(P )) = 1. If
f (ϕα(Q)) < 1, then g(P ) 6= g(Q); if f (ϕα(Q)) = 1, then yk

α(P ) = xk
α(P ),

yk
α(Q) = xk

α(Q), and for a certain number k we have xk
α(P ) 6= xk

α(Q) , i.e.
g(P ) 6= g(Q). Thus, the mapping g : M → RN+M is a one-to-one immersion,
i.e. an embedding. Theorem 3 is proved.

Hence, any smooth compact manifold M may be considered as embedded (in
the form of a submanifold) in an Euclidean space RN of a rather large dimension
N . In practice, however, the dimension of RN can be reduced significantly. For
example, a sphere Sn can be embedded in Rn+1 and a torus Tn in R2n.

The projective plane RP2 cannot be embedded in R3 , but it can be em-
bedded in R5 . Indeed, let [x1 : x2 : x3] be homogeneous coordinates of a point
P in RP 2. Putting

y1 = x2
1

x2
1+x2

2+x2
3
, y2 = x2

2
x2
1+x2

2+x2
3
, y3 = x2

3
x2
1+x2

2+x2
3
,

y4 = x1x2
x2
1+x2

2+x2
3
, y5 = x2x3

x2
1+x2

2+x2
3
, y6 = x3x1

x2
1+x2

2+x2
3
,
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we obtain the mapping g : RP2 → R6, g(P ) = g[x1 : x2 : x3] = (y1, y2, y3, y4, y5, y6).
It appears however that the image of g lies in the linear subspace R5 ⊂ R6 de-
fined by the equation y1 + y2 + y3 = 1. Verify that g is an immersion, i.e. the
differential dg is a monomorphism at each point P ∈ RP 2 . In other words, we
have to prove that in any local coordinate system the rank of the Jacobi matrix
of g is equal to 2. All the coordinate functions of g are symmetric with respect
to the permutation of homogeneous coordinates [x1 : x2 : x3]. Without loss of
generality we can therefore assume that x1 6= 0 in a neighbourhood of point
P0 ∈ RP 2, so that the remaining coordinates x2, x3 (for x1 = 1) can be chosen
as a local coordinate system. The Jacobi matrix of g is

dg =

















−2x2 −2x3

2x2(1 + x2
3) −2x2

2x3

−2x2
3x2 2x3(1 + x2

2)
(1− x2

2 + x2
3) −2x2x3

x3(1− x2
2 + x2

3) x2(1 + x2
2 − x2

3)
−2x2x3 (1 + x2

2 − x2
3)

















to within a proportionality factor. If x2x3 6= 0, the minor of the first two rows
does not vanish. If x2 = 0, x3 = 0, the minor of the fourth and sixth rows
is not zero, and if x2 = 0, x3 6= 0, the minor of the first and fourth rows is
also non-zero. Thus, rankdg = 2, i.e. g is an immersion. Let demonstrate
that g is a one-to-one mapping. Without loss of generality we may assume
that the homogeneous coordinates are so chosen that x2

1 + x2
2 + x2

3 = 1. Let
P = [x1 : x2 : x3], Q = [x′1 : x′2 : x′3]. Then

g(P ) = (x2
1, x

2
2, x

2
3, x1x2, x2x3, x3x1),

g(Q) = (x′21 , x′22 , x′23 , x′1x
′
2, x

′
2x
′
3, x

′
3x
′
1).

If g(P ) = g(Q), then x2
1 = x′21 . If x1 6= 0, then x1 = ±x′1 and we can take

x1 = x′1, since homogeneous coordinates can be multiplied by ±1. Since the
fourth and sixth coordinates are equal, we obtain x2 = x′2, x3 = x′3, i.e.P = Q.
Since all coordinates x1, x2 and x3 are equivalent, we always have P = Q. Thus,
g is an embedding of a projective plane RP 2 in a five-dimensional Euclidean
space R5.

1.11 Transversal mappings. The Sard lemma, the Abra-
ham theorem.

We have shown how the local properties of a smooth manifold can be deduced
from the properties of the differential. Conversely, in certain cases we can find
the properties of a differential from the properties of the manifold itself. For
example, if f : M1 → M2 is a smooth homeomorphism, then the differential df :
Tp(M1) → Tf (P )(M2) is, by Lemma 5, an isomorphism. Consider now a problem
which is inverse, to a certain extent. Let f : M1 → M2 be a smooth mapping
of M1 onto the entire manifold M2 i.e. f(M1) = M2 . Such a mapping can be
considered as an analogue of an epimorphism for a linear mapping. A question
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then arises: is the differential df : Tp(M1) → Tf (P )(M2) an epimorphism?
Unfortunately, the answer is no. Consider the following example. Let M1 =
M2 = R1, f : R1 → R1 , f(x) = x3, x ∈ R1 . In this case f is a smooth
mapping and f(R1) = R1 . But at point x = 0 the differential df equals zero
and is not therefore an epimorphism. At other points the differential df = 3x2dx
is an epimorphism. This example suggests the general answer to the question.
We shall formulate it as the following statement.

Theorem 8 (Sard’s theorem) Let f : M1 → M2 be a smooth mapping of
compact manifolds. Then the set G of regular points Q ∈ M2 of f is open and
everywhere dense.

Before proceeding with them proof of Theorem 8 we shall consider several
examples.

Example. Let f : R1 → R1 , f(x) = a = const. In this case the differential
df is not an epimorphism at any point, but the image f(R1) consists of a single
point a, i.e. by definition, any point y 6= a is regular (since f−1(y) = ∅). Hence,
the set of regular points is open and everywhere dense.

Example. Let f : R1 → R1 be a finite smooth function and F = {x :
f ′(x) = 0}. The set F is closed. The image f(F ) is a compact set and consists
of all non-regular points. We shall demonstrate that f(F ) is nowhere dense. If
this is not so, we can find an interior point y ∈ f(F ), i.e. y is contained in f(F )
together with a neighbourhood y ∈ U ⊂ f(F ). Since f is finite, the image f(F )
lies in the image of the interval f([a, b]). In other words, it is sufficient to prove
that the image f(F ′), F ′ = F

⋂

[a, b] is nowhere dense.
Let U ⊃ F ′ be a neighbourhood of the set F ′, V ⊂ (−2a, 2a). Then f (V )

contains U and hence there exists a point x ∈ V such that f ′(x) exceeds, by
modulus, the number ε = diamU/4a. Diminishing the neighbourhood V , we
obtain a sequence of points xn ∈ F ′. We may assume, without loss of generality,
that xn → x0 ∈ F ′. Then f ′(xn) → f ′(x0), i.e. |f ′(x0)| ≥ ε, which contradicts
the condition f ′(x0) = 0 at point x0 ∈ F ′ ⊂ F .

It is more convenient to formulate Theorem 8 in more general terms:if F ⊂
M1 is a compact set consisting of non-regular points, then f(F ) is nowhere
dense.

Let demonstrate that it is sufficient to prove Theorem 8 for the case where
M1 is a neighbourhood of a closed disk in an Euclidean space. Indeed, cover
M1 with a finite atlas Uα and choose a covering Vα ⊂ V α ⊂ Uα such that Vα is
homeomorphic to a disk in an Euclidean space. Let Gα ⊂ M2 be a set of regular
points of the mapping f on Vα. Then the intersection G =

⋂

Gα consists of
regular points of the entire mapping f . If Gα are open sets which are everywhere
dense then G is also open and everywhere dense. Choose a sufficiently fine atlas
Uα such that the image f(Uα) lies in a single chart Wβ of M2 .

Then Theorem 8 can be proved for regular points of the mapping f |Uα :
Uα → Wβ on V α. Indeed, if G ∈ Wβ is the set of regular points of f |Uα , then
G

⋂

(M2 \ f (V α)) is the set of regular points of the mapping f : Uα → M2 on
V α.
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Thus, let U be a neighbourhood of a disk Dn in Rn and let f : U → Rm

be a smooth mapping. We shall demonstrate that the set of points y ∈ Rm, for
which Dn ⋂

F−1(y) consists of regular points, is open and everywhere dense.

Lemma 8 Theorem 8 holds for m = 1.

Proof.
Let F ⊂ Dn be a set of non-regular points of a function f . Then f(F ) is com-
pact and contains all non-regular points of f . Demonstrate that R1 \ f(F ) is
everywhere dense. If this is not the case there exists an interval V ⊂ f(F ). Fix
k > n and consider the set Fk of those points for which all partial derivatives of
f of order up to k inclusive are zero. Expanding f in a Taylor series in a neigh-
bourhood of an arbitrary point y ∈ Fk we obtain |f(y)− f(x)| < C |x− y|k
where C does not depend on the choice of y ∈ Fk and x ∈ Dn.

This means that if Fk is covered with cubes of side 1/N (the number of these
cubes does not exceed Nn), the image f (Fk) will be covered with intervals, the
length of each interval not exceeding 2

√
nkC/Nk. Hence, the sum of the lengths

of all the intervals does not exceed 2
√

nkC/Nk−n and vanishes for N →∞, that
is, f(Fk) is nowhere dense.

The remaining part of the set F , i.e. F\Fk, can be represented as a union
of a finite family of subsets, each lying on a submanifold defined by one of the
equations

∂lf
∂xl1

1 · · · ∂xln
n

= 0, l1 + ... + ln = l < k.

Indeed, let Fl1...ln be the set of those points in F at which

∂lf
∂xl1

1 ···∂xln
n

= 0,

grad ∂lf
∂xl1

1 ···∂xln
n

6= 0.
(30)

Obviously, F\Fk =
⋃

l1+...+ln<k
Fl1...ln . On the other hand, the set Fl1...ln lies on

the submanifold Ml1...ln of those points where conditions (30) are satisfied. The
dimension of Ml1...ln is less than n, and we may conclude, by induction, that
Lemma 8 is true for Ml1...ln .

Thus, f(Fk) does not cover the interval V . Hence, there exists a neighbour-
hood Uk ⊃ Fk such that f(Uk) does not cover V . Let l1 + ... + ln = k − 1.
Then Fl1...ln \ Uk is a compact set on Ml1...ln , so that f(Fl1...ln \ Uk) does not
cover V \f (Uk) i.e. f(Fk

⋂

Fl1...ln) does not cover V . Hence, there exists a
neighbourhood

Us = Fk ∪

(

⋃

s<l1+...+ln<k

Fl1...ln

)
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such that f (Us) does not cover the interval V . Thus, for l1 + ... + ln = s the
sets Fl1...ln \ Us do not cover the remainder

V \ f

(

Fk ∪

(

⋃

s<l1+...+ln<k

Fl1...ln

))

under the mapping f , and therefore f (Fk
⋃ ⋃

s≤l1+...+ln<k
Fl1...ln) does not cover

V . After a finite number of steps we find that f (F ) does not cover V .
We now apply Lemma 8 to prove by induction on m the theorem 8 for a

system of functions f : U → Rm, Dn ⊂ U , f(P ) = (f1(P ), . . . , fm(P )). Since
f1 is a smooth function, we find by Lemma 8 that the set G1 of regular values
of f1 is open and everywhere dense in R1. Let y1

0 ∈ G1,N = (f1)−1(y1
0). The

set N is a smooth submanifold mapped by f into a hyperplane Rm−1. Then
the point (y2

0 , . . . , ym
0 ) is regular for the mapping f |N if and only if the point

(y1
0 , . . . , ym

0 ) is regular for f . By induction, the set of points (y2
0 , . . . , ym

0 ) which
are regular for the mapping f |N is everywhere dense in Rm−1; hence, the set
of regular points for f is also everywhere dense in Rm.

In order to demonstrate that the set of regular points is open we note that
the inverse image of a regular point Dn ⋂

f−1(y1
0 , . . . , ym

0 ) is a compact and the
minor of the matrix of the differential df is non-zero at each point of the com-
pact. Therefore, for any sufficiently close point (y1

1 , . . . , ym
1 ) the inverse image

Dn ⋂

f−1(y1
1 , . . . , ym

1 ) lies in a quite small neighbourhood of Dn ⋂

f−1(y1
0 , . . . , ym

0 ),
that is, the same minors are non-zero. This means that the set of regular points
of f is open. Theorem 8 is proved.

As an application of Sard’s theorem we shall consider a smooth mapping
f : M1 → M2 for dim M1 < dim M2. Then, none of the points P ∈ M1 can
be regular, and this means that the image f (M1) is nowhere dense in M2. In
particular, the image of f does not cover M2.

Remark. Sard’s theorem can be generalized to non-compact separable man-
ifolds. In this case the set of regular points need not necessarily be an open set,
but it should only be the intersection of a countable number of open sets which
are everywhere dense. Such sets are called Gδ-sets. It is known from general
topology that the intersection of a countable number of sets, which are open and
everywhere dense in Rn, is always non-empty and everywhere dense. Hence, in
the case of non-compact manifolds the set of regular points is non-empty and
everywhere dense.

2 Tangent vectors and vector fields. 3 defini-
tions of tangent vectors.

2.1 Linear approximation of a submanifold. Tangent sub-
space.
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We have seen that the so-called infinitesimal properties of space are of great
help in the study of metric properties of curves and surfaces and, generally, of
metric properties of domains in a Euclidean space. These are the properties
defined in a very small neighbourhood of a fixed point P by neglecting small
quantities of an order higher than the distance from P . In mathematical analysis
we use a similar procedure of neglecting infinitesimal quantities while studying
the behaviour of a function in a neighbourhood of a point. In the case of smooth
manifolds there is also a natural desire to neglect infinitesimal quantities. One
of such methods is to introduce special concepts analogous to tangent vector to
a curve and tangent plane to a surface.

2.1.1 Simple examples

Let us consider a smooth curve x = x(t) = (x1(t), x2(t), x3(t)) in a three-
dimensional space R3 , where t is a parameter. Fix a value to and expand the
vector function x = x(t) in a Taylor series about the point t0

x(t0 +4t) = x(t0) +
dx
dt

(t0)4t + O(4t2). (31)

The first two terms on the right-hand side of Eq.(??) may be considered, on the
one hand, as an approximation of x(t) in a neighbourhood of the point t0 by a
linear vector function. On the other hand, this linear function

y(4t) = x(t0)−
dx(t0)

dt
· 4t

defines in R3 a straight line through the point P0 = x(t0). Furthermore, among
all straight lines through P0 the straight line y(t) ”approaches most closely”
the initial curve x(t). Let us first explain the term: a straight line ”approaches
closely” a curve x(t).

We say that the straight line y(t) = a+ bt (|b| = 1) is tangent to a curve x(t)
at the point x(t0) if the distance from the point x(t) to the straight line is an
infinitesimal quantity in comparison with the distance from P0 = x(to) to x(t).
The point P0 lies then on the straight line y(t). We may assume x(t0) = y(t0),
so that y(t0 +4t) = x(t0) + b4t . The distance from the point x(t0 +4t) to
the line y(t) is

|x(t0 +4t)− x(t0)− b(x(t0 +4t)− x(t0), b)| = O (|x(t0 +4t)− x(t0)|) .
(32)

Suppose dx
dt (t0) 6= 0 . Expanding x(t) by formula (31), we obtain instead of

Eq.(32)
∣

∣

∣

∣

dx
dt

(t0)4t− b(
dx
dt

(t0)4t, b)
∣

∣

∣

∣

= O(4t2)
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for 4t → 0 or, dividing by 4t ,
∣

∣

∣

∣

dx
dt

(t0)− b(
dx
dt

(t0), b)
∣

∣

∣

∣

= O(4t). (33)

(3)

since the left-hand side of Eq.(33) does not depend on 4t, we obtain by a
limiting process for 4t → 0

dx
dt

(t0) = b(
dx
dt

(t0), b), (34)

(4)

which means that the vectors b and dx
dt (t0) are collinear. Thus, the linear part

of the Taylor formula (31) for the vector function x(t) defines a parametric
representation of a tangent straight line at point P0.

Consider now a surface M in a three-dimensional space R3 given in para-
metric form as a vector function x = x(u, v) of two independent parameters u
and v. The surface x(u, v) is called non-degenerate if at each point the partial
derivatives ∂x

∂u (u, v) and ∂x
∂v (u, v) are linearly independent as vectors in R3. Fix

parameters (u0, v0) and a plane Π , x = x(u0, v0) + au + bv, through point
P0 = x(u0, v0) on the surface. The plane Π is called tangent to the surface M at
point P0 if the distance from Π to the point x(u, v) is an infinitesimal quantity
in comparison with the distance from x(u, v) to P0. Expanding the function
x(u, v) in a Taylor series about the point (u0, v0)

x(u0 +4u, v0 +4v0) = x(u0, v0)+

+ ∂x
∂u (u0, v0)4u + ∂x

∂v (u0, v0)4v + O(4u2 +4v2),
(35)

(5)

we find that the linear part in (35) defines a two-parameter representation of
the tangent plane Π to the surface M at point P0 = x(u0, v0). It is natural
to call any vector emerging from P0 and lying in the plane Π a tangent vector
to the surface M at point P0. It can be seen from Eq.(35) that parametric
representation of a plane Π tangent to a surface M at a point P0 is of the form

x(4u,4v) = x(u0, v0) +
∂x
∂u

(u0, v0)4u +
∂x
∂v

(u0, v0)4v. (36)

(6)

Hence, any tangent vector ξ can be decomposed into a linear combination of
the vectors ∂x

∂u (u0, v0) and ∂x
∂v (u0, v0)

ξ =
∂x
∂u

(u0, v0)4u +
∂x
∂v

(u0, v0)4v (37)
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(7)

for an appropriate choice of the parameters 4u and 4v. Thus, the vectors
∂x
∂u (u0, v0) and ∂x

∂v (u0, v0) form a basis in the tangent plane Π, and 4u and 4v
are linear coordinates of the tangent vector ξ in this basis.

Let us draw a smooth curve x = x(t) through point P0 on a surface M . Since
the curve x = x(t) lies on the surface M , it can be represented parametrically
as the composition

x(t) = x(u(t), v(t)) (38)

of functions u(t) and v(t). In other words, the functions u(t) and v(t) define
parametrically a curve in a local coordinate system (u, v) on the surface M .
Then, the condition that the curve passes through point P0 can be expressed
as the condition for the coordinates: u0 = u(t0) , v0 = (v(t0) . Calculation of a
tangent vector to a curve (or, as it is frequently called, the velocity vector of a
curve) yields

dx
dt (t0) = d

dt (x(u(t), v(t)))|t=t0 =

= ∂x
∂u (u(t0), v(t0))du

dt (to) + ∂x
∂v (u(t0), v(t0))dv

dt (to) =

= ∂x
∂u (u0, v0)du

dt (to) + ∂x
∂v (u0, vo)dv

dt (to).

Hence, a tangent vector to a curve on a surface M lies in the tangent plane.
Definition. Let ξ = ∂x

∂u (u0, v0)ξ1 + ∂x
∂v (u0, v0)ξ2 be a tangent vector to a

surface M at a point P0. Then the numbers (ξ1, ξ2) are called coordinates of
the tangent vector ξ to M at point P0 in a local coordinate system (u, v) on the
surface M .

This definition works not only for the coordinates (u, v) describing paramet-
rically the surface M , but also for any coordinate system (u′, v′) in a neigh-
bourhood of point P0. Indeed, if (u′, v′) is some other coordinate system, the
coordinates u and are expressed as smooth functions of u′ and v′ :

u = u(u′, v′), v = v(u′, v′)
u0 = u(u′0, v

′
0), v0 = v(u′0, v

′
0).

(39)

Considering then compositions of the functions, we obtain a new parametric
definition of a surface M

x = x(u(u′, v′), v(u′, v′)). (40)

(9)

The parametric equation of a tangent plane Π at point P0 for the new pa-
rameters (u′, v′) is
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x = x(u(u′0, v
′
0), v(u′0, v

′
0)) + ∂x

∂u′0
4u′ + ∂x

∂u′0
4u′ + ∂x

∂v′0
4v′ =

= x(u0, v0) + ∂x
∂u (u0, v0) ∂u

∂u′4u′ + ∂x
∂v (u0, v0) ∂v

∂u′4u′+

+ ∂x
∂u (u0, v0) ∂u

∂v′4v′ + ∂x
∂v (u0, v0) ∂v

∂v′4v′ =

= x(u0, v0) + ∂x
∂u (u0, v0)

( ∂u
∂u′ (u

′
0, v

′
0)4u′ + ∂u

∂v′ (u
′
0, v

′
0)4v′

)

+

+∂x
∂v (u0, v0)

( ∂v
∂u′ (u

′
0, v

′
0)4u′ + ∂v

∂v′ (u
′
0, v

′
0)4v′

)

.

Assuming
4u = ∂u

∂u′ (u
′
0, v

′
0)4u′ + ∂u

∂v′ (u
′
0, v

′
0)4v′,

4v = ∂v
∂u′ (u

′
0, v

′
0)4u′ + ∂v

∂v′ (u
′
0, v

′
0)4v′

(41)

(10)

we come to the parametric definition of a tangent plane for the initial parameters
(u, v)

x = x(u0, v0) +
∂x
∂u

(u0, v0)4u +
∂x
∂v

(u0, v0)4v.

Thus, formula (40) is another parametric definition of the surface M with the
same tangent plane Π. The curve (38) can therefore be written in terms of the
functions u′(t) and u′(t) in such a way that

x(t) = x(u(u′(t), v′(t)), v(u′(t), v′(t))).

Then, according to the definition of the coordinates of a tangent vector to a
curve in a local coordinate system (u′, v′), the numbers

(

du′
dt (t0), dv′

dt (t0)
)

are
the coordinates of a tangent vector to a curve. Differentiating the composite
functions u and v, we obtain a relation between the coordinates of a tangent
vector to a curve in different local coordinate systems

du
dt (t0) = ∂u

∂u′ (u
′
0, v

′
0)

du′
dt (t0) + ∂u

∂v′ (u
′
0, v

′
0)

dv′
dt (t0),

dv
dt (t0) = ∂v

∂u′ (u
′
0, v

′
0)

du′
dt (t0) + ∂v

∂v′ (u
′
0, v

′
0)

dv′
dt (t0).

