УДК 513.8

А. С. МИЩЕНКО

БЕСКОНЕЧНОМЕРНЫЕ ПРЕДСТАВЛЕНИЯ ДИСКРЕТНЫХ ГРУПП И ВЫСШИЕ СИГНАТУРЫ

В статье исследуется специальный класс представлений дискретных групп. С помощью ряда геометрических конструкций устанавливаются различные соотношения между группами Уолла фундаментальных групп многообразий, высшими сигнатурами и К-теорией классифицирующих пространств фундаментальных групп.

§ 1. Фредгольмовы представления

Основным объектом нашего исследования будет группа π с конечным числом образующих и определяющих соотношений, гильбертово пространство H, два представления группы π в группе унитарных операторов пространства H, T^1 и T^2 , и фредгольмов оператор $F: H \rightarrow H$.

Определение 1.1. Тройка $T = (T^1, F, T^2)$ называется фредгольмовым представлением, если оператор $T^2(g)F - FT^1(g)$ является компактным оператором для любого элемента $g \in \pi$.

Для каждого фредгольмового представления построим ряд объектов:

- а) элемент из группы $K(K(\pi, 1))$ $\xi_{\tau} \in K(K(\pi, 1))$;
- б) гомоморфизм $Sign_T: L_{4h}(\pi) \rightarrow \mathbb{Z}$;
- в) каждому многообразию M, $\pi_1(M) = \pi$, сопоставим целое число, которое является гомотопическим инвариантом;
- Γ) вычислим это число в терминах характеристических классов многообразия M. Именно, мы докажем следующее соотношение:

$$\langle L(M) \cdot \operatorname{ch} \xi_T, [M] \rangle = \operatorname{Sign}_T(\sigma(M)),$$

где L(M) — полный класс Хирцебруха многообразий M, $\sigma(M)$ — абсолютный инвариант многообразия, лежащий в группе Уолла;

д) для некоторого класса фундаментальных групп опишем множество элементов вида $\xi_{\tau} \in K(K(\pi, 1))$.

§ 2. Фредгольмовы представления и расслоения над K (п, 1)

Пусть $T = (T^1, F, T^2)$ — фредгольмово представление. Сопоставим ему некоторое расслоение ξ_T над классифицирующим пространством $K(\pi, 1)$ группы π . Это расслоение ξ_T мы будем понимать как семейство (непрерывное) фредгольмовых операторов $A(x): K(\pi, 1) \to \mathcal{F}$, где \mathcal{F} —

пространство всех фредгольмовых операторов. Пусть $X = K(\pi, 1)$, \hat{X} — его универсальное накрытие. Тогда пространство \hat{X} представляет собой стягиваемый комплекс, на котором свободно и симплициально действует группа π . Рассмотрим пространство $\hat{X} \times H$ как тривиальное расслоение с базой \hat{X} . Тогда представления T^1 и T^2 индуцируют на нем два свободных послойно линейных действия \hat{T}^1 , \hat{T}^2 группы π по формуле

$$\hat{T}^{i}(g)(x, h) = (gx, T^{i}(g)h).$$

Допустим, что $\hat{A}(x)$: $H \to H$ — такое непрерываюе семейство фредгольмовых операторов, гараметризованное точками $x \in \hat{X}$, что

$$\hat{A}(gx) = T^2(g) \hat{A}(x) T^{1*}(g).$$
 (2.1)

Пусть $\mathcal{H}^l \to X$ — расслоения со слоем H, полученные из расслоений $\hat{X