(42)

(11)

Comparison of (41) and (42) shows that this relation coincides with that for
parameter transformation in the definition of a tangent plane.
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2.1.2 General definition of a tangent vector

Definition 14 Let M be a smooth n-dimensional manifold and P0 ∈ M an
arbitrary point. A tangent vector at point P0 to the manifold M is a corre-
spondence which associates with any local coordinate system (x1

i , ..., x
n
i ) a set of

numbers (ξ1
i , ..., ξn

i ) satisfying the following relation for each pair of local coor-
dinate systems:

ξk
i =

n
∑

l=1

∂xk
i

∂xl
j
(P0)ξl

j . (43)

The numbers (ξ1
i , ..., ξn

i ) are called coordinates of the tangent vector ξ in the
local coordinate system (x1

i , ..., x
n
i ) and relation (12) is called a tensor law of

coordinate transformation for the tangent vector ξ.

(12)

Definition 14 is a generalization of the concept of the coordinates of a tan-
gent vector to a curve on a surface. The law (42) of the transformation of these
coordinates is a particular case of the tensor law (43) of the coordinate trans-
formation for a vector tangent to a manifold. Moreover, any smooth curve on
a smooth manifold is endowed at each point with a tangent vector in the sense
of Definition 14. This important property can be formulated as the following
proposition.

Proposition 1 Let M be a smooth manifold and γ : (−1, 1) → M a smooth
mapping of the interval (−1, 1) into M . Then the correspondence which asso-
ciates with each local coordinate system (x1, . . . , xn) in a neighbourhood of point

P0 = γ(0) the set of numbers
(

dx1

dt (γ(t)), . . . , dxn

dt (γ(t))
)

, is a tangent vector in
the sense of Definition 14.

It is therefore natural to call the correspondence used in Proposition 1 a
tangent vector to a curve γ or a velocity vector of a curve γ. The tangent vector
to a curve γ will be denoted by dγ

dt (t0) or
•
γ (t0).

2.2 Tangent vector as a tensor.

The set of all tangent vectors to a manifold M at a fixed point P is called
a tangent space to the manifold M at point P . This set is denoted by TP (M).
Each tangent vector ξ ∈ TP (M) is uniquely defined by its coordinates in a fixed
coordinate system. Indeed, suppose we are given a set of numbers (η1, . . . , ηn)
and assume this set to be the coordinates of a tangent vector in question in a
fixed local coordinate system

(

x1
α, . . . , xn

α

)

, i.e. ηk = ξk
α. In order to define a

tangent vector, we have to find its coordinates in any local coordinate system
(

x1
β , ..., xn

β

)

. Let us put
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ξk
β =

n
∑

l=1

∂xk
β

∂xl
α

(P )ηl

These coordinates must satisfy the tensor law of coordinate transformation (43).
To verify this, we substitute ξk

β and ξl
γ into formula (43)

n
∑

l=1

∂xk
β

∂xl
α
(P )ηl =

n
∑

s=1

∂xk
β

∂xs
γ
(P )

n
∑

l=1

∂xs
β

∂xl
α
(P )ηl =

=
n
∑

l=1

(

n
∑

s=1

∂xk
β

∂xs
γ
(P )

∂xs
γ

∂xl
α
(P )

)

ηl.

Since
∂xk

β

∂xl
α

(P ) =
n

∑

s=1

∂xk
β

∂xs
γ
(P )

∂xs
γ

∂xl
α

(P )

(the law of transformation of the Jacobi matrix under triple coordinate trans-
formation), relation (43) is satisfied identically.

We have demonstrated that the set of all tangent vectors to a manifold M
at point P is uniquely determined by the coordinates of these vectors in one
fixed local coordinate system. Hence, the entire tangent space TP (M) can be
identified with the arithmetic vector space Rn. This means that TP (M) can
be endowed with the structure of a linear space. Seemingly, the structure of
a linear space in TP (M) should depend on the local coordinate system in a
neighbourhood of point P . This is not the case, however.

Proposition 2 Addition of vectors and multiplication of a vector by a number
in a tangent space TP (M) do not depend on the local coordinate system on M
in a neighbourhood of point P .

The tensor law of coordinate transformation may be considered as a method
of identifying arithmetic spaces of the coordinates of tangent vectors in any local
coordinate system. The method lies in multiplying the coordinate column (ξk

γ )
by the Jacobi matrix of the transformation from (x1

γ , . . . , xn
γ ) to (x1

β , . . . , xn
β):







ξ1
β
...

ξn
β





 =











∂x1
β

∂x1
γ

. . .
∂x1

β

∂xn
γ

...
...

∂xn
β

∂x1
γ

. . .
∂xn

β

∂xn
γ

















ξ1
γ
...

ξn
γ







or
(

ξk
β

)

=
(

∂xβ
∂xγ

)

(

ξl
γ

)

Hence, the tangent space TP (M) is a space isomorphic to all arithmetic
spaces of the coordinates of tangent vectors.
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2.3 Tangent vector as a sheaf of osculating curves.

Definition 15 Two curves γ1 and γ2 on a manifold M intersecting at a point
P are called tangent if in each local coordinate system (x1, . . . , xn) in a neigh-
bourhood of P we have

n
∑

k=1

(xk(γ1(t))− xk(γ2(t)))2 = o(t− t0)2 for t → t0. (44)

As before, it is sufficient to verify the tangency condition (44) only in one
local coordinate system. The tangency condition is closely related to tangent
vectors. In particular the following theorem justifies the term ”tangent curves”.

Theorem 9 Two smooth curves γ1 and γ2 on a manifold M are tangent at a
point P if and only if their tangent vectors at P0 coincide.

Theorem 9 gives an alternative definition of a tangent vector to a curve.
The set of all smooth curves through a given point P0 on a manifold M splits
into disjoint classes of pairwise tangent curves. The class of tangent curves
through a point P ∈ M is called a tangent vector. We have then a one-to-one
correspondence between tangent vectors in the sense of Definition 14 and in the
sense of classes of tangent curves.

2.4 Tangent vector as a differentiation operator.

Definition 16 Suppose P0 ∈ M , ξ ∈ TP0(M), γ(t) is a smooth curve through

P0, γ(t0) = P0, ξ is its tangent vector at P0,
•
γ (t0) = ξ, and f is a smooth

function on M . The derivative

d
dt

f (γ(t))|t=t0 = ξ(f ). (45)

is called the derivative of the function f with respect to the tangent vector ξ.
Calculation of the derivative is called the differentiation of the function with
respect to the vector ξ.

Theorem 10 Let (x1, . . . , xn) be a local coordinate system in a neighbourhood
of a point P = (x1

0, ...x
n
0 ) of a manifold M , let ξ = (ξ1, . . . , ξn) be a tangent

vector to M at P , and let f = f(x1, . . . , xn) be a smooth function in the neigh-
bourhood of P represented as a function of the local coordinates (x1, . . . , xn).
Then

ξ(f) =
n

∑

i=1

∂f
∂xi (x

1
0, . . . , x

n
0 )ξi. (46)

Hence, the definition (45) of the derivative does not depend on the choice of a
curve in the class of tangent curves, and the right-hand side of (46) does not
depend on a local coordinate system. If g is another smooth function in the
neighbourhood of P the product of f and g obeys the Leibniz formula

ξ(fg) = f (x1
0, ...x

n
0 )ξ(g) + g(x1

0, ...x
n
0 )ξ(f ). (47)
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Definition 17 The linear operation A which associates with any smooth func-
tion f of class C∞ on a smooth manifold M the number A(f) satisfying the
Leibniz formula (47) is called differentiation at point P ∈ M

Definition 4. In the Leibniz formula (20) the values of functions are cal-
culated at a single point P , so that differentiation at distinct points P and P1

need not coincide. Obviously, differentiation with respect to a tangent vector ξ
is a particular case of differentiation in the sense of Definition 17, and there are
no other differentiation operations. This means that for each differentiation in
the sense of Definition 17 there exists a tangent vector with respect to which
the function is differentiated.

Theorem 11 Let M be a C∞-manifold, P ∈ M be an arbitrary point, and
let A denote differentiation in the sense of Definition 17. Then there exists a
unique tangent vector ξ at P such that A(f) = ξ(f) for any smooth function f
in a neighbourhood of P .

Proof.
The tangent vector will be sought as a column of its coordinates in some local
coordinate system (x1, . . . , xn) in a neighbourhood of P . Then any smooth
function will be represented as a function of the variables (x1, ..., xn).

Lemma 9 Any C∞-function f(x1, . . . , xn) can be represented in the form

f(x1, . . . , xn) = f(x1
0, . . . , x

n
0 ) +

n
∑

i=1

∂f
∂xi (x1

0, . . . , x
n
0 )(xi − xi

0)+

+
n
∑

i,j=1
hij(x1, . . . , xn)(xi − xi

0)(x
j − xj

0).

(48)

where hij(x1, . . . , xn) are C∞-functions.

Proof.
Write the identity

f(x1, . . . , xn) ≡ f(x1
0, . . . , x

n
0 ) +

1
∫

0

d
dt

f(x1
0 + t(x1 − x1

0), . . . , x
n
0 + t(xn − xn

0 ))dt

and differentiate it with respect to t under the integral sign

f(x1, . . . , xn) = f(x1
0, . . . , x

n
0 )+

+
1
∫

0

n
∑

i=1

∂f
∂xi (x1

0 + t(x1 − x1
0), ..., x

n
0 + t(xn − xn

0 ))(xi − xi
0)dt

(49)

In the last equality the functions
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hi(x1, . . . , xn) =

1
∫

0

∂f
∂xi (x

1
0 + t(x1 − x1

0), . . . , x
n
0 + t(xn − xn

0 ))dt

are smooth of class C∞. Substitution of xi = xi
0 yields

hi(x1
0, ...x

n
0 ) =

1
∫

0

∂f
∂xi (x

1
0, . . . , x

n
0 )dt =

∂f
∂xi (x

1
0, . . . , x

n
0 ). (50)

Applying formula (49) to the functions hi(x1, . . . , xn), we obtain

hi(x1, . . . , xn) = hi(x1
0, . . . , x

n
0 ) +

n
∑

j=1

(xj − xj
0)hij(x1, . . . , xn), (51)

where hij(x1, . . . , xn) are C∞-functions. Substituting (51) into (49) and taking
into account (50), we arrive at the initial representation (48).

Lemma 10 Let f and g be smooth functions on a manifold M such that f(P ) =
g(P ) = 0. Then for any differentiation A at the point P the equality A(fg) = 0
is satisfied.

Lemma 3.
The proof of Lemma 10 directly follows from the Leibniz formula (47).
Let us now turn to the proof of Theorem 11. Represent f in the form of

(48) and apply differentiation A to the left-hand and right-hand sides. Since
the operation is linear, we have

A(f) = f(x1
0, . . . , x

n
0 )A(1) +

n
∑

i=1

∂f
∂xi (x1

0, . . . , x
n
0 )A(xi − xi

0)+

+
n
∑

i,j=1
A

(

(xi − xi
o)(x

j − xj
o)hij(x1, . . . , xn)

)

.

(52)

Note that for a constant unit function we have

A(1) = A(1 · 1) = 1 ·A(1) + A(1) · 1 = 2A(1) = 0.

In the last sum of (52) each term can be represented as the product of two
functions (xi − xi

0) and (xj − xj
o) · hij(x1, . . . , xn), each vanishing at P ∈ M .

Thus, by Lemma 10, A((xi − xi
0)(x

j − xj
0)hij(x1, . . . , xn)) = 0. Hence,

A(f) =
n

∑

i=1

∂f
∂xi (x

1
0, . . . , x

n
0 )A(xi − xi

0). (53)

Put ξi = A(xi − xi
0). We obtain the vector ξ = (ξ1, . . . , ξn) such that
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A(f) =
n

∑

i=1

∂f
∂xi (x

1
0, . . . , x

n
0 )ξi = ξ(f)

The theorem establishes a one-to-one correspondence between tangent vec-
tors to a manifold M at a point P ∈ M and differentiations of a smooth functions
at the point P . We can therefore formulate a third equivalent definition of a
tangent vector: a tangent vector is a differential operator applied to a smooth
function at point P of a manifold M .

2.5 Tangent bundle of smooth manifold.

We have already seen that the set of all tangent vectors TP (M) to a manifold
M at a point P is a linear space of the same dimension as that of M . In
geometry it is sometimes useful to study the whole set of tangent vectors to a
manifold M , which can, apparently, be represented as the union

⋃

P∈M
TP (M).

This space (not yet topological) is denoted by T (M) and called a tangent bundle
of M . The term bundle means that T (M) consists of fibers — tangent spaces
TP (M) to distinct points P of the manifold M . A tangent bundle is by no
means a vector space, for it is meaningless to add vectors belonging to different
fibers. If, for example, a manifold M is a two-dimensional surface in R3, then
T (M) represents the union of all tangent planes to M . It should be noted that
tangent planes to a surface usually intersect, that is, they have common points.
According to the definition of T (M), however, these points in each fiber define
different vectors, since they originate at distinct points.

Definition 18 A tangent bundle T (M) is a manifold of dimension dim T (M) =
2 dim M = 2n with the atlas of charts Vα = Uα × Rn and local system of
coordinates

(

x1
α, . . . , xn

α; ξ1
α, . . . , ξn

α

)

.

The transition functions are defined by the following formula














































x1
β = x1

β

(

x1
α, . . . , xn

α

)

,
. . .
xn

β = xn
β

(

x1
α, . . . , xn

α

)

,

ξ1
β =

∑

k ξk
α

∂x1
β

∂ξk
α

(

x1
α, . . . , xn

α

)

,
. . .
ξn
β =

∑

k ξk
α

∂xn
β

∂ξk
α

(

x1
α, . . . , xn

α

)

.

(54)

Here are some examples from mechanics which demonstrate that non-trivial
manifolds and tangent bundles to them are convenient in the description of
mechanical systems.
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Example 1. Consider the motion of a plane pendulum, i.e. a rigid bar
hinged at a point. The position of the bar is determined by one parameter, the
angle ϕ between the bar axis and the vertical. Thus, the set of all positions of
the bar is a circle S1. Such a set is called a configuration space.

Consider a two-link compound pendulum, i.e. two bars pivoted together.
The position of this pendulum is determined by two angles ϕ1 and ϕ2, so the
set of all positions represents a two-dimensional torus T2 = S1 × S1.

Example 2. In mechanics the motion of a mechanical system is usually
described by the parameters characterizing the position of the system and by
the velocities of its parts. The set of all these positions and velocities is called
a phase space, which can naturally be identified with a tangent bundle to a
configuration space. For instance, if a particle moves along a two-dimensional
sphere at a constant velocity, the phase space is a subset in a tangent bundle
consisting of tangent vectors of constant length.

Example 3. There exist more complicated configuration and phase spaces.
Let us consider, for instance, a three-dimensional rigid body with a fixed point.
Any position of this body in R3 can be described as follows. Choose in the body
three orthogonal unit vectors e1, e2, and e3 emerging from the fixed point. Any
position of the body is given then by the position of these three vectors in R3 .
Thus, the configuration space can be identified with the connected component
of the set of all orthogonal unit bases in R3.

2.6 Weak and strong Whitney theorem

The theorem 7 is called a weak Whitney theorem while the following is so called
strong Whitney theorem.

Theorem 12 Let M be a smooth compact manifold of dim M = n. Then the
embedding ϕ : M → R(2n+1) does exist.

Proof.
We shall use Theorem 7 and try to reduce the dimension of RN . Let e ∈ RN

be a non-zero vector and pe : RN → RN−1 the orthogonal projection along e
onto a subspace orthogonal to e. Sometimes, the composition

M
ϕ→ RN pe→ RN−1

remains an embedding. Analyze the conditions under which the composition
peϕ is an embedding. We have to verify two conditions: (a) that the differential
is a monomorphism and (b) that the mapping is one-to-one.

We first consider condition (a). Let P ∈ M , VP = dϕP (TP M) ⊂ RN

. In order that the differential of the composition d(peϕ) at a point P be a
monomorphism, it is necessary and sufficient that the projection pe should map
the subspace VP injectively into RN−1, which is equivalent to e /∈ VP . Fix
a local coordinate system (x1, . . . , xn) in a neighbourhood U of point P and
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a basis in Rn. Construct the mapping h : U × Rn → RPN−1 , assuming
h(x1, . . . , xn, ξ1, . . . , ξn) = (ζ1 : ζ2 : . . . : ζN ), where

ζk =
n

∑

α=1

∂yk

∂xα ξα

and (y1, . . . , yN ) = ϕ(x1, . . . , xn). The mapping h is a smooth mapping of the
2n-dimensional manifold U × Rn onto the projective space RPN−1. Then the
condition e /∈ VP exactly means that the straight line generated by e, being a
point in RPN−1, does not belong to the image of h. By Sard’s theorem, for
2n < N − 1 the set of such points is open and everywhere dense in the entire
space RPN−1. Considering a finite atlas in M , we find that for an open dense
set G in RPN−1 the vector e generating points in G satisfy e /∈ VP for any
point P ∈ M . This means that the set of e such that the projection pe embeds
ϕ(M) in RN−1 is open and dense.

Let us now turn to condition (b). The absence of bijectivity means that e
is parallel to a straight line through a pair of points P 6= Q on ϕ(M). Just like
in the case of condition (a), we shall consider the mapping h′ : (M ×M \∆) →
RPN−1 which for a pair of points P 6= Q assigns a straight line through ϕ(P )
and ϕ(Q). According to Sard’s theorem, for 2n < N − 1 the set of points not
contained in the image of h′ is an open dense set G′. The vector e should
therefore be so chosen that the straight line generated by the point e lies in
G

⋂

G′ 6= ∅. We have demonstrated that if 2n < N−1, there exists a projection
pe such that the composition peϕ is an embedding. Hence, step by step we can
reduce the dimension of the enveloping Euclidean space RN unless the equality
2n = N − 1 is satisfied, whence N = 2n + 1. This is the minimal dimension of
the Euclidean space R(2n+1) which admits an embedding of any n-dimensional
compact manifold . Theorem 12 is proved.

2.7 Vector fields and dynamic system on manifolds

3 Some application of the theory of manifolds.

3.1 The mapping degree of orientable manifolds, the main
algebra theorem.

3.1.1 Examples

1. Let us consider a circle S1 realized as the set of complex numbers with
modulus equal to unity, and a mapping

f : S1−→S1,

f(z) = zn. This mapping is smooth. Any point of S1 is regular for the mapping
f . Indeed, in the local parameter ϕ the mapping f is of the form f(ϕ) = nϕ,
df(ϕ) = n, n 6= 0. Hence the differential df is an isomorphism. The inverse
image of any point z0 ∈ S1 consists of exactly n points, the roots of order n of
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the complex number z0. Geometrically, the mapping f may be looked upon as
an n-fold ”winding” of S1 onto itself.

2. Consider a sphere S2 as a complex projective line RP1. Let

f : RP1−→RP1

be the mapping, defined in projective coordinates by formula

f([z0 : z1]) = [zn
0 : zn

1 ]. (55)

Similar to previous example one can calculate differential of the mapping f
using complex coordinate z = z0

z1
. Then df(z) = nzn−1 6= 0 if z 6= 0. Hence all

points [z0 : z1], z0 6= 0, z1 6= 0 are regular and inverse image consists of exactly
n points. The map f can be looked upon as an n-fold ”winding” along parallels
of the sphere S2.

3.1.2 Manifolds with boundary

Definition 19 A metric space M is called a smooth manifold with boundary if
there exists an atlas {Uα} and coordinate homeomorphisms ϕ : Uα−→Vα ⊂ Rn

+,
where Valpha is an open set in the halfspace Rn

+ ⊂ RN defined by the inequality
xn ≥ 0. The transition function assume to be smooth function right up to
boundary points of Rn

+.

The condition xn
α(P ) > 0 does not depend of choice of the chart Uα. This

means that all points are divided into two classes — interior points and boundary
points. The family of boundary points denotes as ∂M and is called the boundary
of M .

Theorem 13 Let M be a smooth manifolds with boundary. Then the boundary
∂M is smooth closed manifold, dim ∂M = dim−1, atlas of charts Vα can be
defined as

Vα = Uα ∩ ∂M,

as coordinate system can be taken all coordinates from M except the last coor-
dinate xn

α which actually vanishes on ∂M .

3.1.3 The mapping degree mod 2

Definition 20 Let f : M1−→M2 be a smooth mapping of compact, connected
closed manifold, dim M1 = dim M2, and let P ∈ M2 be a regular point. The
degree of the mapping f (relative to a regular point P ) is the number

degP f = #f−1(P ) (56)

Theorem 14 The mapping degree modulo 2 does not depend
(a) on the choice of the regular point P ,
(b) on the choice of the mapping f in the class of (smooth) homotopic map-

pings.
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3.1.4 Oriented manifolds.

A manifold X is said to be oriented if there is an atlas {Uα} such that all the
transition functions ϕαβ have positive Jacobians at each point. The choice of a
such atlas is called an orientation of the manifold X.

Proposition 3 On a connected oriented manifold there exist exactly two dis-
tinct orientations, any chart defining a local orientation that coincides with one
of the orientations of M .

Theorem 15 If a manifold with boundary M is oriented, then the boundary
∂M is also an oriented manifold with the atlas of charts, defined in the theorem
13.

3.1.5 The mapping degree

Definition 21 Let f : M1−→M2 be a smooth mapping of compact, connected,
oriented, closed manifold, dim M1 = dim M2, and let P ∈ M2 be a regular point.
For Q ∈ f−1(P ) we put ε(Q) = +1 if the determinant of the Jacobi matrix of
f at the point Q is positive, and ε(Q) = −1 if the determinant is negative. The
degree of the mapping f (relative to a regular point P ) is the number

degP f =
∑

Q∈f−1(P )

ε(Q). (57)

Theorem 16 Definition 21 of the mapping degree does not depend (a) on the
choice of the regular point P ,

(b) on the choice of the mapping f in the class of (smooth) homotopic map-
pings.

3.1.6 The main algebra theorem

The fundamental theorem of algebra states that any polynomial P (z) of the
degree n over the field of complex numbers has at least one complex root.

There are many various proofs of this theorem. One of them rests on using
the concept of the degree of a mapping and theorem 2. Let us consider a smooth
mapping P : C−→C of the complex plane defined by

w = P (z) = zn + an−lzn−1 + · · ·+ a1z + a0. (58)

This mapping can be extended to the mapping of a two-dimensional sphere
S2 into itself, assuming S2 to be a complex projective line CP1. To this end
we assume that the complex parameter z is equal to the ratio of homogeneous
coordinates on CPl: z = z0

z1
for z1 6= 0. Similarly, w = w0

w1
for w1 6= 0. Therefore,

the formula
{

w0 = zn
0 + an−1zn−1

0 z1 + · · ·+ a1z0zn−1
1 + a0zn

1 ,
w1 = zn

1
(59)
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correctly defines the mapping of CP1 into itself. Mapping (58) is apparently
a smooth one. Indeed in the chart z1 6= 0 this follows from (58) in the chart
z0 6= 0 as a complex coordinate we can take the function z′ = z1

z0
. By setting

w′ = w1
w0

, we obtain

{

w′ = zn
1

zn
0 +an−1zn−1

0 z1+···+a1z0zn−1
1 +a0zn

1
=

= (z′)n

1+an−1z′+···+a1(z′)n−1+a0(z′)n

(60)

Taking a sufficiently small ε > 0, we choose a chart containing the point z1 = 0
and define this chart by the inequality |z′| < ε such that the denominator in
(60) be non-zero. Thus, the mapping f : CP1−→CP1 given by formula (59) is
smooth. We now calculate the degree of f . According to theorem 2 the mapping
f can be re- placed by a homotopic one. Let us consider the homotopy with
respect to the parameter t 0 ≤ t ≤ 1, defined by

{

w0 = zn
0 + t

(

an−1zn−1
0 z1 + · · ·+ a1z0zn−1

1 + a0zn
1

)

,
w1 = zn

1
(61)

Just like in the case of (59), mappings (61) are smooth. At t = 0 we obtain a
simple mapping

{

w0 = zn
0 ,

w1 = zn
1

(62)

In the local coordinates w = w0
w1

, z = z0
z1

this mapping takes the form
w = zn, and, say, the point w = 1 is regular. Indeed, calculating the Jacobi
matrix of the mapping u = <w = <zn, v = =w = =zn, z = x + iy, we obtain

∂(u, v)
∂(x, y)

|w=1 = n2 > 0. (63)

Since the equation zn = 1 has exactly n solutions, the degree of mapping (62)
and, therefore, of mapping (59) is equal to n, i.e. deg f = n. If the polynomial
P did not have roots, the point w = 0 would not belong to the image of f and,
hence, the mapping f : CP1−→CP1 would have a regular point w = 0 with
empty inverse image, i.e. the degree of mapping f would be zero. Contradiction
proves the theorem.

3.2 Submersions and smooth bundles.

Consider a smooth mapping f : X−→Y of compact manifolds. Assume that the
differential Df : Tx(X)−→Tf(x)(Y ) is epimorphism at each point x ∈ X. Then
we say that the mapping f is a submersion. In other words all points x ∈ X are
regular with respect to the mapping f . In particular due to the Sard theorem
for each point y ∈ X the inverse image f−1(y) ⊂ X is a submanifold. More
of that the distribution of the manifold X into submanifolds {f−1(y) : y ∈ Y }
form so called locally trivial bundle of manifolds.
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Definition 22 Let E and B be two topological spaces with a continuous map

p : E−→B.

The map p is said to define a locally trivial bundle with a fiber F if for any
point x ∈ B there is a neighborhood U 3 x for which the inverse image p−1(U)
is homeomorphic to the Cartesian product U × F . Moreover, it is required that
the homeomorphism

ϕ : U × F−→p−1(U)

preserves fibers, it is a ‘fiberwise’ map, that is, the following equality holds:

p(ϕ(x, f)) = x, x ∈ U, f ∈ F.

The space E is called total space of the bundle or the fiberspace, the space B is
called the base of the bundle, the space F is called the fiber of the bundle and the
mapping p is called the projection. The requirement that the homeomorphism ϕ
be fiberwise means in algebraic terms that the diagram

U × F
ϕ−→ p−1(U)





yπ




y
p

U = U

where
π : U × F−→U, π(x, f) = x

is the projection onto the first factor is commutative.

There is a simple criterion describing when a smooth mapping of manifolds
gives a locally trivial bundle.

Theorem 17 Let
f : X−→Y

be a smooth mapping of compact manifolds such that the differential Df is
epimorphism at each point x ∈ X. Then f is a locally trivial bundle with the
fiber a smooth manifold.

Proof.
Without loss of generality one can consider a chart U ⊂ Y diffeomorphic to Rn

and the part of the manifold X, namely, f−1(U). Then the mapping f gives a
vector valued function

f : X−→Rn.

Assume firstly that n = 1. From the condition of the theorem we know that the
gradient of the function f never vanishes.

Consider the vector field gradf (with respect to some Riemannian metric
on X). The integral curves γ(x0, t) are orthogonal to each hypersurface of the
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level of the function f . Choose a new Riemannian metric such that gradf is a
unit vector field. Indeed, consider the new metric

(ξ, η)1 = (ξ, η)(gradf,gradf).

Then

(gradf, ξ) = ξ(f) = (grad1f, ξ)1 = (grad1f, ξ)(grad1f,grad1f).

Hence
grad1f =

gradf
(gradf,gradf)

.

Then

(grad1f,grad1f)1 = (grad1f,grad1f)(gradf,gradf) =

=
(gradf,gradf)
(gradf,gradf)2

(gradf,gradf) = 1.

Thus the integral curves

d
dt

f(γ(t)) = (gradf,gradf) ≡ 1.

Hence the function f(γ(t)) is linear. This means that if

f(x0) = f(x1),

then
f(γ(x0, t)) = f(γ(x1, t)) = f(x0) + t.

Put
g : Z ×R1−→X, g(x, t) = γ(x, t).

The mapping g is a fiberwise smooth homeomorphism. Hence the mapping

f : −→R1

gives a locally trivial bundle. Further, the proof will follow by induction with
respect to n. Consider a vector valued function

f(x) = {f1(x), . . . , fn(x)}

which satisfies the condition of the theorem. Choose a Riemannian metric on
the manifold X such that gradients

gradf1, . . . ,gradfn

are orthonormal. Such a metric exists. Indeed, consider firstly an arbitrary
metric. The using the linear independence of the differentials {dfi} we know
that the gradients are also independent. Hence the matrix

aij = 〈gradfi(x), gradfj(x)〉
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is nondegenerate in each point. Let ‖bij(x)‖ be the matrix inverse to the matrix
‖aij(x)‖, that is,

∑

α

biα(x)ajα(x) ≡ δij .

Put
ξk =

∑

i

bkj(x)gradfi(x).

Then

ξk(fj) =
∑

i

bki(x)gradfi(fj) =

=
∑

i

bki(x)〈gradfi, gradgj〉 =
∑

i

bki(x)aij(x) ≡ δkj .

Let Uα be a sufficiently small neighborhood of a point of the manifold X.
The system of vector fields {ξ1, . . . , ξn} can be supplemented by vector fields
ηn+1, . . . , ηN to form a basis such that

ηk(fi) ≡ 0.

Consider the new metric in the chart Uα given by

〈ξi, ξj〉α ≡ δij ,

〈ξk, ηj〉α ≡ 0.

Let ϕα be a partition of unity subordinate to the covering {Uα} and put

〈ξ, η〉0 =
∑

α

ϕα(x)〈ξ, η〉α.

Then

〈ξi, ξj〉0 ≡ δij ,

〈ξk, η〉0 ≡ 0

for any vector η for which η(fi) = 0. Let grad0fi be the gradients of the
functions fi with respect to the metric 〈ξ, η〉0. This means that

〈gradfi, ξ〉0 = ξ(fi)

for any vector ξ. In particular one has

〈gradfi, ξj〉0 ≡ δij ,

〈gradfk, η〉0 ≡ 0

for any vector η for which η(fi) = 0.
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Similar relations hold for the vector field ξi. Therefore

ξi = gradfi,

that is,

〈gradfi, gradfj〉δij ,

the latter proves the existence of metric with the necessarily properties.
Let us pass now to the proof of the theorem. Consider the vector function

g(x) = {f1(x), . . . , fn−1(x)}.

This function satisfies the conditions of the theorem and the inductive assump-
tion. It follows that the manifold X is diffeomorphic to the Cartesian product
X = Z ×Rn−1 and the functions fi are the coordinate functions for the second
factor. Then gradfn is tangent to the first factor Z and hence the function
fn(x, t) does not depend on t ∈ Rn−1. Therefore one can apply the first step of
the induction to the manifold Z, that is,

Z = Z1 ×R1.

Thus
X = Z1 ×Rn.

3.3 The Pontryagin–Thom construction, the bordism the-
ory.

3.4 The Morse functions on manifolds

Consider a smooth function f on a manifold X. A point p0 is called a critical
point if

df(x0) = 0.

A critical point x0 is said to be nondegenerate if the matrix of second deriva-
tives is nondegenerate. This property does not depend on a choice of local
coordinates. Let T ∗X be the total space of the cotangent bundle of manifold X
(that is, the vector bundle which is dual to the tangent bundle). Then for each
function

f : X−→R1

there is a mapping
df : X−→T ∗X (64)

adjoint to Df which to each point x ∈ X associates the linear form on TxX
given by the differential of the function f at the point x. Then in the manifold
T ∗X there are two submanifolds: the zero section X0 of the bundle T ∗X and the
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image df(X). The common points of these submanifolds correspond to critical
points of the function f . Further, a critical point is nondegenerate if and only
if the intersection of submanifolds X0 and df(X) at that point is transversal.
If all the critical points of the function f are nondegenerate then f is called
a Morse function. Thus the function f is a Morse function if and only if the
mapping (64) is transversal along the zero section X0 ⊂ T ∗X.

3.5 Vector fields, the Lie brackets, the Lie algebra struc-
ture, integrable distributions, foliations.

3.5.1 Dynamical system

Let ξ(P ) be a smooth field on M . We recall that the trajectory γ(t) is called
an integral curve of the field ξ(P ) if d

dtγ(t) = ξ(γ(t)), i.e. if the tangent velocity
vectors to γ(t) coincide with the vector field ξ.

Theorem 18 Let ξ be a smooth vector field on a smooth compact manifold M .
Them there is unique smooth mapping

ϕ : M ×R1−→M (65)

which forms the collection of all integral curves of the field ξ that is

ϕ(x0, 0) = x0,
d
dtϕ(x0, t) = ξ(ϕ(x0, t)).

(66)

The mapping (65) satisfies the property

ϕ(ϕ(x0, t), s) = ϕ(x0, t + s), t, s ∈ R1, (67)

that is a one parametric group of diffeomorphisms of the manifold M .
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4 Differential forms, calculus, de Rham com-
plex, de Rham cohomology, the Hodge theory.

5 Integration of differential forms, the general
Stokes formula. Special cases: Newton–Leibniz,
Green, Gauss-Ostrogradsky, 3-dimensional Stokes
formula.

6 Application to the mapping degree and the
Gauss-Bonnet formula.

7 Locally trivial bundles

7.1 Definition

The definition of a locally trivial bundle was coined to capture an idea which
recurs in a number of different geometric situations. We commence by giving a
number of examples.

The surface of the cylinder can be seen as a disjoint union of a family of line
segments continuously parametrized by points of a circle. The Möbius band can
be presented in similar way. The two dimensional torus embedded in the three
dimensional space can presented as a union of a family of circles (meridians)
parametrized by points of another circle (a parallel).

Now, let M be a smooth manifold embedded in the Euclidean space RN

and TM the space embedded in RN×RN, the points of which are the tangent
vectors of the manifold M . This new space TM can be also be presented as a
union of subspaces TxM , where each TxM consists of all the tangent vectors to
the manifold M at the single point x. The point x of M can be considered as a
parameter which parametrizes the family of subspaces TxM . In all these cases
the space may be partitioned into fibers parametrized by points of the base.

The examples considered above share two important properties: a) any two
fibers are homeomorphic, b) despite the fact that the whole space cannot be
presented as a Cartesian product of a fiber with the base (the parameter space),
if we restrict our consideration to some small region of the base the part of the
fiber space over this region is such a Cartesian product. The two properties
above are the basis of the following definition.

Definition 23 Let E and B be two topological spaces with a continuous map

p : E−→B.

The map p is said to define a locally trivial bundle if there is a topological space
F such that for any point x ∈ B there is a neighborhood U 3 x for which
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the inverse image p−1(U) is homeomorphic to the Cartesian product U × F .
Moreover, it is required that the homeomorphism

ϕ : U × F−→p−1(U)

preserves fibers, it is a ‘fiberwise’ map, that is, the following equality holds:

p(ϕ(x, f)) = x, x ∈ U, f ∈ F.

The space E is called total space of the bundle or thefiberspace, the space B is
called thebase of the bundle, the space F is called thefiber of the bundle and the
mapping p is called theprojection. The requirement that the homeomorphism ϕ
be fiberwise means in algebraic terms that the diagram

U × F
ϕ−→ p−1(U)





yπ




y
p

U = U

where
π : U × F−→U, π(x, f) = x

is the projection onto the first factor is commutative.

One problem in the theory of fiber spaces is to classify the family of all
locally trivial bundles with fixed base B and fiber F . Two locally trivial bun-
dles p : E−→B and p′ : E′−→B are considered to be isomorphic if there is a
homeomorphism ψ : E−→E′ such that the diagram

E
ψ−→ E′





y
p





yp′

B = B

is commutative. It is clear that the homeomorphism ψ gives a homeomorphism
of fibers F−→F ′. To specify a locally trivial bundle it is not necessary to be
given the total space E explicitly. It is sufficient to have a base B, a fiber F
and a family of mappings such that the total space E is determined ‘uniquely’
(up to isomorphisms of bundles). Then according to the definition of a locally
trivial bundle, the base B can be covered by a family of open sets {Uα} such
that each inverse image p−1(Uα) is fiberwise homeomorphic to Uα × F . This
gives a system of homeomorphisms

ϕα : Uα × F−→p−1(Uα).

Since the homeomorphisms ϕα preserve fibers it is clear that for any open
subset V ⊂ Uα the restriction of ϕα to V × F establishes the fiberwise home-
omorphism of V × F onto p−1(V ). Hence on Uα × Uβ there are two fiberwise
homeomorphisms

ϕα : (Uα ∩ Uβ)× F−→p−1(Uα ∩ Uβ),

ϕβ : (Uα ∩ Uβ)× F−→p−1(Uα ∩ Uβ).
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Let ϕαβ denote the homeomorphism ϕ−1
β ϕα which maps (Uα ∩ Uβ) × F

onto itself. The locally trivial bundle is uniquely determined by the following
collection: the base B, the fiber F , the covering Uα and the homeomorphisms

ϕαβ : (Uα ∩ Uβ)× F−→(Uα ∩ Uβ)× F.

The total space E should be thought of as a union of the Cartesian products
Uα × F with some identifications induced by the homeomorphisms ϕαβ . By
analogy with the terminology for smooth manifolds, the open sets Uα are called
charts, the family {Uα} is called the atlas of charts, the homeomorphisms ϕα

are called the coordinate homeomorphisms and the ϕαβ are called the transition
functionsor the sewing functions. Sometimes the collection {Uα, ϕα} is called the
atlas. Thus any atlas determines a locally trivial bundle. Different atlases may
define isomorphic bundles but, beware, not any collection of homeomorphisms
ϕα forms an atlas. For the classification of locally trivial bundles, families
of homeomorphisms ϕαβ that actually determine bundles should be selected
and then separated into classes which determine isomorphic bundles. For the
homeomorphisms ϕαβ to be transition functions for some locally trivial bundle:

ϕβα = ϕ−1
β ϕα. (68)

Then for any three indices α, β, γ on the intersection (Uα ∩ Uβ ∩ Uγ) × F the
following relation holds:

ϕαγϕγβϕβα = id,

where id is the identity homeomorphism and for each α,

ϕαα = id. (69)

In particular
ϕαβϕβα = id, (70)

thus
ϕαβ = ϕ−1

βα.

Hence for an atlas the ϕαβ should satisfy

ϕαα = id, ϕαγϕγβϕβα = id. (71)

These conditions are sufficient for a locally trivial bundle to be reconstructed
from the base B, fiber F , atlas {Uα} and homeomorphisms ϕβα. To see this,
let

E′ = ∪α(Uα × F )

be the disjoint union of the spaces Uα ×F . Introduce the following equivalence
relation: the point (x, f) ∈ Uα × F is related to the point (y, g) ∈ Uβ × F iff

x = y ∈ Uα ∩ Uβ

and
(y, g) = ϕβα(x, f).

57



The conditions (69), (70) guarantee that this is an equivalence relation, that
is, the space E′ is partitioned into disjoint classes of equivalent points. Let E
be the quotient space determined by this equivalence relation, that is, the set
whose points are equivalence classes. Give E the quotient topology with respect
to the projection

π : E′−→E

which associates to a (x, f) its the equivalence class. In other words, the subset
G ⊂ E is called open iff π−1(G) is open set. There is the natural mapping p′

from E′ to B:
p′(x, f) = x.

Clearly the mapping p′ is continuous and equivalent points maps to the same
image. Hence the mapping p′ induces a map

p : E−→B

which associates to an equivalence class the point assigned to it by p′. The map-
ping p is continuous. It remains to construct the coordinate homeomorphisms.
Put

ϕα = π|Uα×F : Uα × F−→E.

Each class z ∈ p−1(Uα) has a unique representative (x, f) ∈ Uα × F . Hence ϕα

is a one to one mapping onto p−1(Uα). By virtue of the quotient topology on
E the mapping ϕα is a homeomorphism. It is easy to check that (compare with
(68))

ϕ−1
β ϕα = ϕβα.

So we have shown that locally trivial bundles may be defined by atlas of charts
{Uα} and a family of homeomorphisms {ϕβα} satisfying the conditions (69),
(70). Let us now determine when two atlases define isomorphic bundles. First
of all notice that if two bundles p : E−→B and p′ : E′−→B with the same
fiber F have the same transition functions {ϕβα} then these two bundles are
isomorphic. Indeed, let

ϕα : Uα−→p−1(Uα).

ψα : Uα−→p′−1(Uα).

be the corresponding coordinate homeomorphisms and assume that

ϕβα = ϕ−1
β ϕα = ψ−1

β ψα = ψβα.

Then
ϕαψ−1

α = ϕβψ−1
β .

We construct a homeomorphism

ψ : E′−→E.

Let x ∈ E′. The atlas {Uα} covers the base B and hence there is an index α
such that x ∈ p′−1(Uα). Set

ψ(x) = ϕαψ−1
α (x).
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It is necessary to establish that the value of ψ(x) is independent of the choice
of index α. If x ∈ p′−1(Uβ) also then

ϕβψ−1
β (x) = ϕαϕ−1

α ϕβψ−1
β ψαψ−1

α (x) =

= ϕαϕαβϕβαψ−1
α (x) = ϕαψ−1

α (x).

Hence the definition of ψ(x) is independent of the choice of chart. Continuity
and other necessary properties are evident. Further, given an atlas {Uα} and
coordinate homomorphisms {ϕα}, if {Vβ} is a finer atlas (that is, Vβ ⊂ Uα for
some α = α(β)) then for the atlas {Vβ}, the coordinate homomorphisms are
defined in a natural way

ϕ′β = ϕα(β)|(Vβ×F ) : Vβ × F−→p−1(Vβ).

The transition functions ϕ′β1,β2
for the new atlas {Vβ} are defined using restric-

tions

ϕ′β1,β2
= ϕα(β1),α(β2)|(Vβ1∩Vβ2 )×F : (Vβ1 ∩ Vβ2)× F−→(Vβ1 ∩ Vβ2)× F.

Thus if there are two atlases and transition functions for two bundles, with
a common refinement, that is, a finer atlas with transition functions given by
restrictions, it can be assumed that the two bundles have the same atlas. If
ϕβα, ϕ′βα are two systems of the transition functions (for the same atlas), giving
isomorphic bundles then the transition functions ϕβα, ϕ′βα must be related.

Theorem 19 Two systems of the transition functions ϕβα, and ϕ′βα define
isomorphic locally trivial bundles iff there exist fiber preserving homeomorphisms

hα : Uα × F−→Uα × F

such that
ϕβα = h−1

β ϕ′βαhα. (72)

7.1.1 Examples

1. Let E = B × F and p : E−→B be projections onto the first factors. Then
the atlas consists of one chart Uα = B and only one the transition function
ϕαα = id and the bundle is said to be trivial.

2. Let E be the Möbius band. One can think of this bundle as a square in
the plane, {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} with the points (0, y) and (1, 1 − y)
identified for each y ∈ [0, 1]. The projection p maps the space E onto the
segment Ix = {0 ≤ x ≤ 1} with the endpoints x = 0 and x = 1 identified,
that is, onto the circle S1. Let us show that the map p defines a locally trivial
bundle. The atlas consists of two intervals (recall 0 and 1 are identified)

Uα = {0 < x < 1}, Uβ = {0 ≤ x <
1
2
} ∪ {1

2
< x ≤ 1}.

59



The coordinate homeomorphisms may be defined as following:

ϕα : Uα × Iy−→E, ϕα(x, y) = (x, y),

ϕβ : Uβ × Iy−→E

ϕβ(x, y) = (x, y) for 0 ≤ x <
1
2
,

ϕβ(x, y) = (x, 1− y) for
1
2

< x ≤ 1.

The intersection of two charts Uα∩Uβ consists of union of two intervals Uα∩Uβ =
(0, 1

2 ) ∪ ( 1
2 , 1). The transition function ϕβα have the following form

ϕβα = (x, y) for 0 < x <
1
2
,

ϕβα = (x, 1− y) for
1
2

< x < 1.

The Möbius band is not isomorphic to a trivial bundle. Indeed, for a trivial
bundle all transition functions can be chosen equal to the identity. Then by
Theorem ?? there exist fiber preserving homeomorphisms

hα : Uα × Iy−→Uα × Iy,

hβ : Uβ × Iy−→Uβ × Iy,

such that
ϕβα = h−1

β hα

in its domain of definition (Uα ∩ Uβ) × Iy. Then hα, hβ are fiberwise home-
omorphisms for fixed value of the first argument x giving homeomorphisms of
interval Iy to itself. Each homeomorphism of the interval to itself maps end
points to end points. So the functions

hα(x, 0), hα(x, 1), hβ(x, 0), hβ(x, 1)

are constant functions, with values equal to zero or one. The same is true for
the functions h−1

β hα(x, 0). On the other hand the function ϕβα(x, 0) is not
constant because it equals zero for each 0 < x < 1

2 and equals one for each
1
2 < x < 1.This contradiction shows that the Möbius band is not isomorphic to
a trivial bundle.

3. Let E be the space of tangent vectors to two dimensional sphere S2

embedded in three dimensional Euclidean space R3. Let

p : E−→S2

be the map associating each vector to its initial point. Let us show that p is a
locally trivial bundle with fiber R2. Fix a point s0 ∈ S2. Choose a Cartesian
system of coordinates in R3 such that the point s0 is the North Pole on the
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sphere (that is, the coordinates of s0 equal (0, 0, 1)). Let U be the open subset
of the sphere S2 defined by inequality z > 0. If s ∈ U, s = (x, y, z), then

x2 + y2 + z2 = 1, z > 0.

Let ~e = (ξ, η, ζ) be a tangent vector to the sphere at the point s. Then

xξ + yη + zζ = 0,

that is,
ζ = −(xξ + yη)/z.

Define the map
ϕ : U ×R2−→p−1(U)

by the formula

ϕ(x, y, z, ξ, η) = (x, y, z, ξ, η,−(xξ + yη)/z)

giving the coordinate homomorphism for the chart U containing the point s0 ∈
S2. Thus the map p gives a locally trivial bundle. This bundle is called the
tangent bundle of the sphere S2.

7.2 The structure groups

The relations (71,72) obtained in the previous section for the transition functions
of a locally trivial bundle are similar to those involved in the calculation of one
dimensional cohomology with coefficients in some algebraic sheaf. This analogy
can be explain after a slight change of terminology and notation and the change
will be useful for us for investigating the classification problem of locally trivial
bundles. Notice that a fiberwise homeomorphism of the Cartesian product of
the base U and the fiber F onto itself

ϕ : U × F−→U × F, (73)

can be represented as a family of homeomorphisms of the fiber F onto itself,
parametrized by points of the base B. In other words, each fiberwise homeo-
morphism ϕ defines a map

ϕ̄ : U−→Homeo (F ), (74)

where Homeo (F ) is the group of all homeomorphisms of the fiber F . Fur-
thermore, if we choose the right topology on the group Homeo (F ) the map ϕ̄
becomes continuous. Sometimes the opposite is true: the map (74) generates
the fiberwise homeomorphism (73)with respect to the formula

ϕ(x, f) = (x, ϕ̄(x)f).

So instead of ϕαβ a family of functions

ϕ̄αβ : Uα ∩ Uβ−→Homeo (F ),
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can be defined on the intersection Uα ∩ Uβ and having values in the group
Homeo (F ). In homological algebra the family of functions ϕ̄αβ is called a one
dimensional cochain with values in the sheaf of germs of functions with values
in the group Homeo (F ). The condition (71) from the section ?? means that

ϕ̄αα(x) = id,
ϕ̄αγ(x)ϕ̄γβ(x)ϕ̄βα(x) = id.

x ∈ Uα ∩ Uβ ∩ Uγ .

and we say that the cochain {ϕ̄αβ} is a cocycle. The condition (72) means that
there is a zero dimensional cochain hα : Uα−→Homeo (F ) such that

ϕ̄βα(x) = h−1
β (x)ϕ̄′βα(x)hα(x), x ∈ Uα ∩ Uβ .

Using the language of homological algebra the condition (72) means that
cocycles {ϕ̄βα} and {ϕ̄′βα} are cohomologous. Thus the family of locally trivial
bundles with fiber F and base B is in one to one correspondence with the
one dimensional cohomology of the space B with coefficients in the sheaf of the
germs of continuous Homeo (F )–valued functions for given open covering {Uα}.
Despite obtaining a simple description of the family of locally trivial bundles in
terms of homological algebra, it is ineffective since there is no simple method of
calculating cohomologies of this kind. Nevertheless, this representation of the
transition functions as a cocycle turns out very useful because of the situation
described below.

First of all notice that using the new interpretation a locally trivial bundle
is determined by the base B, the atlas {Uα} and the functions {ϕαβ} taking the
value in the group G = Homeo (F ). The fiber F itself does not directly take
part in the description of the bundle. Hence, one can at first describe a locally
trivial bundle as a family of functions {ϕαβ} with values in some topological
group G, and after that construct the total space of the bundle with fiber F by
additionally defining an action of the group G on the space F , that is, defining
a continuous homomorphism of the group G into the group Homeo (F ).

Secondly, the notion of locally trivial bundle can be generalized and the
structure of bundle made richer by requiring that both the transition functions
ϕ̄αβ and the functions hα are not arbitrary but take values in some subgroup
of the homeomorphism group Homeo (F ).

Thirdly, sometimes information about locally trivial bundle may be obtained
by substituting some other fiber F ′ for the fiber F but using the ‘same’ tran-
sition functions. Thus we come to a new definition of a locally trivial bundle
with additional structure — the group where the transition functions take their
values.

Definition 24 Let E,B,F be topological spaces and G be a topological group
which acts continuously on the space F . A continuous map

p : E−→B
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is said to be a locally trivial bundle with fiber F and the structure group G if
there is an atlas {Uα} and the coordinate homeomorphisms

ϕα : Uα × F−→p−1(Uα)

such that the transition functions

ϕβα = ϕ−1
β ϕα : (Uα ∩ Uβ)× F−→(Uα ∩ Uβ)× F

have the form
ϕβα(x, f) = (x, ϕ̄βα(x)f),

where ϕ̄βα : (Uα ∩ Uβ)−→G are continuous functions satisfying the conditions

ϕ̄αα(x) ≡ 1, x ∈ Uα,

ϕ̄αβ(x)ϕ̄βγ(x)ϕ̄γα(x) ≡ 1, x ∈ Uα ∩ Uβ ∩ Uγ . (75)

The functions ϕ̄αβ are also called the transition functions

Let
ψ : E′−→E

be an isomorphism of locally trivial bundles with the structure group G. Let
ϕα and ϕ

′

α be the coordinate homeomorphisms of the bundles p : E−→B and
p′ : E′−→B, respectively. One says that the isomorphism ψ is compatible with
the structure group G if the homomorphisms

ϕ−1
α ψϕ′α : Uα × F−→Uα × F

are determined by continuous functions

hα : Uα−→G,

defined by relation
ϕ−1

α ψϕ′α(x, f) = (x, hα(x)f). (76)

Thus two bundles with the structure group G and transition functions ϕ̄βα and
ϕ′βα are isomorphic, the isomorphism being compatible with the structure group
G, if

ϕ̄βα(x) = hβ(x)ϕ̄′βα(x)hα(x) (77)

for some continuous functions hα : Uα−→G. So two bundles whose the tran-
sition functions satisfy the condition (77) are called equivalent bundles. It is
sometimes useful to increase or decrease the structure group G. Two bundles
which are not equivalent with respect of the structure group G may become
equivalent with respect to a larger structure group G′, G ⊂ G′. When a bundle
with the structure group G admits transition functions with values in a sub-
group H, it is said that the structure group G is reduced to subgroup H. It is
clear that if the structure group of the bundle p : E−→B consists of only one
element then the bundle is trivial. So to prove that the bundle is trivial, it is
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sufficient to show that its the structure group G may be reduced to the trivial
subgroup. More generally, if

ρ : G−→G′

is a continuous homomorphism of topological groups and we are given a locally
trivial bundle with the structure group G and the transition functions

ϕαβ : Uα ∩ Uβ−→G

then a new locally trivial bundle may be constructed with structure group G′

for which the transition functions are defined by

ϕ′αβ(x) = ρ(ϕαβ(x)).

This operation is called a change of the structure group (with respect to the
homomorphism ρ).

7.2.1 Remark

Note that the fiberwise homeomorphism

ϕ : U × F−→U × F

in general is not induced by continuous map

ϕ̄ : U−→Homeo (F ). (78)

Because of lack of space we will not analyze the problem and note only that
later on in all our applications the fiberwise homeomorphisms will be induced
by the continuous maps (78) into the structure group G.

Now we can return to the third situation, that is, to the possibility to choos-
ing a space as a fiber of a locally trivial bundle with the structure group G. Let
us consider the fiber

F = G

with the action of G on F being that of left translation, that is, the element
g ∈ G acts on the F by the homeomorphism

g(f) = gf, f ∈ F = G.

Definition 25 A locally trivial bundle with the structure group G is called prin-
cipal G–bundle if F = G and action of the group G on F is defined by the left
translations.

An important property of principal G–bundles is the consistency of the home-
omorphisms with the structure group G and it can be described not only in
terms of the transition functions (the choice of which is not unique) but also in
terms of equivariant properties of bundles.
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Theorem 20 Let
p : E−→B

be a principal G–bundle,

ϕα : Uα ×G−→p−1(Uα)

be the coordinate homeomorphisms. Then there is a right action of the group G
on the total space E such that:

1. the right action of the group G is fiberwise, that is,

p(x) = p(xg), x ∈ E, g ∈ G.

2. the homeomorphism ϕ−1
α transforms the right action of the group G on

the total space into right translations on the second factor, that is,

ϕα(x, f)g = fα(x, fg), x ∈ Uα, f, g ∈ G. (79)

Theorem 20 allows us to consider principal G–bundles as having a right
action on the total space.

Theorem 21 Let
ψ : E′−→E (80)

be a fiberwise map of principal G–bundles. The map (80) is the isomorphism
of locally trivial bundles with the structure group G, that is, compatible with the
structure group G iff this map is equivariant (with respect to right actions of the
group G on the total spaces).

Thus by Theorem 21, to show that two locally trivial bundles with the struc-
ture group G (and the same base B) are isomorphic it necessary and sufficient
to show that there exists an equivariant map of corresponding principal G–
bundles (inducing the identity map on the base B). In particular, if one of the
bundles is trivial, for instance, E′ = B × G, then to construct an equivariant
map ψ : E′−→E it is sufficient to define a continuous map ψ on the subspace
{(x, e) : x ∈ B, } ⊂ E′ = B ×G into E. Then using equivariance, the map ψ is
extended by formula

ψ(x, g) = ψ(x, e)g.

The map{(x, e) : x ∈ B, } ψ−→E′ can be considered as a map

s : B−→E (81)

satisfying the property
ps(x) = x, x ∈ B. (82)

The map (81) with the property (82) is called a cross–section of the bundle. So
each trivial principal bundle has cross–sections. For instance, the map B−→B×
G defined by x−→(x, e) is a cross–section. Conversely, if a principal bundle has
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a cross–section s then this bundle is isomorphic to the trivial principal bundle.
The corresponding isomorphism ψ : B ×G−→E is defined by formula

ψ(x, g) = s(x)g, x ∈ B, g ∈ G.

Let us relax our restrictions on equivariant mappings of principal bundles with
the structure group G. Consider arbitrary equivariant mappings of total spaces
of principal G–bundles with arbitrary bases. Each fiber of a principal G–bundle
is an orbit of the right action of the group G on the total space and hence for
each equivariant mapping

ψ : E′−→E

of total spaces, each fiber of the bundle

p′ : E′−→B′

maps to a fiber of the bundle
p : E−→B. (83)

In other words, the mapping ψ induces a mapping of bases

χ : B′−→B (84)

and the following diagram is commutative

E′ ψ−→ E



yp′




y
p

B′ χ−→ B
. (85)

Let Uα ⊂ B be a chart in the base B and let U ′
β be a chart such that

χ(U ′
β) ⊂ Uα.

The mapping ϕ−1
α ψϕ′β makes the following diagram commutative

U ′
β ×G

ϕ−1
α ψϕ′β−→ Uα ×G





y
p′ϕ′β





y
pϕα

U ′
β

χ−→ Uα

. (86)

In diagram (86), the mappings p′ϕ′β and pϕα are projections onto the first
factors. So one has

ϕ−1
α ψϕ′β(x′, g) = (χ(x′), hβ(x′)g).

Hence the mapping (84) is continuous. Compare the transition functions of
these two bundles. First we have

(x′, ϕ̄′β1β2
(x′)g) = ϕ′β1β2

(x′, g) = ϕ′−1
β1

ϕ′β2
(x′, g).
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Then

(χ(x′), hβ1(x
′)ϕ̄′β1β2

(x′)g) =

ϕ−1
α1

ψϕ′β1
ϕ′−1

β1
ϕ′β2

(x′, g) = ϕ−1
α1

ψϕ′β2
(x′, g) =

= ϕ−1
α1

ϕα1ϕ
−1
α2

ψϕ′β2
(x′, g) = (χ(x′), ϕ̄α1α2(χ(x′))hβ2(x

′)g),

that is,
hβ1(x

′)ϕ̄β1β2(x
′) = ϕ̄α1α2(χ(x′))hβ2(x

′),

or
hβ1(x

′)ϕ̄′β1β2
(x′)h−1

β2
(x′) = ϕ̄α1α2(χ(x′)). (87)

By Theorem ?? the left part of (87) are the transition functions of a bundle
isomorphic to the bundle

p′ : E′−→B′. (88)

Thus any equivariant mapping of total spaces induces a mapping of bases

χ : B′−→B.

Moreover, under a proper choice of the coordinate homeomorphisms the transi-
tion functions of the bundle (88) are inverse images of the transition functions
of the bundle (83). The inverse is true as well: if

χ : B′−→B

is a continuous mapping and
p : E−→B

is a principal G–bundle then one can put

U ′
α = χ−1(Uα), ϕ̄′αβ(x′) = ϕ̄αβ(χ(x)). (89)

Then the transition functions (89) define a principal G–bundle

p′ : −→B,

for which there exists an equivariant mapping

ψ : E′−→E

with commutative diagram (85). The bundle defined by the transition functions
(89) is called the inverse image of the bundle p : E−→B with respect to the
mapping χ . In the special case when the mapping χ : B′−→B is an inclusion
then we say that the inverse image of the bundle with respect to the mapping
χ is the restriction of the bundle to the subspace B′′ = χ(B′). In this case the
total space of the restriction of the bundle to the subspace B′′ coincides with
the inverse image

E′′ = p−1(B′′) ⊂ E.
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Thus if
E′ ψ−→E

is an equivariant mapping of total spaces of principal G–bundles then the bundle
p′ : E′−→B′ is an inverse image of the bundle p : −→B with respect to the
mapping χ : B′−→B. Constructing of the inverse image is an important way
of construction new locally trivial bundles. The following theorem shows that
inverse images with respect to homotopic mappings are isomorphic bundles.

Theorem 22 Let
p : E−→B × I

be a principal G–bundle, where the base is a Cartesian product of the compact
space B and the unit interval I = [0, 1], and let G be a Lie group. Then restric-
tions of the bundle p to the subspaces B × {0} and B × {1} are isomorphic.

Corollary 1 If the transition functions ϕαβ(x) and ψαβ(x) are homotopic within
the class of the transition functions then corresponding bundles are isomorphic.

7.2.2 Examples

1. Consider the Möbius band. The transition functions ϕαβ take two values
in the homeomorphism group of the fiber: the identity homeomorphism e(y) ≡
y, y ∈ I and homeomorphism j(y) ≡ 1− y, y ∈ I. The group generated by the
two elements e and j has the order two since j2 = e. So instead of the Möbius
band we can consider corresponding principal bundle with the structure group
G = Z2. As a topological space the group G consists of two isolated points.
So the fiber of the principal bundle is the discrete two-point space. This fiber
space can be thought of as two segments with ends which are identified crosswise.
Hence the total space is also a circle and the projection p : S1−→S1 is a two-
sheeted covering. This bundle is nontrivial since the total space of a trivial
bundle would have two connected components.

2. Consider the tangent bundle of two dimensional sphere. The coordinate
homeomorphisms

ϕ : U ×R2−→R3 ×R3

were defined by formulas that were linear with respect to the second argument.
Hence the transition functions also have values in the group of linear trans-
formations of the fiber F = R2, that is, G = GL (2,R). It can be shown
that the structure group G can be reduced to the subgroup O(n) of orthonor-
mal transformations, induced by rotations and reflections of the plane. Let us
explain these statements about the example of the tangent bundle of the two
dimensional sphere S2. To define a coordinate homeomorphism means to define
a basis of tangent vectors e1(x), e2(x) at each point x ∈ Uα such that functions
e1(x) and e2(x) are continuous.

Let us choose two charts Uα = {(x, y, z) : z 6= 1}, Uβ = {(x, y, z) : z 6=
−1}. The south pole P0 = (0, 0,−1) belongs to the chart Uα. The north pole
P1 = (0, 0, +1) belongs to the chart Uβ . Consider the meridians. Choose an
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orthonormal basis for the tangent space of the point P0 and continue it along
the meridians by parallel transfer with respect to the Riemannian metric of
the sphere S2 to all of the chart Uα. Thus we obtain a continuous family of
orthonormal bases e1(x), e2(x) defined at each point of Uα. In a similar way
we construct a continuous family of orthonormal bases e′1(x), e′2(x) defined over
Uβ . Then the coordinate homeomorphisms are defined by the following formulas

ϕα(x, ξ, η) = ξe1(x) + ηe2(x)

ϕβ(x, ξ′, η′) = ξ′e′1(x) + η′e′2(x).

The transition function fβα = ϕ−1
β ϕα expresses the coordinates of a tangent

vector at a point x ∈ Uα∩Uβ in terms of the basis e′1(x), e′2(x) by the coordinates
of the same vector with respect to the basis e1(x), e2(x). As both bases are
orthonormal, the change of coordinates (ξ′, η′) into coordinates (ξ, η) is realized
by multiplication by an orthogonal matrix. Thus the structure group GL (2,R)
of the tangent bundle of the sphere S2 is reducing to the subgroup O(2) ⊂
GL (2,R).

3. Any trivial bundle with the base B can be constructed as the inverse
image of the mapping of the base B into a one-point space {pt} which is the
base of a trivial bundle.

7.3 Vector bundles

The most important special class of locally trivial bundles with given structure
group is the class of bundles where the fiber is a vector space and the structure
group is a group of linear automorphisms of the vector space. Such bundles are
called vector bundles. So, for example, the tangent bundle of two-dimensional
sphere S2 is a vector bundle. One can also consider locally trivial bundles where
fiber is a infinite dimensional Banach space and the structure group is the group
of invertible bounded operators of the Banach space. In the case when the fiber
is Rn, the vector bundle ξ is said to be finite dimensional and the dimension
of the vector bundle is equal to n (dim ξ = n). When the fiber is an infinite
dimensional Banach space, the bundle is said to be infinite dimensional. Vector
bundles possess some special features.

First of all notice that each fiber p−1(x), x ∈ B has the structure of vector
space which does not depend on the choice of coordinate homeomorphism. In
other words, the operations of addition and multiplication by scalars is indepen-
dent of the choice of coordinate homeomorphism. Indeed, since the structure
group G is GL (n,R) the transition functions

ϕαβ : (Uα ∩ Uβ)×Rn−→(Uα ∩ Uβ)×Rn

are linear mappings with respect to the second factor. Hence a linear com-
bination of vectors goes to the linear combination of images with the same
coefficients.

Denote by Γ(ξ) the set of all sections of the vector bundle ξ. Then the set
Γ(ξ) becomes an (infinite dimensional) vector space. To define the structure of
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vector space on the Γ(ξ) consider two sections s1, s2:

s1, s2 : B−→E.

Put
(s1 + s2)(x) = s1(x) + s2(x), x ∈ B, (90)

(λs1)(x) = λ(s1(x)), λ ∈ R, x ∈ B. (91)

The formulas (90) and (91) define on the set Γ(ξ) the structure of vector space.
Notice that an arbitrary section s : B−→E can be described in local terms. Let
{Uα} be an atlas, ϕα : Uα × Rn−→p−1(Uα) be coordinate homeomorphisms,
ϕαβ = ϕ−1

β ϕα. Then the compositions

ϕ−1
α s : Uα−→Uα ×Rn

are sections of trivial bundles over Uα and determine vector valued functions
sα : Uα−→Rn by the formula

(ϕ−1
α )(x) = (x, sα), x ∈ Uα.

On the intersection of two charts Uα∩Uβ the functions sα(x) satisfy the following
compatibility condition

sβ(x) = ϕβα(x)(sα(x)). (92)

Conversely, if one has a family of vector valued functions sα : Uα−→Rn which
satisfy the compatibility condition (92) then the formula

s(x) = ϕα(x, sα(x))

determines the mapping s : B−→E uniquely (that is, independent of the choice
of chart Uα).

The map s is a section of the bundle ξ.

7.3.1 Operations of direct sum and tensor product

There are natural operations induced by the direct sum and tensor product of
vector spaces on the family of vector bundles over a common base B. Firstly,
consider the operation of direct sum of vector bundles. Let ξ1 and ξ2 be two vec-
tor bundles with fibers V1 and V2, respectively. Denote the transition functions
of these bundles in a common atlas of charts by ϕ1

αβ(x) and ϕ2
αβ(x). Notice

that values of the transition function ϕ1
αβ(x) lie in the group GL (V1) whereas

the values of the transition function ϕ2
αβ(x) lie in the group GL (V2). Hence

the transition functions ϕ1
αβ(x) and ϕ2

αβ(x) can be considered as matrix–values
functions of orders n1 = dim V1 and n2 = dim V2, respectively. Both of them
should satisfy the conditions (75) from the section 2.

We form a new space V = V1⊕V2. The linear transformation group GL (V )
is the group of matrices of order n = n1 + n2 which can be decomposed into
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blocks with respect to decomposition of the space V into the direct sum V1⊕V2.
Then the group GL (V ) has the subgroup GL (V1) ⊕ GL (V2) of matrices
which have the following form:

A =
∥

∥

∥

∥

A1 0
0 A2

∥

∥

∥

∥

= A1 ⊕A2, A1 = GL (V1), A2 = GL (V2).

Then we can construct new the transition functions

ϕαβ(x) = ϕ1
αβ(x)⊕ ϕ2

αβ(x) =
∥

∥

∥

∥

ϕ1
αβ(x) 0
0 ϕ2

αβ(x)

∥

∥

∥

∥

. (93)

The transition functions (93) satisfy the conditions (75) from section 2, that is,
they define a vector bundle with fiber V = V1 ⊕ V2. The bundle constructed
above is called the direct sum of vector bundles ξ1 and ξ2 and is denoted by
ξ = ξ1 ⊕ ξ2. The direct sum operation can be constructed in a geometric way.
Namely, let p1 : E1−→B be a vector bundle ξ1 and let p2 : E2−→B be a vector
bundle ξ2. Consider the Cartesian product of total spaces E1 × E2 and the
projection

p3 = p1 × p2 : E1 × E2−→B ×B.

It is clear that p is vector bundle with the fiber V = V1 ⊕ V2.
Consider the diagonal ∆ ⊂ B ×B, that is, the subset ∆ = {(x, x) : x ∈ B}.

The diagonal ∆ is canonically homeomorphic to the space B. The restriction
of the bundle p3 to ∆ ≈ B is a vector bundle over B. The total space E of this
bundle is the subspace E ⊂ E1 × E2 that consists of the vectors (y1, y2) such
that

p1(y1) = p2(y2).

It is easy to check that {Uα1 × Uα2} gives an atlas of charts for the bundle p3.
The transition functions ϕ(β1β2)(α1α2)(x, y) on the intersection of two charts

(Uα1 × Uα2) ∩ (Uβ1 × Uβ2) have the following form:

ϕ(β1β2)(α1α2)(x, y) =
∥

∥

∥

∥

ϕ1
β1α1

(x) 0
0 ϕ2

β2α2
(y)

∥

∥

∥

∥

.

Hence on the diagonal ∆ ≈ B the atlas consists of sets Uα ≈ ∆ ∩ (Uα × Uα).
Then the transition functions for the restriction of the bundle p3 on the

diagonal have the following form:

ϕ(ββ)(αα)(x, x) =
∥

∥

∥

∥

ϕ1
βα(x) 0
0 ϕ2

βα(x)

∥

∥

∥

∥

. (94)

So the transition functions (94) coincide with the transition functions defined for
the direct sum of the bundles ξ1 and ξ2. Now let us proceed to the definition of
tensor product of vector bundles. As before, let ξ1 and ξ2 be two vector bundles
with fibers V1 and V2 and let ϕ1

αβ(x) and ϕ2
αβ(x) be the transition functions of

the vector bundles ξ1 and ξ2,

ϕ1
αβ(x) ∈ GL (V1), ϕ2

αβ(x) ∈ GL (V2), x ∈ Vα ∩ Vβ .
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Let V = V1 ⊗ V2. Then form the tensor product A1 ⊗ A2 ∈ GL (V1 ⊗ V2) of
the two matrices A1 ∈ GL (V1), A2 ∈ GL (V2). Put

ϕαβ(x) = ϕ1
αβ(x)⊗ ϕ2

αβ(x).

Now we have obtained a family of the matrix value functions ϕαβ(x) which
satisfy the conditions (75) from the section 2. The corresponding vector bundle
ξ with fiber V = V1 ⊗ V2 and transition functions ϕαβ(x) will be called the
tensor product of bundles ξ1 and ξ2 and denoted by

ξ = ξ1 ⊗ ξ2.

What is common in the construction of the operations of direct sum and op-
eration of tensor product? Both operations can be described as the result of
applying the following sequence of operations to the pair of vector bundles ξ1

and ξ2:

1. Pass to the principal GL (V1)– and GL (V2)– bundles;

2. Construct the principal ( GL (V1)× GL (V2))– bundle over the Cartesian
square B ×B;

3. Restrict to the diagonal ∆, homeomorphic to the space B.

4. Finally, form a new principal bundle by means of the relevant representa-
tions of the structure group GL (V1)× GL (V2) in the groups GL (V1⊕
V2) and GL (V1 ⊗ V2), respectively.

The difference between the operations of direct sum and tensor product lies in
choice of the representation of the group GL (V1)× GL (V2).

By using different representations of the structure groups, further opera-
tions of vector bundles can be constructed, and algebraic relations holding for
representations induce corresponding algebraic relations vector bundles.

In particular, for the operations of direct sum and tensor product the fol-
lowing well known relations hold:

1. Associativity of the direct sum

(ξ1 ⊕ ξ2)⊕ ξ3 = ξ1 ⊕ (ξ2 ⊕ ξ3).

This relation is a consequence of the commutative diagram

GL (V1 ⊕ V2)× GL (V3)
↗ ρ1 ↘ ρ2

GL (V1)× GL (V2)× GL (V3) GL (V1 ⊕ V2 ⊕ V3)
↘ ρ3 ↗ ρ4

GL (V1)× GL (V2 ⊕ V3)
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where

ρ1(A1, A2, A3) = (A1 ⊕A2, A3),

ρ2(B, A3) = B ⊕A3,

ρ3(A1, A2, A3) = (A1, A2 ⊕A3),

ρ4(A1, C) = A1 ⊕ C.

Then

ρ2ρ1(A1, A2, A3) = (A1 ⊕A2)⊕A3,

ρ4ρ3(A1, A2, A3) = A1 ⊕ (A2 ⊕A3).

It is clear that
ρ2ρ1 = ρ4ρ3

since the relation

(A1 ⊕A2)⊕A3 = A1 ⊕ (A2 ⊕A3)

is true for matrices.

2. Associativity for tensor products

(ξ1 ⊗ ξ2)⊗ ξ3 = ξ1 ⊗ (ξ2 ⊗ ξ3).

This relation is a consequence of the commutative diagram

GL (V1 ⊗ V2)× GL (V3)
↗ ρ1 ↘ ρ2

GL (V1)× GL (V2)× GL (V3) GL (V1 ⊗ V2 ⊗ V3)
↘ ρ3 ↗ ρ4

GL (V1)× GL (V2 ⊗ V3)

The commutativity is implied from the relation

(A1 ⊗A2)⊗A3 = A1 ⊗ (A2 ⊗A3)

for matrices.

3. Distributivity:

(ξ1 ⊕ ξ2)⊗ ξ3 = (ξ1 ⊗ ξ3)⊕ (ξ2 ⊗ ξ3).

This property is implied by the corresponding relation

(A1 ⊕A2)⊗A3 = (A1 ⊗A3)⊕ (A2 ⊗A3).

for matrices.
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4. Denote the trivial vector bundle with the fiber Rn by n̄. The total space
of trivial bundle is homeomorphic to the Cartesian product B × Rn and
it follows that

n̄ = 1̄⊕ 1̄⊕ . . .⊕ 1̄(n times).

and
ξ ⊗ 1̄ = ξ,

ξ ⊗ n̄ = ξ ⊕ ξ ⊕ . . .⊕ ξ(n times).

7.3.2 Other operations with vector bundles

Let V = Hom (V1, V2) be the vector space of all linear mappings from the space
V1 to the space V2. For infinite dimensional Banach spaces we will assume that
all linear mappings considered are bounded. Then there is a natural represen-
tation of the group GL (V1)× GL (V2) into the group GL (V ) which to any
pair A1 ∈ GL (V1), A2 ∈ GL (V2) associates the mapping

ρ(A1, A2) : Hom (V1, V2)−→Hom (V1, V2)

by the formula
ρ(A1, A2)(f) = A2 ◦ f ◦A−1

1 . (95)

Then following the general method of constructing operations for vector bundles
one obtains for each pair of vector bundles ξ1 and ξ2 with fibers V1 and V2 and
transition functions ϕ1

αβ(x) and ϕ2
αβ(x) a new vector bundle with fiber V and

transition functions
ϕαβ(x) = ρ(ϕ1

αβ(x), ϕ2
αβ(x)) (96)

This bundle is denoted by HOM (ξ1, ξ2).
When V2 = R1, the space Hom (V1, R1) is denoted by V ∗

1 . Correspondingly,
when ξ2 = 1̄ the bundle HOM (ξ, 1̄) will be denoted by ξ∗ and called the dual
bundle. It is easy to check that the bundle ξ∗ can be constructed from ξ by
means of the representation of the group GL (V ) to itself by the formula

A−→(At)−1, A ∈ GL (V ).

There is a bilinear mapping

V × V ∗ β−→R1,

which to each pair (x, h) associates the value h(x).
Consider the representation of the group GL (V ) on the space V × V ∗

defined by matrix

A−→
∥

∥

∥

∥

A 0
0 ρ(A, 1)

∥

∥

∥

∥

(see (95)). Then the structure group GL (V × V ∗) of the bundle ξ ⊕ ξ∗ is
reduced to the subgroup GL (V ). The action of the group GL (V ) on the
V × V ∗ has the property that the mapping β is equivariant with respect to
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trivial action of the group GL (V ) on R1. This fact means that the value of
the form h on the vector x does not depend on the choice of the coordinate
system in the space V . Hence there exists a continuous mapping

β̄ : ξ ⊕ β∗−→1̄,

which coincides with β on each fiber.
Let Λk(V ) be the k-th exterior power of the vector space V . Then to each

transformation A : V−→V is associated the corresponding exterior power of the
transformation

Λk(A) : Λk(V )−→Λk(V ),

that is, the representation

Λk : GL (V )−→ GL (Λk(V )).

The corresponding operation for vector bundles will be called the operation of
the k-th exterior power and the result denoted by Λk(ξ). Similar to vector
spaces, for vector bundles one has

Λ1(ξ) = ξ,

Λk(ξ) = 0 for k > dim ξ,

Λk(ξ1 ⊕ ξ2) = ⊕k
α=0Λα(ξ1)⊗ Λk−α(ξ2), (97)

where by definition
Λ0(ξ) = 1̄.

It is convenient to write the relation (97) using the partition function. Let us
introduce the polynomial

Λt(ξ) = Λ0(ξ) + Λ1(ξ)t + Λ2(ξ)t2 + . . . + Λn(ξ)tn.

Then
Λt(ξ1 ⊕ ξ2) = Λt(ξ1)⊗ Λt(ξ2). (98)

and the formula (98) should be interpreted as follows: the degrees of the formal
variable are added and the coefficients are vector bundles formed using the
operations of tensor product and direct sum.

7.3.3 Mappings of vector bundles

Consider two vector bundles ξ1 and ξ2 where

ξi = {pi : Ei−→B, Vi is fiber}.

Consider a fiberwise continuous mapping

f : E1−→E2.

75



The map f will be called a linear map of vector bundles or homomorphism of
bundles if f is linear on each fiber. The family of all such linear mappings will
be denoted by Hom (ξ1, ξ2). Then the following relation holds:

Hom (ξ1, ξ2) = Γ(HOM (ξ1, ξ2)). (99)

By intuition, the relation (99) is evident since elements from both the left-hand
and right-hand sides are families of linear transformations from the fiber V1 to
the fiber V2, parametrized by points of the base B.

To prove the relation (99), let us express elements from both the left-hand
and right-hand sides of (99) in terms of local coordinates. Consider an atlas
{Uα} and coordinate homeomorphisms ϕ1

α, ϕ2
α for bundles ξ1, ξ2. By means of

the mapping f : E1−→E2 we construct a family of mappings:

(ϕ2
α)−1fϕ1

α : Uα × V1−→Uα × V2,

defined by the formula:

[(ϕ2
α)−1fϕ1

α](x, h) = (x, fα(x)h),

for the continuous family of linear mappings

fα(x) : V1−→V2.

On the intersection of two charts Uα ∩Uβ two functions fα(x) and fβ(x) satisfy
the following condition

ϕ2
βα(x)fα(x) = fβ(x)ϕ1

βα(x),

or
fβ(x) = ϕ2

βα(x)fα(x)ϕ1
αβ(x).

Taking into account the relations (95), (96) we have

fβ(x) = ϕβα(x)(fα(x)). (100)

In other words, the family of functions

fα(x) ∈ V = Hom (V1, V2), x ∈ Uα

satisfies the condition (100), that is, determines a section of the bundle
HOM (ξ1, ξ2). Conversely, given a section of the bundle HOM (ξ1, ξ2), that is,
a family of functions fα(x) satisfying condition (100) defines a linear mapping
from the bundle ξ1 to the bundle ξ2. In particular, if

ξ1 = 1̄, V1 = R1

then
Hom (V1, V2) = V2.
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Hence
HOM (1̄, ξ2) = ξ2.

Hence
Γ(ξ2) = Hom (1̄, ξ2),

that is, the space of all sections of vector bundle ξ2 is identified with the space
of all linear mappings from the one dimensional trivial bundle 1̄ to the bundle
ξ2.

The second example of mappings of vector bundles gives an analogue of
bilinear form on vector bundle. A bilinear form is a mapping

V × V−→R1,

which is linear with respect to each argument. Consider a continuous family
of bilinear forms parametrized by points of base. This gives us a definition of
bilinear form on vector bundle, namely, a fiberwise continuous mapping

f : ξ ⊕ ξ−→1̄ (101)

which is bilinear in each fiber and is called a bilinear form on the bundle ξ. Just
as on a linear space, a bilinear form on a vector bundle (101) induces a linear
mapping from the vector bundle ξ to its dual bundle ξ∗

f̄ : ξ−→ξ∗,

such that f decomposes into the composition

ξ ⊕ ξ
f̄⊕id−→ξ∗ ⊕ ξ

β−→1̄,

where
id : ξ−→ξ

is the identity mapping and

ξ ⊕ ξ
f̄⊕id−→ξ∗ ⊕ ξ

is the direct sum of mappings f̄ and id on each fiber. When the bilinear form
f is symmetric, positive and nondegenerate we say that f is a scalar product on
the bundle ξ.

Theorem 23 Let ξ be a finite dimensional vector bundle over a compact base
space B. Then there exists a scalar product on the bundle ξ, that is, a nonde-
generate, positive, symmetric bilinear form on the ξ.

Proof.
We must construct a fiberwise mapping (101) which is bilinear, symmetric,
positive, nondegenerate form in each fiber. This means that if x ∈ B, v1, v2 ∈
p−1(x) then the value f(v1, v2) can be identified with a real number such that

f(v1, v2) = f(v2, v1)
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and
f(v, v) > 0 for any v ∈ p−1(x), v 6= 0.

Consider the weaker condition

f(v, v) ≥ 0.

Then we obtain a nonnegative bilinear form on the bundle ξ. If f1, f2 are two
nonnegative bilinear forms on the bundle ξ then the sum f1 + f2 and a linear
combination ϕ1f1 + ϕ2f2 for any two nonnegative continuous functions ϕ1 and
ϕ2 on the base B gives a nonnegative bilinear form as well.

Let {Uα} be an atlas for the bundle ξ. The restriction ξ|Uα is a trivial bundle
and is therefore isomorphic to a Cartesian product Uα×V where V is fiber of ξ.
Therefore the bundle ξ|Uα has a nondegenerate positive definite bilinear form

fα : ξ|Uα ⊕ ξ|Uα−→1̄.

In particular, if v ∈ p−1(x), x ∈ Uα and v 6= 0 then

fα(v, v) > 0.

Consider a partition of unity {gα} subordinate to the atlas {Uα}. Then

0 ≤ gα(x) ≤ 1,
∑

α

gα(x) ≡ 1,

supp gα ⊂ Uα.

We extend the form fα by formula

f̄α(v1, v2) =
{

gα(x)fα(v1,v2) v1, v2 ∈ p−1(x) x ∈ Uα,
0 v1, v2 ∈ p−1(x) x 6∈ Uα. (102)

It is clear that the form (102) defines a continuous nonnegative form on the
bundle ξ. Put

f(v1, v2) =
∑

α

fα(v1, v2). (103)

The form (103) is then positive definite. Actually, let 0 6= v ∈ p−1(x). Then
there is an index α such that

gα(x) > 0.

This means that
x ∈ Uα and fα(v, v) > 0.

Hence
f̄α(v, v) > 0

and
f(v, v) > 0.
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Theorem 24 For any vector bundle ξ over a compact base space B with dim ξ =
n, the structure group GL (n,R) reduces to subgroup O(n).

Proof.
Let us give another geometric interpretation of the property that the bundle ξ
is locally trivial. Let Uα be a chart and let

ϕα : Uα × V−→p−1(Uα)

be a trivializing coordinate homeomorphism. Then any vector v ∈ V defines a
section of the bundle ξ over the chart Uα

σ : Uα−→p−1(Uα),
σ(x) = ϕα(x, v) ∈ p−1(Uα).

If v1, . . . , vn is a basis for the space V then corresponding sections

σα
k (x) = ϕα(x, vk)

form a system of sections such that for each point x ∈ Uα the family of vectors
σα

1 (x), . . . , σα
n(x) ∈ p−1(x) is a basis in the fiber p−1(x).

Conversely, if the system of sections

σα
1 , . . . , σα

n : Uα−→p−1(Uα)

forms basis in each fiber then we can recover a trivializing coordinate homeo-
morphism

ϕα(x,
∑

i

λivi) =
∑

i

λiσα
i (x) ∈ p−1(Uα).

From this point of view, the transition function ϕβα = ϕ−1
β ϕα has an in-

terpretation as a change of basis matrix from the basis {σα
1 (x), . . . , σα

n(x)} to
{σβ

1 (x), . . . , σβ
n(x)} in the fiber p−1(x), x ∈ Uα ∩ Uβ . Thus Theorem 24 will be

proved if we construct in each chart Uα a system of sections {σα
1 , . . . , σα

n} which
form an orthonormal basis in each fiber with respect to a inner product in the
bundle ξ. Then the transition matrices from one basis {σα

1 (x), . . . , σα
n(x)} to

another basis {σβ
1 (x), . . . , σβ

n(x)} will be orthonormal, that is, ϕβα(x) ∈ O(n).
The proof of Theorem 24 will be completed by the following lemma.

Lemma 11 Let ξ be a vector bundle, f a scalar product in the bundle ξ and
{Uα} an atlas for the bundle ξ. Then for any chart Uα there is a system of
sections {σα

1 , . . . , σα
n} orthonormal in each fiber p−1(x), x ∈ Uα.

Proof.
The proof of the lemma simply repeats the Gramm-Schmidt method of con-
struction of orthonormal basis. Let

τ1, . . . , τn : Uα−→p−1(Uα)
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be an arbitrary system of sections forming a basis in each fiber p−1(x), x ∈ Uα.
Since for any x ∈ Uα,

τ1(x) 6= 0

one has
f(τ1(x), τ1(x)) > 0.

Put

τ ′1(x) =
τ1(x)

√

f(τ1(x), τ1(x))
.

The new system of sections τ ′1, τ2, . . . , τn forms a basis in each fiber. Put

τ ′′2 (x) = τ2(x)− f(τ2(x), τ ′1(x))τ ′1(x).

The new system of sections τ ′1, τ
′′
2 , τ3(x), . . . , τn forms a basis in each fiber. The

vectors τ ′1(x) have unit length and are orthogonal to the vectors τ ′′2 (x) at each
point x ∈ Uα. Put

τ ′2(x) =
τ ′′2 (x)

√

f(τ ′′2 (x), τ ′′2 (x))
.

Again, the system of sections τ ′1, τ
′
2, τ3(x), . . . , τn forms a basis in each fiber and,

moreover, the vectors τ ′1, τ
′
2 are orthonormal.

Then we rebuild the system of sections by induction. Let the sections
τ ′1, . . . , τ

′
k,

τk+1(x), . . . , τn form a basis in each fiber and suppose that the sections τ ′1, . . . , τ
′
k

be are orthonormal in each fiber. Put

τ ′′k+1(x) = τk+1(x)−
k

∑

i=1

f(τk+1(x), τ ′i(x))τ ′i(x),

τ ′k+1(x) =
τ ′′k+1(x)

√

f(τ ′′k+1(x), τ ′′k+1(x))
.

It is easy to check that the system τ ′1, . . . , τ
′
k+1, τk+2(x), . . . , τn forms a basis in

each fiber and the sections τ ′1, . . . , τ
′
k+1 are orthonormal. The lemma is proved

by induction. Thus the proof of the Theorem 24 is finished.

7.3.4 Remarks

1. In Lemma 11 we proved a stronger statement: if {τ1, . . . , τn} is a system of
sections of the bundle ξ in the chart Uα which is a basis in each fiber p−1(x)
and if in addition vectors {τ1, . . . , τk} are orthonormal then there are sections
{τ ′k+1, . . . , τ

′
n} such that the system

{τ1, . . . , τk, τ ′k+1, . . . , τ
′
n}

is orthonormal in each fiber. In other words, if a system of orthonormal sections
can be extended to basis then it can be extended to orthonormal basis.

2. In theorems 23 and 24 the condition of compactness of the base B can
be replaced by the condition of paracompactness. In the latter case we should
first choose a locally finite atlas of charts.
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7.3.5 Linear transformations of vector bundles

Many properties of linear mappings between vector spaces can be extended to
linear mappings or homomorphisms between vector bundles. We shall consider
some of them in this section. Fix a vector bundle ξ with the base B equipped
with a scalar product. The value of the scalar product on a pair of vectors
v1, v2 ∈ p−1(x) will be denoted by 〈v1, v2〉.

Consider a homomorphism f : ξ−→ξ of the vector bundle ξ to itself. The
space of all such homomorphisms Hom (ξ, ξ) has the natural operations of sum-
mation and multiplication by continuous functions. Thus the space Hom (ξ, ξ)
is a module over the algebra C(B) of continuous functions on the base B. Fur-
ther, the operation of composition equips the space Hom (ξ, ξ) with the struc-
ture of algebra. Using a scalar product in the bundle ξ one can introduce a
norm in the algebra Hom (ξ, ξ) and hence equip it with a structure of a Banach
algebra: for each homomorphism f : ξ−→ξ put

‖f‖ = sup
v 6=0

‖f(v)‖
‖v‖

, (104)

where
‖v‖ =

√

〈v, v〉.
The space Hom (ξ, ξ) is complete with respect to the norm (104). Indeed, if a
sequence of homomorphisms fn : ξ−→ξ is a Cauchy sequence with respect to
this norm, that is,

lim
n,m−→∞

‖fn − fm‖ = 0

then for any fixed vector v ∈ p−1(x) the sequence fn(v) ∈ p−1(x) is a Cauchy
sequence as well since

‖fn(v)− fm(v)‖ ≤ ‖fn − fm‖ · ‖v‖.

Hence there exists a limit

f(v) = lim
n−→∞

fn(v).

The mapping f : ξ−→ξ is evidently linear. To show its continuity one should
consider the mappings

hn,α = ϕ−1
α fnϕα : Uα × V−→Uα × V,

which are defined by the matrix valued functions on the Uα. The coefficients
of these matrices give Cauchy sequences in the uniform norm and therefore the
limit values are continuous functions.

This means that f is continuous. The scalar product in the vector bundle ξ
defines an adjoint linear mapping f∗ by the formula

〈f∗(v1), v2〉 = 〈v1, f(v2)〉, v1, v2 ∈ p−1(x).

The proof of existence and continuity of the homomorphism f∗ is left to reader
as an exercise.
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7.4 Complex bundles

The identity homomorphism of the bundle ξ to itself will be denoted by 1.
Consider a homomorphism

I : ξ−→ξ

which satisfies the condition
I2 = −1.

The restriction
Ix = I|p−1(x)

is an automorphism of the fiber p−1(x) with the property

I2
x = −1.

Hence the transformation Ix defines a structure of a complex vector space on
p−1(x).

In particular, one has
dim V = 2n.

Let us show that in this case the structure group GL (2n,R) is reduced to the
subgroup of complex transformations GL (n,C).

First of all notice that if the system of vectors {v1, . . . , vn} has the property
that the system {v1, . . . , vn, Iv1, . . . , Ivn} is a real basis in the space V, dim V =
2n, then the system {v1, . . . , vn} is a complex basis of V . Fix a point x0. The
space p−1(x) is a complex vector space with respect to the operator Ix0 , and
hence there is a complex basis {v1, . . . , vn} ⊂ p−1(x).

Let Uα 3 x0 be a chart for the bundle ξ. There are sections {τ1, . . . , τn} in
the chart Uα such that

τk(x0) = vk, 1 ≤ k ≤ n.

Then the system of sections {τ1, . . . , τn, Iτ1, . . . , Iτn} forms a basis in the fiber
p−1(x0) and therefore forms basis in each fiber p−1(x) in sufficiently small neigh-
borhood U 3 x0. Hence the system {τ1(x), . . . , τn(x)} forms a complex basis in
each fiber p−1(x) in the neighborhood U 3 x0. This means that there is a suffi-
cient fine atlas {Uα} and a system of sections {τα

1 (x), . . . , τα
n (x)} on each chart

Uα giving a complex basis in each fiber p−1(x) in the neighborhood Uα 3 x0.
Fix a complex basis {e1, . . . , en} in the complex vector space Cn. Put

ϕα : Uα ×Cn −→ p−1(Uα),

ϕα(x,
n

∑

k=1

zkek) =
n

∑

k=1

ukτα
k (x) +

n
∑

k=1

vkIx(τα
k (x))

=
n

∑

k=1

zkτα
k (x),

zk = uk + ivk, 1 ≤ k ≤ n.

Then the transition functions ϕβα = ϕ−1
β ϕα are determined by the transi-

tion matrices from the complex basis {τα
1 (x), . . . , τα

n (x)} to the complex basis
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{τβ
1 (x), . . . , τβ

n (x)}. These matrices are complex, that is, belong to the group
GL (n,C). A vector bundle with the structure group GL (n,C) is called a
complex vector bundle.

Let ξ be a real vector bundle. In the vector bundle ξ ⊕ ξ, introduce the
structure of a complex vector bundle by means the homomorphism

I : ξ ⊕ ξ−→ξ ⊕ ξ

given by
I(v1, v2) = (−v2, v1), v1, v2 ∈ p−1(x). (105)

The complex vector bundle defined by (105) is called the complexification of the
bundle ξ and is denoted by cξ. Conversely, forgetting of the structure of complex
bundle on the complex vector bundle ξ turns it into a real vector bundle. This
operation is called the realification of a complex vector bundle ξ and is denoted
by rξ. It is clear that

rcξ = ξ ⊕ ξ.

The operations described above correspond to natural representations of groups:

c : GL (n,R)−→ GL (n,C),

r : GL (n,C)−→ GL (2n,R).

Let us clarify the structure of the bundle crξ. If ξ is a complex bundle, that is,
ξ is a real vector bundle with a homomorphism I : ξ−→ξ giving the structure of
complex bundle on it. By definition the vector bundle crξ is a new real vector
bundle η = ξ ⊕ ξ with the structure of complex vector bundle defined by a
homomorphism

I1 : ξ ⊕ ξ −→ ξ ⊕ ξ,

I1(v1, v2) = (−v2, v1). (106)

The mapping (106) defines a new complex structure in the vector bundle η which
is, in general, different from the complex structure defined by the mapping I.

Let us split the bundle η in another way:

f : ξ ⊕ ξ −→ ξ ⊕ ξ,

f(v1, v2) = (I(v1 + v2), v1 − v2).

and define in the inverse image a new homomorphism

I2(v1, v2) = (Iv1,−Iv2).

Then
fI2 = I1f (107)

because
fI2(v1, v2) = f(Iv1,−Iv2) = (v2 − v1, I(v1 + v2)), (108)
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I1f(v1, v2) = I1(I(v1 + v2), v1 − v2) = (v2 − v1, I(v1 + v2)). (109)

Comparing (109) and (108) we obtain (107). Thus the mapping f gives an
isomorphism of the bundle crξ (in the image) with the sum of two complex
vector bundles: the first is ξ and the second summand is homeomorphic to ξ
but with different complex structure defined by the mapping I ′,

I ′(v) = −I(v).

This new complex structure on the bundle ξ is denoted by ξ̄. The vector bundle
ξ̄ is called the complex conjugate of the complex bundle ξ. Note that the vector
bundles ξ and ξ̄ are isomorphic as real vector bundles, that is, the isomorphism
is compatible with respect to the large structure group GL (2n,R) but not
isomorphic with respect to the structure group GL (n,C).

Thus we have the formula

crξ = ξ ⊕ ξ̄.

The next proposition gives a description of the complex conjugate vector bundle
in term of the transition functions.

Proposition 4 Let the

ϕβα : Uαβ−→ GL (n,C)

be transition functions of a complex vector bundle ξ. Then the complex conjugate
vector bundle ξ̄ is defined by the complex conjugate matrices ϕ̄βα.

Proposition 5 A complex vector bundle ξ has the form ξ = cη if and only if
there is a real linear mapping

∗ : ξ−→ξ (110)

such that
∗2 = 1, ∗I = −I∗, (111)

where I is the multiplication by the imaginary unit.

7.5 Subbundles

Let f : ξ1−→ξ2 be a homomorphism of vector bundles with a common base B
and assume that the fiberwise mappings fx : (ξ1)x−→(ξ2)x have constant rank.
Let

p1 : E1−→B

p2 : E2−→B

be the projections of the vector bundles ξ1 and ξ2. Put

E0 = {y ∈ E1 : f(y) = 0 ∈ p−1
2 (x), x = p1(y)}

E = f(E1).
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Theorem 25 1. The mapping

p0 = p1|E0 : E0−→B

is a locally trivial bundle which admits a unique vector bundle structure ξ0

such that natural inclusion E0 ⊂ E1 is a homomorphism of vector bundles.

2. The mapping
p = p2|E : E−→B (112)

is a locally trivial bundle which admits a unique vector bundle structure ξ
such that the inclusion E ⊂ E2 and the mapping f : E1−→E are homo-
morphisms of vector bundles.

3. There exist isomorphisms

ϕ : ξ1 −→ ξ0 ⊕ ξ,

ψ : ξ2 −→ ξ ⊕ η,

such that composition

ψ ◦ f ◦ ϕ−1 : ξ0 ⊕ ξ−→ξ ⊕ η

has the matrix form

ψ ◦ f ◦ ϕ−1 =
(

0 id
0 0

)

.

The bundle ξ0 is called the kernel of the mapping f and denoted Ker f , the
bundle ξ is called the image of the mapping f and denoted Im f . So we have

dim ξ1 = dimKer f + dim Im f.

Theorem 26 Let ξ be a vector bundle over a compact base B. Then there is a
vector bundle η over B such that

ξ ⊕ η = N̄ = a trivial bundle.

Proof.
Let us use Theorem 25. It is sufficient to construct a homomorphism

f : ξ−→N̄ ,

where the rank of f equals dim ξ in each fiber. Notice that if ξ is trivial then
such an f exists. Hence for any chart Uα there is a homomorphism

fα : ξ|Uα−→N̄α, rankfα = dim ξ.

Let {ϕα} be a partition of unity subordinate to the atlas {Uα}. Then each
mapping ϕαfα can be extended by the zero trivial mapping to a mapping

gα : ξ−→N̄α, gα|Uα = ϕαfα.
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The mapping gα has the following property: if ϕα(x) 6= 0 then rankgα|x = dim ξ.
Let

g : ξ −→ ⊕αN̄α = N̄ ,

g = ⊕αgα that is

g(y) = (g1(y), . . . , gα(y), . . .).

It is clear that the rank of g at each point satisfies the relation

rankgα ≤ rankg ≤ dim ξ.

Further, for each point x ∈ B there is such an α that ϕα(x) 6= 0. Hence,

rankg ≡ dim ξ. (113)

Therefore we can apply Theorem 25. By (113) we get

Ker g = 0.

Hence the bundle ξ is isomorphic to Im g and N̄ = Im g ⊕ η.

Theorem 27 Let ξ1, ξ2 be two vector bundles over a base B and let B0 ⊂ B a
closed subspace. Let

f0 : ξ1|B0−→ξ2|B0

be a homomorphism of the restrictions of the bundles to the subspace B0. Then
the mapping f0 can be extended to a homomorphism

f : ξ1−→ξ2, f |B0 = f0.

7.6 Vector bundles related to manifolds

The most natural vector bundles arise from the theory of smooth manifolds.
Recall that by an n–dimensional manifold one means a metrizable space X such
that for each point x ∈ X there is an open neighborhood U 3 x homeomorphic
to an open subset V of n–dimensional linear space Rn. A homeomorphism

ϕ : U−→V ⊂ Rn

is called a coordinate homeomorphism. The coordinate functions on the linear
space Rn pulled back to points of the neighborhood U , that is, the compositions

xj = xj ◦ ϕ : U−→R1

are called coordinate functions on the manifold X in the neighborhood U . This
system of functions {x1, . . . , xn} defined on the neighborhood U is called a local
system of coordinates of the manifold X. The open set U equipped with the
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local system of coordinates {x1, . . . , xn} is called a chart. The system of charts
{Uα, {x1

α, . . . , xn
α}} is called an atlas if {Uα} covers the manifold X, that is,

X = ∪αUα.

So each n–dimensional manifold has an atlas. If a point x ∈ X belongs to two
charts,

x ∈ Uα ∩ Uβ ,

then in a neighborhood of x there are two local systems of coordinates. In this
case, the local coordinates xj

α can expressed as functions of values of the local
coordinates {x1

β , . . . , xn
β}, that is, there are functions fk

αβ such that

xk
α = ϕk

αβ(x1
β , . . . , xn

β). (114)

The system of functions (114) are called a change of coordinates or transition
functions from one local coordinate system to another. For brevity (114) will be
written as

xk
α = xk

α(x1
β , . . . , xn

β).

If an atlas {Uα, {x1
α, . . . , xn

α}} is taken such that all the transition functions
are differentiable functions of the class Ck, 1 ≤ k ≤ ∞ then one says X has
the structure of differentiable manifold of the class Ck. If all the transition
functions are analytic functions then one says that X has the structure of an
analytic manifold. In the case n = 2m one has







uk
α = xk

α, 1 ≤ k ≤ m,
vk

α = xm+k
α , 1 ≤ k ≤ m,

zk
α = uk

α + ivk
α, 1 ≤ k ≤ m,

(115)

and the functions

zk
α = ϕk

αβ(z1
β , . . . , zm

β ) + iϕm+k
αβ (z1

β , . . . , zm
β )

are complex analytic functions in their domain of definition then X has the
structure of a complex analytic manifold. Usually we shall consider infinitely
smooth manifolds, that is, differentiable manifolds of the class C∞.

A mapping f : X−→Y of differentiable manifolds is called differentiable of
class Ck if in any neighborhood of the point x ∈ X the functions which express
the coordinates of the image f(x) in terms of coordinates of the point x are
differentiable functions of the class Ck. It is clear that the class of differentiability
k makes sense provided that k does not exceed the differentiability classes of
the manifolds X and Y . Similarly, one can define analytic and complex analytic
mappings.
Let X be a n–dimensional manifold, {Uα, {x1

α, . . . , xn
α}} be an atlas. Fix a point

x0 ∈ X. A tangent vector ξ to the manifold X at the point x0 is a system of
numbers (ξ1

α, . . . , ξn
α) satisfying the relations:

ξk
α =

n
∑

j=1

ξj
β
∂xk

α

∂xj
β

(x0). (116)
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The numbers (ξ1
α, . . . , ξn

α) are called the coordinates or components of the vectorξ
with respect to the chart {Uα, {x1

α, . . . , xn
α}}. The formula (116) gives the trans-

formation law of the components of the tangent vector ξ under the transition
from one chart to another. In differential geometry such a law is called a ten-
sor law of transformation of components of a tensor of the valency (1, 0). So
in terms of differential geometry, a tangent vector is a tensor of the valency
(1, 0). Consider a smooth curve γ passing through a point x0, that is, a smooth
mapping of the interval

γ : (−1, 1)−→X, γ(0) = x0.

In terms of a local coordinate system {x1
α, . . . , xn

α} the curve γ is determined by
a family of smooth functions

xk
α(t) = xk

α(γ(t)), t ∈ (−1, 1).

Let
ξk
α =

∂
∂t

(xk
α(t))|t=0. (117)

Clearly the numbers (117) satisfy a tensor law (116), that is, they define a
tangent vector ξ at the point x0 to manifold X. This vector is called the tangent
vector to the curve γ and is denoted by dγ

dt (0), that is,

ξ =
dγ
dt

(0).

The family of all tangent vectors to manifold X is a denoted by TX. The set
TX is endowed with a natural topology. Namely, a neighborhood V of the
vector ξ0 at the point x0 contains all vectors η in points x such that x ∈ Uα for
some chart Uα and for some ε,

ρ(x, x0) < ε,
n

∑

k=1

(ξk
0α − ηk

α)2 < ε.

The verification that the system of the neighborhoods V forms a base of a
topology is left to the reader.

Let
π : TX−→X (118)

be the mapping which to any vector ξ associates its point x of tangency. Clearly,
the mapping π is continuous. Moreover, the mapping (118) defines a locally
trivial vector bundle with the base X, total space TX and fiber isomorphic to the
linear space Rn. If Uα is a chart on the manifold X, we define a homeomorphism

ϕα : Uα ×Rn−→π−1(Uα)
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which to the system (x0, ξ1, . . . , ξn) associates the tangent vector ξ whose com-
ponents are defined by the formula

ξk
β =

n
∑

j=1

ξj ∂xk
β

∂xj
α

(x0). (119)

It is easy to check that the definition (119) gives the components of a vector ξ,
that is, they satisfy the tensor law for the transformation of components of a
tangent vector (116). The inverse mapping is defined by the following formula:

ϕ−1
α (ξ) = (π(ξ), ξ1

α, . . . , ξn
α),

where ξk
α are components of the vector ξ. Therefore the transition functions

ϕβα = ϕ−1
β ϕα are determined by the formula

ϕβα(x0, ξ1, . . . , ξn) =

(

x0,
∑

ξj ∂x1
β

∂xj
α

(x0), . . . ,
∑

ξj ∂xn
β

∂xj
α

(x0)

)

. (120)

Formula (120) shows that the transition functions are fiberwise linear mappings.
Hence the mapping π defines a vector bundle. The vector bundle π : TX−→X
is called the tangent bundle of the manifold X. The fiber TxX is called the
tangent space at the point x to manifold X.

The terminology described above is justified by the following. Let f :
X−→RN be an inclusion of the manifold X in the Euclidean space RN . In
a local coordinate system (x1

α, . . . , xn
α) in a neighborhood of the point x0∈X , the

inclusion f is determined as a vector valued function of the variables (x1
α, . . . , xn

α)
:

f(x) = f(x1
α, . . . , xn

α). (121)

If we expand the function (121) by a Taylor expansion at the point x0 =
(x1

0α, . . . , xn
0α) :

f(x1
α, . . . , xn

α) = f(x1
0α, . . . , xn

0α)+

+
n

∑

j=1

∂f

∂xj
α

(x1
0α, . . . , xn

0α)∆xj
α + o(∆xk

α).

Ignoring the remainder term o(∆xk
α) we obtain a function g which is close to f

:

g(x1
α, . . . , xn

α) = f(x1
0α, . . . , xn

0α)+

+
n

∑

j=1

∂f

∂xj
α

(x1
0α, . . . , xn

0α)∆xj
α.

Then if the vectors
{

∂f

∂xj
α

(x1
0α, . . . , xn

0α)∆xj
α

}

, 1 ≤ k ≤ n
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are linearly independent the function g defines a linear n–dimensional subspace
in Rn. It is natural to call this space the tangent space to the manifold X.
Any vector ξ which lies in the tangent space to manifold X (having the initial
point at x0) can be uniquely decomposed into a linear combination of the basis
vectors:

ξ =
n

∑

j=1

∂f

∂xj
α

ξj
α. (122)

The coordinate s {ξk
α} under a change of coordinate system change with respect

to the law (116), that is, with respect to the tensor law. Thus the abstract
definition of tangent vector as a system of components {ξk

α} determines by the
formula (122) a tangent vector to the submanifold X in RN . Let

f : X−→Y

be a differentiable mapping of manifolds. Let us construct the corresponding
homomorphism of tangent bundles,

Df : TX−→TY.

Let ξ ∈ TX be a tangent vector at the point x0 and let γ be a smooth curve
which goes through the point x0,

γ(0) = x0,

and which has tangent vector ξ, that is,

ξ =
dγ
dt

(0).

Then the curve f(γ(t)) in the manifold Y goes through the point y0 = f(x0).
Put

Df(ξ) =
d(f(γ))

dt
(0). (123)

This formula (123) defines a mapping of tangent spaces. It remains to prove that
this mapping is fiberwise linear. For this, it is sufficient to describe the mapping
Df in terms of coordinates of the spaces Tx0X and Ty0Y . Let {x1

α, . . . , xn
α} and

{y1
β , . . . , ym

β } be local systems of coordinates in neighborhoods of points the x0

and y0, respectively . Then the mapping f is defined as a family of functions

yj
β = yj

β(x1
α, . . . , xn

α).

If
xk

α = xk
α(t)

are the functions defining the curve γ(t) then

ξk
α =

dxk
α

dt
(0).
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Hence the curve f(γ(t)) is defined by the functions

yj
β = yj

β(x1
α(t), . . . , xn

α(t))

and the vector Df(ξ) is defined by the components

ηj =
dyj

β

dt
(0) =

n
∑

k=1

∂yj
β

∂xk
α

(x0)
dxk

α

dt
(0) =

n
∑

k=1

∂yj
β

∂xk
α

(x0)ξk. (124)

Formula (124) shows firstly that the mapping Df is well- defined since the
definition does not depend on the choice of curve γ but only on the tangent
vector at the point x0. Secondly, the mapping Df is fiberwise linear. The
mapping Df is called the differential of the mapping f .

7.6.1 Examples

1. Let us show that the definition of differential Df of the mapping f is a gen-
eralization of the notion of the classical differential of function. A differentiable
function of one variable may be considered as a mapping of the space R1 into
itself:

f : R1−→R1.

The tangent bundle of the manifold R1 is isomorphic to the Cartesian product
R1 ×R1 = R2. Hence the differential

Df : R1 ×R1−→R1 ×R1

in the coordinates (x, ξ) is defined by the formula

Df(x, ξ) = (x, f ′(x)ξ).

The classical differential has the form

df = f ′(x)dx.

So
Df(x, dx) = (x, df).

Consider a smooth manifold Y and a submanifold X ⊂ Y . The inclusion

j : X ⊂ Y

is a smooth mapping of manifolds such that the differential

Dj : TX−→TY
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is a fiberwise monomorphism. Then over the manifold X there are two vector
bundles: the first is j∗(TY ), the restriction of the tangent bundle of the manifold
Y to the submanifold X, the second is its subbundle TX.

According to Theorem 25, the bundle j∗(TY ) splits into a direct sum of two
summands:

j∗(TY ) = TX ⊕ η.

The complement η is called the normal bundle to the submanifold X of the
manifold Y 1. Each fiber of the bundle η over the point x0 consists of those
tangent vectors to the manifold Y which are orthogonal to the tangent space
Tx0(X). The normal bundle will be denoted by ν(X ⊂ Y ) or more briefly by
ν(X).

It is clear that the notion of a normal bundle can be defined not only for
submanifolds but for any immersion j : X−→Y of the manifold X into the
manifold Y . It is known that any compact manifold X has an inclusion in a
Euclidean space RN for some sufficiently large number N . Let j : X−→RN be
such an inclusion. Then

j∗(TRN ) = TX ⊕ ν(X ⊂ RN ).

The bundle TRN is trivial and so

TX ⊕ ν(X) = N̄ . (125)

In this case the bundle ν(X) is called the normal bundle for manifold X (irre-
spective of the inclusion). Note, the normal bundle ν(X) of the manifold X is
not uniquely defined. It depends on inclusion into the space RN and on the
dimension N . But the equation (125) shows that the bundle is not very far from
being unique.

Let ν1(X) be another such normal bundle, that is,

TX ⊕ ν1(X) = N̄1.

Then
ν(X)⊕ T (X)⊕ ν1(X) = ν(X)⊕ N̄1 = N̄ ⊕ ν1(X).

The last relation means that bundles ν(X) and ν1(X) became isomorphic after
the addition of trivial summands.

2. Let us study the tangent bundle of the one dimensional manifold S1,
the circle. Define two charts on the S1:

U1 = {−π < ϕ < π},
U2 = {0 < ϕ < 2π},

where ϕ is angular parameter in the polar system of coordinates on the plane.
On the U1 take the function

x1 = ϕ, −π < x1 < π,
1By construction the bundle η depends on the choice of metric on TY . However, different

metrics yield isomorphic complementary summands
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as coordinate, whereas on the U2 take the function

x2 = ϕ, 0 < x2 < 2π.

The intersection U1 ∩ U2 consists of the two connected components

V1 = {0 < ϕ < π},

V2 = {π < ϕ < 2π}.

Then the transition function has the form

x1 = x1(x2) =
{

x2, 0 < x2 < π,
x2 − 2π, π < x2 < 2π.

Then by (120), the transition function ϕ12 for the tangent bundle has the form

ϕ12(x, ξ) = ξ
∂x1

∂x2
= ξ.

This means that the transition function is the identity. Hence the tangent
bundle TS1 is isomorphic to Cartesian product

TS1 = S1 ×R1,

in other words, it is the trivial one dimensional bundle.
3. Consider the two-dimensional sphere S2. It is convenient to consider it

as the extended complex plane

S2 = C1 ∪ {∞}.

We define two charts on the S2

U1 = C1

U2 = (C1\{0}) ∪ {∞}.

Define the complex coordinate z1 = z on the chart U1 and z2 = 1
z on the chart

U2 extended by zero at the infinity ∞. Then the transition function on the
intersection U1 ∩ U2 has the form

z1 ≡
1
z2

and the tangent bundle has the corresponding transition function of the form

ϕ12(z, ξ) = ξ
∂z1

∂z2
= −ξ

1
z2
2

= −ξz2.

The real form of the matrix ϕ12 is given by

ϕ12(x, y) =
∥

∥

∥

∥

−<z2 −=z2
=x2 −<z2

∥

∥

∥

∥

=
∥

∥

∥

∥

y2 − x2 −2xy
2xy y2 − x2

∥

∥

∥

∥

,
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where z = x + iy. In polar coordinates z = ρeiα this becomes

ϕ12(ρ, α) = ρ2
∥

∥

∥

∥

cos 2α − sin 2α
sin 2α cos 2α

∥

∥

∥

∥

.

Let us show that the tangent bundle TS2 is not isomorphic to a trivial bundle.
If the bundle TS2 were trivial then there would be matrix valued functions

h1 : U1 −→ GL (2,R)

h2 : U2 −→ GL (2,R), (126)

such that
ϕ12(ρ, α) = h1(ρ, α)h−1

2 (ρ, α).

The charts U1, U2 are contractible and so the functions h1, h2 are homotopic
to constant mappings.

Hence the transition function ϕ12(ρ, α) must be homotopic to a constant
function. On the other hand, for fixed ρ the function ϕ12 defines a mapping of
the circle S1 with the parameter α into the group SO(2) = S1 and this mapping
has the degree 2. Therefore this mapping cannot be homotopic to a constant
mapping.

4. Consider a vector bundle p : E−→X where the base X is a smooth
manifold. Assume that the transition functions

ϕαβ : Uα ∩ Uβ−→ GL (n,R)

are smooth mappings. Then the total space E is a smooth manifold and also

dim E = dim X + n.

For if {Uα} is an atlas of charts for the manifold X then an atlas of the manifold
E can be defined by

Vα = p−1(Uα) = Uα ×Rn.

The local coordinates on Vα can be defined as the family of local coordinates on
the chart Uα with Cartesian coordinates on the fiber. The smoothness of the
functions ϕαβ implies smoothness of the change of coordinates.

There is the natural question whether for any vector bundle over smooth
manifold X there exists an atlas on the total space with smooth the transition
functions ϕαβ . The answer lies in the following theorem.

Theorem 28 Let p : E−→X be an n–dimensional vector bundle and X a com-
pact smooth manifold. Then there exists an atlas {Uα} on X and coordinate
homeomorphisms

ϕα : Uα ×Rn−→p−1(Uα)

such that the transition functions

ϕαβ : Uα ∩ Uβ−→ GL (n,R)

are smooth.
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5. Let us describe the structure of the tangent and normal bundles of a
smooth manifold.

Theorem 29 Let j : X ⊂ Y be a smooth submanifold X of a manifold Y . Then
there exists a neighborhood V ⊃ X which is diffeomorphic to the total space of
the normal bundle ν(X ⊂ Y ).

Proof.
Fix a Riemannian metric on the manifold Y (which exists by Theorem 23 and
Remark 2 from the section 3). We construct a mapping

f : ν(X)−→Y.

Consider a normal vector ξ ∈ ν(X) at the point x ∈ X ⊂ Y . Notice that the
vector ξ is orthogonal to the subspace Tx(X) ⊂ Tx(Y ). Let γ(t) be the geodesic
curve such that

γ(0) = x,
dγ
dt

(0) = ξ.

Put f(ξ) = γ(1). The mapping f has nondegenerate Jacobian for each point of
the zero section of the bundle ν(X). Indeed, notice that

1. if ξ = 0, ξ ∈ Tx(Y ) then f(ξ) = x,

2. f(λξ) = γ(λ).

Therefore the Jacobian matrix of the mapping f at a point of the zero section
of ν(X) that maps the tangent spaces

Df : Tx(ν(X)) = Tx(X)⊕ νx(X)−→Tx(Y ) = Tx(X)⊕ νx(X)

is the identity. By the implicit function theorem there is a neighborhood V of
zero section o f the bundle ν(X) which is mapped by F diffeomorphically onto
a neighborhood f(V ) of the submanifold X. Since there is a sufficiently small
neighborhood V which is diffeomorphic to the total space of the bundle ν(X)
the proof of theorem is finished.

6. There is a simple criterion describing when a smooth mapping of
manifolds gives a locally trivial bundle.

Theorem 30 Let
f : X−→Y

be a smooth mapping of compact manifolds such that the differential Df is
epimorphism at each point x ∈ X. Then f is a locally trivial bundle with the
fiber a smooth manifold.

Proof.
Without loss of generality one can consider a chart U ⊂ Y diffeomorphic to
Rn and part of the manifold X, namely, f−1(U). Then the mapping f gives a
vector valued function

f : X−→Rn.
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Assume firstly that n = 1. From the condition of the theorem we know that
the gradient of the function f never vanishes. Consider the vector field gradf
(with respect to some Riemannian metric on X). The integral curves γ(x0, t)
are orthogonal to each hypersurface of the level of the function f . Choose a new
Riemannian metric such that gradf is a unit vector field. Indeed, consider the
new metric

(ξ, η)1 = (ξ, η)(gradf,gradf).

Then

(gradf, ξ) = ξ(f) = (grad1f, ξ)1 = (grad1f, ξ)(grad1f,grad1f).

Hence
grad1f =

gradf
(gradf,gradf)

.

Then

(grad1f,grad1f)1 = (grad1f,grad1f)(gradf,gradf) =

=
(gradf,gradf)
(gradf,gradf)2

(gradf,gradf) = 1.

Thus the integral curves

d
dt

f(γ(t)) = (gradf,gradf) ≡ 1.

Hence the function f(γ(t)) is linear. This means that if

f(x0) = f(x1),

then
f(γ(x0, t)) = f(γ(x1, t)) = f(x0) + t.

Put
g : Z ×R1−→X, g(x, t) = γ(x, t).

The mapping g is a fiberwise smooth homeomorphism. Hence the mapping

f : −→R1

gives a locally trivial bundle. Further, the proof will follow by induction with
respect to n. Consider a vector valued function

f(x) = {f1(x), . . . , fn(x)}

which satisfies the condition of the theorem. Choose a Riemannian metric on
the manifold X such that gradients

gradf1, . . . ,gradfn

96



are orthonormal. Such a metric exists. Indeed, consider firstly an arbitrary
metric. The using the linear independence of the differentials {dfi} we know
that the gradients are also independent. Hence the matrix

aij = 〈gradfi(x), gradfj(x)〉

is nondegenerate in each point. Let ‖bij(x)‖ be the matrix inverse to the matrix
‖aij(x)‖, that is,

∑

α

biα(x)ajα(x) ≡ δij .

Put
ξk =

∑

i

bkj(x)gradfi(x).

Then

ξk(fj) =
∑

i

bki(x)gradfi(fj) =

=
∑

i

bki(x)〈gradfi, gradgj〉 =
∑

i

bki(x)aij(x) ≡ δkj .

Let Uα be a sufficiently small neighborhood of a point of the manifold X.
The system of vector fields {ξ1, . . . , ξn} can be supplemented by vector fields
ηn+1, . . . , ηN to form a basis such that

ηk(fi) ≡ 0.

Consider the new metric in the chart Uα given by

〈ξi, ξj〉α ≡ δij ,

〈ξk, ηj〉α ≡ 0.

Let ϕα be a partition of unity subordinate to the covering {Uα} and put

〈ξ, η〉0 =
∑

α

ϕα(x)〈ξ, η〉α.

Then

〈ξi, ξj〉0 ≡ δij ,

〈ξk, η〉0 ≡ 0

for any vector η for which η(fi) = 0.Let grad0fi be the gradients of the functions
fi with respect to the metric 〈ξ, η〉0. This means that

〈gradfi, ξ〉0 = ξ(fi)

for any vector ξ. In particular one has

〈gradfi, ξj〉0 ≡ δij ,

〈gradfk, η〉0 ≡ 0
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for any vector η for which η(fi) = 0. Similar relations hold for the vector field
ξi. Therefore

ξi = gradfi,

that is,
〈gradfi, gradfj〉δij ,

the latter proves the existence of metric with the necessarily properties.
Let us pass now to the proof of the theorem. Consider the vector function

g(x) = {f1(x), . . . , fn−1(x)}.

This function satisfies the conditions of the theorem and the inductive assump-
tion. It follows that the manifold X is diffeomorphic to the Cartesian product
X = Z ×Rn−1 and the functions fi are the coordinate functions for the second
factor. Then gradfn is tangent to the first factor Z and hence the function
fn(x, t) does not depend on t ∈ Rn−1. Therefore one can apply the first step of
the induction to the manifold Z, that is,

Z = Z1 ×R1.

Thus
X = Z1 ×Rn.

7.7 Linear groups and related bundles

This section consists of examples of vector bundles which arise naturally in
connection with linear groups and their homogeneous spaces.

7.7.1 The Hopf bundle

The set of all one dimensional subspaces or lines of Rn+1 is called the real (n
dimensional) projective space and denoted by RPn. It has a natural topology
given by the metric which measures the smaller angle between two lines. The
projective space RPn has the structure of smooth (and even real analytical)
manifold. To construct the smooth manifold structure on RPn one should first
notice that each line l in Rn+1 is uniquely determined by any nonzero vector
x belonging to the line. Let {x0, . . . , xn} be the Cartesian coordinates of such
a vector x, not all vanishing. Then the line l is defined by the coordinates
{x0, . . . , xn} and any {λx0, . . . , λxn}, λ 6= 0. Thus the point of RPn is given
by a class [x0 : x1 : . . . : xn] of coordinates {x0, . . . , xn} (not all vanishing)
determined up to multiplication by a nonzero real number λ. The class [x0 :
x1 : . . . : xn] gives the projective coordinates of the point of RPn. We define
an atlas {Uk}n

k=0 on RPn as follows. Put

Uk = {[x0 : x1 : . . . : xn] : xk 6= 0},
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and define coordinates on Uk by the following functions:

yα
k =

xα

xk
, 0 ≤ α ≤ n, α 6= k.

where in the numbering of the coordinates by index α there is a gap when α = k.
The change of variables on the intersection Uk ∩ Uj , (k 6= j) of two charts has
the following form:

yα
k =







yα
j

yk
j

when α 6= j,
1

yk
j

when α = j.
(127)

The formula (127) is well defined because k 6= j and on Uk ∩ Uj

yk
j =

xk

xj
6= 0.

All the functions in (127) are smooth functions making RPn into a smooth
manifold of dimension n.

Consider now the space E in which points have the form (l, x), where l is a
one dimensional subspace of Rn+1 and x is a point on l. The space E differs
from the space Rn+1 in that instead of zero vector of Rn+1 in the space E there
are many points of the type (l, 0). The mapping

p : E−→RPn, (128)

which associates with each pair (l, x) its the first component, gives a locally
trivial vector bundle. Indeed, the space E can be represented as a subset of the
Cartesian product RPn×Rn+1 defined by the following system of equations in
each local coordinate system:

rank
∥

∥

∥

∥

x0 x1 . . . xn

y0 y1 . . . yn

∥

∥

∥

∥

= 1,

where (x0, x1, . . . , xn) are projective coordinates of a point of RPn, and (y0, y1,
. . . , yn) are coordinates of the point of Rn+1. For example, in the case when
U0 = {x0 6= 0} we put x0 = 1. Then

rank
∥

∥

∥

∥

1 x1 . . . xn

y0 y1 . . . yn

∥

∥

∥

∥

= 1,

that is,














det
∥

∥

∥

∥

1 xk

y0 yk

∥

∥

∥

∥

= 0,

det
∥

∥

∥

∥

xk xj

yk yj

∥

∥

∥

∥

= 0,

Hence the set E is defined in the RPn × Rn+1 by the following system of n
equations:

fk(x1, . . . , xn, y0, . . . , yn) = yk − xky0 = 0, k = 1, . . . , n.
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The Jacobian matrix of the functions fk is
∥

∥

∥

∥

∥

∥

∥

−y0 0 . . . 0 −x1 1 0 . . . 0
0 −y0 . . . 0 −x2 0 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . −y0 −xn 0 0 . . . 1

∥

∥

∥

∥

∥

∥

∥

(129)

Clearly the rank of this matrix (129) is maximal. By the implicit function
theorem the space E is a submanifold of dimension n + 1. As coordinates one
can take (y0, x1, . . . , xn). The projection (128) consists of forgetting the first
coordinate y0. So the inverse image p−1(U0) is homeomorphic to the Cartesian
product U0 ×R1. Changing to another chart Uk, one takes another coordinate
yk as the coordinate in the fiber which depends linearly on y0. Thus the mapping
(128) gives a one dimensional vector bundle.

7.7.2 The complex Hopf bundle

This bundle is constructed similarly to the previous example as a one dimen-
sional complex vector bundle over the base CPn. In the both cases, real
and complex, the corresponding principal bundles with the structure groups
O(1) = Z2 and U(1) = S1 can be identified with subbundles of the Hopf bun-
dle. The point is that the structure group O(1) can be included in the fiber
R1, O(1) = {−1, 1} ⊂ R1, in a such way that the linear action of O(1) on R1

coincides on the subset {−1, 1} with the left multiplication. Similarly, the group
U(1) = S1 can be included in C1:

S1 = {z : |z| = 1} ⊂ C1,

such that linear action of U(1) on C1 coincides on S1 with left multiplication.
Hence the Hopf bundle has the principal subbundle consisting of vectors of unit
length. Let

p : ES−→RPn

be principal bundle associated with the Hopf vector bundle. The points of the
total space ES are pairs (l, x), where l is a line in Rn+1 and x ∈ l, |x| = 1. Since
x 6= 0, the pair (l, x) is uniquely determined by the vector x. Hence the total
space ES is homeomorphic to the sphere Sn of unit radius a nd the principal
bundle

p : Sn−→RPn

is the two-sheeted covering. In the case of the complex Hopf bundle, the asso-
ciated principal bundle

p : ES−→CPn

is
ES = S2n+1

and the fiber is a circle S1.
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Both these two principal bundles are also called Hopf bundles. When n = 1,
we have S3−→P1, that is, the classical Hopf bundle

S3−→S2. (130)

In this last case it is useful to describe the transition functions for the intersec-
tion of charts. Let us consider the sphere S3 as defined by the equation

|z0|2 + |z1|2 = 1,

in the two dimensional complex vector space C2. The map (130) associates the
point (z0, z1) to the point in the CP1 with the projective coordinates [z0 : z1].
So over the base CP1 we have the atlas consisting of two charts:

U0 = {[z0, z1] : z0 6= 0},
U1 = {[z0, z1] : z1 6= 0},

The points of the chart U0 are parametrized by the complex parameter

w0 =
z1

z0
∈ C1

whereas points of the chart U1 are parametrized by the complex parameter

w1 =
z0

z1
∈ C1.

The homeomorphisms

ϕ0 : p−1(U0) −→ S1 ×C1 = S1 × U0,

ϕ1 : p−1(U1) −→ S1 ×C1 = S1 × U1,

have the form

ϕ0(z0, z1) =
(

z0

|z0|
,
z1

z0

)

=
(

z0

|z0|
, [z0 : z1]

)

,

ϕ1(z0, z1) =
(

z1

|z1|
,
z0

z1

)

=
(

z1

|z1|
, [z0 : z1]

)

.

The mappings ϕ0 and ϕ1 clearly are invertible:

ϕ−1
0 (λ,w0) =

(

λ
√

1 + |w0|2
,

λw0
√

1 + |w0|2

)

,

ϕ−1
1 (λ,w1) =

(

λ
√

1 + |w1|2
,

λw1
√

1 + |w1|2

)

.

Hence the transition function

ϕ01 : S1 × (U0 ∩ U1)−→S1 × (U0 ∩ U1)
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is defined by the formula:

ϕ01(λ, [z0:z1 ]) =
(

z1|z0|
z0|z1|

, [z0 : z1],
)

,

that is, multiplication by the number

z1|z0|
z0|z1|

=
w1

|w1|
.

7.7.3 The tangent bundle of the Hopf bundle

Let ξ be the complex Hopf bundle over CPn and let TCPn be the tangent
bundle. Then

TCPn ⊕ 1 = ξ∗ ⊕ ξ∗ ⊕ . . .⊕ ξ∗ = (n + 1)ξ∗. (131)

When n = 1 this gives
TCP1 ⊕ 1 = ξ∗ ⊕ ξ∗.

Indeed, using the coordinate transition function

w2 =
1
w1

,

the transition function for the tangent bundle TCP1 has the following form:

ψ01(w1) = − 1
w2

1
= − w̄2

1

|w1|4
. (132)

On the other hand, the transition function for the Hopf bundle is

ϕ01(w1) =
w1

|w1|
. (133)

Using homotopies the formulas (132) and (133) can be simplified to

ψ01(w1) = w̄2
1,

ϕ01(w1) = w1.

This shows that the matrix functions
∥

∥

∥

∥

w̄2
1 0

0 1

∥

∥

∥

∥

and
∥

∥

∥

∥

w̄1 0
0 w̄1

∥

∥

∥

∥

are homotopic in the class of invertible matrices when w1 6= 0, w1 ∈ C1. In
general, let us consider the manifold CPn as the quotient space of the unit
sphere S2n+1 in Cn+1 by the action of the group S1 ⊂ C1 of complex numbers
with unit norm. The total space of the tangent bundle TCPn is the quotient
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space of the family of all tangent vectors of the sphere which are orthogonal to
the orbits of the action of the group S1. In other words, one has

TCPn =
{(u, v) : u, v ∈ Cn+1, |u| = 1, 〈u, v〉 = 0}

{(λu, λv) ∼ (u, v), λ ∈ S1}
,

where 〈u, v〉 is the Hermitian inner product in Cn+1 Consider the quotient space

A =
{(ū, s) : u ∈ Cn+1, |ū| = 1, s ∈ C1}

{(λū, λs) ∼ (ū, s), λ ∈ S1}
.

Associate to each pair (ū, s) ∈ A the line l which passes through vector ū ∈
Cn+1 and the vector sū ∈ l. If (λū, λs) is an equivalent pair (which passes
through vector λū) then it corresponds the same line l and the same vector
sū = (λs)(λu). This means that the space A is homeomorphic to the total
space of vector bundle ξ∗. Hence the total space of the vector bundle (n + 1)ξ∗

is homeomorphic to the space

B =
{(u, s) : u, v ∈ Cn+1, |u| = 1, }
{(λu, λv) ∼ (u, v), λ ∈ S1}

.

The space TCPn = is clearly a subspace of B. A complementary subbundle
can be defined as a quotient space

D =
{(u, v) : u, v ∈ Cn+1, |u| = 1, v = su, s ∈ C1}

{(λu, λv) ∼ (u, v), λ ∈ S1}
.

The latter is homeomorphic to the space

D =
{(u, s) : u ∈ Cn+1, |u| = 1, s ∈ C1}

{λu ∼ u, λ ∈ S1}
,

which is homeomorphic to the Cartesian product TCPn × C1. Thus one has
the isomorphism (131).

7.7.4 Bundles of classical manifolds

Denote by Vn,k the space where the points are orthonormal sets of k vectors
of n–dimensional euclidean space (Rn or Cn). If we need we will write VR

n,k

or VC
n,k. Correspondingly, let us denote by Gn,k the space in which points

are k–dimensional subspaces of n–dimensional euclidean space (Rn or Cn). By
expanding a k–frame to a basis in Cn we obtain

VC
n,k = U(n)/U(n− k),

where U(n− k) ⊂ U(n) is a natural inclusion of unitary matrices:

An−k−→
∥

∥

∥

∥

1k 0
0 An−k

∥

∥

∥

∥

.
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Similarly, the space Gn,k is homeomorphic to the homogeneous space

U(n)/ (U(k)⊕U(n− k)) ,

where U(k)⊕U(n− k) ⊂ U(n) is natural inclusion

(Ak, Bn−k)−→
∥

∥

∥

∥

Ak 0
0 Bn−k

∥

∥

∥

∥

.

Generally speaking, if G is a Lie group, and H ⊂ G is a subgroup then the
projection

p : G−→G/H

is a locally trivial bundle (a principal H–bundle) since the rank of Jacobian
matrix is maximal and consequently constant. Hence the following mappings
give locally trivial bundles

Vn,k
Vn−k1,k−k1−→ Vn,k1 ,

VC
n,k

U(k)−→GC
n,k.

(The fibers are shown over the arrows.) In particular,

VR
n,n = O(n),

VC
n,n = U(n),

VR
n,1 = Sn−1,

VC
n,1 = S2n−1.

Hence we have the following locally trivial bundles

U(n)
U(n−1)−→ S2n−1,

O(n)
O(n−1)−→ Sn−1,

All the mappings above are defined by forgetting some of the vectors from the
frame. The manifolds Vn,k are called the Stieffel manifolds, and the Gn,k called
Grassmann manifolds.

7.8 Classifying theorems

7.8.1 Exact homotopy sequence

7.8.2 Constructions of classifying spaces

8 Elliptic operators on manifolds

8.1 Calculus of operators on manifolds

We describe some of the most fruitful applications of vector bundles, namely, in
elliptic operator theory. We study some of the geometrical constructions which
appear naturally in the analysis of differential and pseudodifferential operators
on smooth manifolds.
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8.1.1 Symbols of pseudodifferential operators

Consider a linear differential operator A which acts on the space of smooth
functions of n real variables:

A : C∞(Rn)−→C∞(Rn).

The operator A is a finite linear combination of partial derivatives

A =
∑

α

aα(x)
∂|α|

∂xα , (134)

where the α = (α1, . . . , αn) is multi-index, aα(x) are smooth functions and

∂|α|

∂xα =
∂|α|

(∂x1)α1(∂x2)α2 . . . (∂xn)αn
,

|α| = α1 + . . . + αn

is the operator given by the partial derivatives.
The maximal value of |α| is called the order of the differential operatordifferential

operator, so the formula (134) can be written

A =
∑

|α|≤m

aα(x)
∂|α|

∂xα ,

Let us introduce a new set of variables ξ = (ξ1, ξ2, . . . , ξn). Put

a(x, ξ) =
∑

|α|≤m

aα(x)ξαi|α|,

where ξα = ξα1
1 ξα2

2 · · · ξαn
n . The function a(x, ξ) is called the symbol of a dif-

ferential operatorA. The operator A can be reconstructed from its symbol by
substitution of the operators 1

i
∂

∂xk for the variables ξk, that is,

A = a
(

x,
1
i

∂
∂x

)

.

Since the symbol is polynomial with respect to variables ξ, it can be split into
homogeneous summands

a(x, ξ) = am(x, ξ) + am−1(x, ξ) + . . . + a0(x.ξ).

The highest term am(x, x) is called the principal symbol of the operator A while
whole symbol sometimes is called the full symbol. The reason for singling out
the principal symbol is as follows:
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Proposition 6 Let

yk = yk (

x1, . . . , xn)

( or y = y(x))

be a smooth change of variables. Then in the new coordinate system the operator
B defined by the formula

(Bu)(y) = (Au (y(x)))x=x(y)

is again a differential operator of order m for which the principal symbol is

bm(y, η) = am

(

x(y), η
∂y(x(y))

∂x

)

. (135)

The formula (135) shows that variables ξ change as a tensor of valency (0, 1),
that is, as components of a cotangent vector.

The concept of a differential operator exists on an arbitrary smooth manifold
M . The concept of a whole symbol is not well defined but the principal symbol
can be defined as a function on the total space of the cotangent bundle T ∗M . It
is clear that the differential operator A does not depend on the principal symbol
alone but only up to the addition of an operator of smaller order.

The notion of a differential operator can be generalized in various directions.
First of all notice that if

Fx−→ξ(u)(ξ) =
1

(2π)n/2

∫

Rn

e−i(x,ξ)u(x)dx

and
Fξ−→x(v)(x) =

1
(2π)n/2

∫

Rn

ei(x,ξ)v(ξ)dξ

are the direct and inverse Fourier transformations then

(Au) (x) = Fξ−→x (a(x, ξ) (Fx−→ξ(u)(ξ))) (136)

Hence we can enlarge the family of symbols to include some functions which
are not polynomials. Namely, suppose a function a defined on the cotangent
bundle T ∗M satisfies the condition

∣

∣

∣

∣

∂|α|

∂ξα

∂|β|

∂xβ a(x, ξ)
∣

∣

∣

∣

≤ Cα,β(1 + |ξ|)m−|α| (137)

for some constants Cα,β . Denote by S the Schwartz space of functions on Rn

which satisfy the condition
∣

∣

∣

∣

xβ ∂|α|

∂xα u(x)
∣

∣

∣

∣

≤ Cα,β

for any multiindexes α and β. Then the operator A defined by formula (136) is
called a pseudodifferential operator of order m (more exactly, not greater than
m). The pseudodifferential operator A acts in the Schwartz space S.
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This definition of a pseudodifferential operator can be extended to the Schwartz
space of functions on an arbitrary compact manifold M . Let {Uα} be an atlas
of charts with a local coordinate system xα =

(

x1
α, . . . , xn

α

)

. Without loss of
generality we can assume that the local coordinate system xα maps the chart
Uα onto the space Rn. Let ξα = (ξ1α, . . . , ξnα) be the corresponding compo-
nents of a cotangent vector. Let {ϕα} be a partition of unity subordinate to the
atlas of charts, that is,

0 ≤ ϕα(x) ≤ 1,
∑

α

ϕα(x) ≡ 1, supp ϕα ⊂ Uα.

Finally, let ψα(x) be functions such that

supp ψα ⊂ Uα, ϕα(x)ψα(x) ≡ ϕα(x).

Then we can define an operator A by the formula

A(u)(x) =
∑

α

ψα(x)Aα (ϕα(x)u(x)) , (138)

where Aα is a pseudodifferential operator on the chart Uα (which is diffeomor-
phic to Rn) with principal symbol

aα(xα, ξα) = a(x, ξ).

When the function a(x, ξ) is polynomial (of order m) the operator A de-
fined by formula (138) is a differential operator not depending on the choice of
functions ψα. In general, the operator A depends on the choice of functions
ψα, ϕα and the local coordinate system xα, uniquely up to the addition of a
pseudodifferential operator of order strictly less than m.

The next useful generalization consists of a change from functions on the
manifold M to smooth sections of vector bundles. Let ξ1 and ξ2 be two vector
bundles over the manifold M . Consider a linear mapping

a : π∗(ξ1)−→π∗ξ2, (139)

where π : T ∗M−→M is the natural projection. Then in any local coordinate
system (xα, ξα) the mapping (139) defines a matrix valued function which we
require to satisfy the condition (137). Then the mapping (139) defines a pseu-
dodifferential operator

A = a(D) : Γ∞(ξ1)−→Γ∞(ξ2)

by formulas similar to (138), again uniquely up to the addition of a pseudodiffer-
ential operator of the order less than m. The crucial property of the definition
(138) is the following

Proposition 7 Let

a : π∗(ξ1)−→π∗(ξ2), ; b : π∗(ξa)−→π∗(ξ3), ;
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be two symbols of orders m1,m2. Let c = ba be the composition of the symbols.
Then the operator

b(D)a(D)− c(D) : Γ∞(ξ1)−→Γ∞(ξ3)

is a pseudodifferential operator of order m1 + m2 − 1.

Proposition 7 leads to a way of solving equations of the form

Au = f (140)

for certain pseudodifferential operators A. To find a solution of (140), it suf-
ficient to construct a left inverse operator B, that is, BA = 1. If B is the
pseudodifferential operator B = b(D) then

1 = b(D)a(D) = c(D) + (b(D)a(A)− c(D)) .

Then by 7, the operator c(D) differs from identity by an operator of order −1.
Hence the symbol c has the form

c(x, ξ) = 1 + symbol of order (−1).

Hence for existence of the left inverse operator B, it is necessary that symbol b
satisfies the condition

a(x, ξ)b(x, ξ) = 1 + symbol of order (−1). (141)

In particular, the condition (141) holds if

Condition 1 a(x, ξ) is invertible for sufficiently large |ξ| ≥ C.

In fact, if the condition (141) holds then we could put

b(x, ξ) = a−1(x, ξ)χ(x, ξ),

where χ(x, ξ) is a function such that

χ(x, ξ) ≡ 1 for |ξ| ≥ 2C,

χ(x, ξ) ≡ 0 for |ξ| ≤ C.

Then the pseudodifferential operator a(D) is called an elliptic if Condition
1 holds.

The final generalization for elliptic operators is the substitution of a sequence
of pseudodifferential operators for a single elliptic operator. Let ξ1, ξ2, . . . , ξk be
a sequence of vector bundles over the manifold M and let

0−→π∗(ξ1)
a1−→π∗(ξ2)

a2−→ . . .
ak−1−→π∗(ξk)−→0 (142)

be a sequence of symbols of order (m1, . . . , mk−1). Suppose the sequence (142)
forms a complex, that is, asas−1 = 0. Then the sequence of operators

0−→Γ∞(ξ1)
a1(D)−→ Γ∞(ξ2)−→ . . .−→Γ∞(ξk)−→0 (143)
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in general, does not form a complex because we can only know that the com-
position ak(D)ak−1(D) is a pseudodifferential operator of the order less then
ms + ms−1.

If the sequence of pseudodifferential operators forms a complex and the se-
quence of symbols (142) is exact away from a neighborhood of zero section in
T ∗M then the sequence (143) is called an elliptic complex of pseudodifferential
operators.

8.1.2 Fredholm operators

A bounded linear operator
F : H−→H

on a Hilbert space H is called a Fredholm operator if

dimKer F < ∞, dimCoker F < ∞

and the image, Im F , is closed. The number

index F = dimKer F − dimCoker F

is called the index of the Fredholm operator F . The index can be obtained as

index F = dimKer F − dimKer F ∗,

where F ∗ is the adjoint operator.
The bounded operator K : H−→H is said to be a compact if any bounded

subset X ⊂ H is mapped to a precompact set, that is, the set F (X) is compact.

Theorem 31 Let F be a Fredholm operator. Then

1. there exists ε > 0 such that if ‖F −G‖ < ε then G is a Fredholm operator
and

index F = index G,

2. if K is compact then F + K is also Fredholm and

index (F + K) = index F. (144)

The operator F is Fredholm if and only if there is an operator G such that
both K = FG−1 and K ′ = GF −1 are compact. If F and G are Fredholm
operators then the composition FG is Fredholm and

index (FG) = index F + index G.

The notion of a Fredholm operator has an interpretation in terms of the
finite dimensional homology groups of a complex of Hilbert spaces. In general,
consider a sequence of Hilbert spaces and bounded operators

0−→C0
d0−→C1

d1−→ . . .
dn−1−→Cn−→0. (145)
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We say that the sequence (145) is Fredholm complex if dkdk−10, Im dk is a
closed subspace and

dim (Ker dk/Coker dk−1) = dim H (Ck, dk) < ∞.

Then the index of Fredholm complex (145) is defined by the following formula:

index (C, d) =
∑

k

(−1)k dim H(Ck, dk).

Theorem 32 Let
0−→C0

d0−→C1
d1−→ . . .

dn−1−→Cn−→0 (146)

be a sequence satisfying the condition that each dkdk−1 is compact. Then the
following conditions are equivalent:

1. There exist operators fk : Ck−→Ck−1 such that fk+1dk + dk−1fk = 1 + rk

where each rk is compact.

2. There exist compact operators sk such that the sequence of operators d′k =
dk + sk forms a Fredholm complex. The index of this Fredholm complex is
independent of the operators sk.

We leave the proof to the reader. Theorem 32 allows us to generalize the notion
of a Fredholm complex using one of the equivalent conditions from Theorem 32.

8.1.3 The Sobolev norms

Consider the Schwartz space S. Define the Sobolev norm by the formula

‖u‖2s =
∫

Rn

ū(x)(1 + ∆)su(x)dx,

where

∆ =
n

∑

k=1

(

i
∂

∂xk

)2

is the Laplace operator. Using the Fourier transformation this becomes

‖u‖2s =
∫

Rn

(1 + |ξ|2)s|û(ξ)|2dξ (147)

where the index s need not be an integer.
The Sobolev space Hs(Rn) is the completion of S with respect to the Sobolev

norm (147).

Proposition 8 The Sobolev norms (147) for different coordinate systems are
all equivalent on any compact K ⊂ Rn, that is, there are two constants C1 > 0
and C2 > 0 such that for supp u ⊂ K

‖u‖1,s ≤ C1‖u‖2,s ≤ C2‖u‖1,s.
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Proposition 8 can easily be checked when s is an integer. For arbitrary s
we leave it to the reader. This proposition allows us to generalize the Sobolev
spaces to an arbitrary compact manifold M and vector bundle ξ. Let {Uα} be
an atlas of charts where the vector bundle is trivial over each Uα. Let {ϕα} be
a partition of unity subordinate to the atlas. Let u ∈ Γ∞(M, ξ) be a section.
Put

‖u‖2s =
∑

α

‖ϕαu‖2s. (148)

Proposition 8 says that the definition (148) defines a Sobolev norm, well de-
fined up to equivalent norms. Hence the completion of the space of sections
Γ∞(M, ξ) does not depend on the choice of partition of unity or the choice of
local coordinate system in each chart Uα. We shall denote this completion by
Hs(M, ξ).

Theorem 33 Let M be a compact manifold, ξ be a vector bundle over M and
s1 < s2. Then the natural inclusion

Hs2(M, ξ)−→Hs1(M, ξ) (149)

is a compact operator.

Theorem 33 is called the Sobolev inclusion theorem.
Proof.

For the proof it is sufficient to work in a local chart since any section u ∈
Γ∞(M, ξ) can be split into a sum

u =
∑

α

ϕαu,

where each summand ϕαu has support in the chart Uα. So let u be a function
defined on Rn with support in the unit cube In. These functions can be con-
sidered as functions on the torus Tn. Then a function u can be expanded in a
convergent Fourier series

u(x) =
∑

l

alei(l,x).

Partial differentiation transforms to multiplication of each coefficient al by the
number lk, where l is a multiindex l = (l1, . . . , ln). Therefore,

‖u‖2s =
∑

l

|al|2
(

1 + |l1|2 + . . . + |ln|2
)s

. (150)

By formula (150), the space Hs(Tn) is isomorphic to the Hilbert space l2 of the
square summable sequences by the correspondence

u(x) 7→

{

bl =
al

(1 + |l1|2 + . . . + |ln|2)s/2

}
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Then the inclusion (149) becomes an operator l2−→l2 defined by the correspon-
dence

{bl} 7→

{

bl

(1 + |l1|2 + . . . + |ln|2)(s2−s1)/2

}

which is clearly compact.

Theorem 34 Let
a(D) : Γ∞(M, ξ1)−→Γ∞(M, ξ2) (151)

be a pseudodifferential operator of order m. Then there is a constant C such
that

‖a(D)u‖s−m ≤ C‖u‖s, (152)

that is, the operator a(D) can be extended to a bounded operator on Sobolev
spaces:

a(D) : Hs(M, ξ1)−→Hs−m(M, ξ2). (153)

Proof.
The theorem is clear for differential operators. Indeed, it is sufficient to obtain
estimates in a chart, as the symbol σ has compact support. If a(D) = ∂

∂xj then

‖ ∂
∂xj u(x)‖2s =

∫

Rn

(

1 + |ξ|2
)s

∣

∣

∣

∣

∣

̂∂
∂xj u

∣

∣

∣

∣

∣

2

dξ =

=
∫

Rn

(

1 + |ξ|2
)s |ξj û(ξ)|2dξ ≤

∫

Rn

(

1 + |ξ|2
)s+1 |û(ξ)|2dξ =

= ‖u(x)‖2s+1. (154)

Hence the inequality (152) follows from (154) by induction.
For pseudodifferential operators, the required inequality can also be obtained

locally using a more complicated technique.
Using theorems 33 and 34 it can be shown that an elliptic operator is Fred-

holm for appropriate choices of Sobolev spaces.

Theorem 35 Let a(D) be an elliptic pseudodifferential operator of order m as
in (151). Then its extension (153) is Fredholm. The index of the operator (153)
is independent of the choice of the number s.

Proof.
As in section 8.1.1 we can construct a new symbol b of order −m such that both
a(D)b(D) − 1 and b(D)a(D) − 1 are pseudodifferential operators of order −1.
Hence by Theorem 31, a(D) gives a Fredholm operator (153).

To prove that the index of a(D) does not depend of the number s, consider
the special operator (1 + ∆)k with symbol

(

1 + |ξ|2
)k

. Since the norm ‖(1 +
∆)ku‖s is equivalent to the norm ‖u‖s+2k, the operator

(1 + ∆)k : Hs+2k(ξ)−→Hs(ξ)
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is an isomorphism. Then the operator

A = (1 + ∆)−kσ(D)(1 + ∆)k : Hs+2k(ξ1)−→Hs(ξ1)−→
−→Hs−m(ξ2)−→Hs+2k−m(ξ2)

differs from σ(D) by a compact operator and therefore has the same index.

Corollary 2 The kernel of an elliptic operator σ(D) consists of infinitely smooth
sections.

Proof.
Indeed, by increasing the number s we have a commutative diagram

Hs+1(ξ1) Hs+1−m(ξ2)

Hs(ξ1) Hs−m(ξ2)

6 6
∪ ∪

-σ(D)

-σ(D)

(155)

An increase in the number s can only decrease the dimension of the kernel,
Ker σ(D). Similarly, the dimension of the cokernel may only decrease since
the cokernel is isomorphic to the kernel of the adjoint operator σ(D)∗. Since
the index does not change, the dimension of kernel cannot change. Hence the
kernel does not change in the diagram (155). Thus the kernel belongs to the
⋂

s
Hs(ξ1) = Γ∞(ξ1).

8.2 The Atiyah–Singer formula for the index of an elliptic
operator

In the sense explained in previous sections, an elliptic operator σ(D) is defined
by a symbol

σ : π∗(ξ1)−→π∗(ξ2) (156)

which is an isomorphism away from a neighborhood of the zero section of the
cotangent bundle T ∗M . Since M is a compact manifold, the symbol (156)
defines a triple (π∗(ξ1), σ, π∗(ξ2)) which in turn defines an element

[σ] ∈ Kc(T ∗M).

Theorem 36 The index index σ(D) of the Fredholm operator σ(D) depends
only on the element [σ] ∈ Kc(T ∗M).

The mapping
index : Kc(T ∗M)−→Z

is an additive homomorphism.
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Proof.
A homotopy of an elliptic symbol gives a homotopy of Fredholm operators and,
under homotopy, the index does not change. Assume that the symbol σ is an
isomorphism not only away from zero section but everywhere. The operator
σ(D) can be decomposed into a composition of an invertible operator (1 +
∆)m/2 and a operator σ1(D) of the order 0. The symbol σ1 is again invertible
everywhere and is therefore homotopic to a symbol σ2 which is independent of
the cotangent vector and also invertible everywhere. Then the operator σ2(D)
is multiplication by the invertible function σ2. Therefore, σ2(D) is invertible.
Thus

index σ(D) = 0.

Finally, if σ = σ1 ⊕ σ2 then σ(D) = σ1(D)⊕ σ2(D) and hence

index σ(D) = index σ1(D) + index σ2(D).

The total space of the cotangent bundle T ∗M has a natural almost complex
structure. Therefore, the trivial mapping p : M−→pt induces the direct image
homomorphism

p∗ : Kc(T ∗M)−→Kc(pt) = Z.

Theorem 37 Let σ(D) be an elliptic pseudodifferential operator. Then

index σ(D) = p∗[σ]. (157)

The formula (157) can be written as

index σ(D) =
(

ch [σ]T−1(T ∗M), [T ∗M ]
)

where [T ∗M ] is the fundamental (open) cycle of the manifold T ∗M . For an
oriented manifold M we have the Thom isomorphism

ϕ : H∗(M)−→H∗
c (T ∗M). (158)

Therefore, the formula (158) has the form

index σ(D) =
(

ϕ−1ch [σ]T−1(T ∗M), [M ]
)

(159)

The formula (159) was proved by M.F.Atiyah and I.M.Singer [?] and is
known as the Atiyah–Singer formula.

Proof.
The proof of the Atiyah–Singer formula is technically complicated. Known
proofs are based on studying the algebraic and topological properties of both
the left and right hand sides of (157). In particular, Theorem 36 shows that
both the left and right hand sides of the (157) are homomorphisms on the group
Kc(T ∗M). Let j : M1−→M2 be a smooth inclusion of compact manifolds and
let σ1 be an elliptic symbol on the manifold M1. Assume that σ2 is a symbol
on the manifold M2 such that

[σ2] = j∗[σ1]. (160)
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Theorem 38 If two symbols σ1 and σ2 satisfy the condition (160) then the
elliptic operators σ1(D) and σ2(D) have the same index,

index σ1(D) = index σ2(D).

Theorem 37 follows from Theorem 38. In fact, Theorem 37 holds for M = pt.
Then the inclusion

j : pt−→Sn.

gives the direct image

j∗ : Kc(pt)−→Kc
(

T ∗Sn, T ∗s0

)

which is an isomorphism.Therefore, for a symbol σ defining a class

[σ] ∈ Kc
(

T ∗Sn, T ∗s0

)

we have

[σ] = j∗[σ′], [σ′] = p∗[σ],

index σ(D) = index σ′(D) = [σ′] = p∗([σ]).

Finally, let j : M−→Sn an inclusion and q : Sn−→pt be the natural projec-
tion. Then

p = qj, j∗([σ]) = [σ′],

and by Theorem 38

index σ(D) = index σ′(D) = q∗[σ′] = q∗j∗[σ]p∗[σ].

Thus the Atiyah–Singer formula follows from Theorem 38.
Let us explain Theorem 38 for the example when the normal bundle of the

inclusion M1−→M2 is trivial. The symbol [σ2] = j∗[σ1] is invertible outside
of a neighborhood of submanifold M1 ⊂ T ∗M2. Suppose that the symbols are
of order 0. Then the symbol σ2 can be chosen so that it is independent of
the cotangent vector outside of a neighborhood U of submanifold M1. Then
we can chose the operator σ2(D) such that if supp ∩ U = ∅ then σ2(D)(u)
is multiplication by a function. Hence we can substitute for the manifold M2,
the Cartesian product M1 × T k, where T k is torus, equipped with an elliptic
operator of the same index. Now we can use induction with respect to the
integer k and that means that it is sufficient consider the case when k = 1.

The problem is now reduced to the existence of an elliptic operator τ(D) on
the circle such that

index τ(D) = 1

and
[τ ] ∈ Kc

(

T ∗S1, T ∗s0

)

is a generator.
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8.3 Signature of manifolds
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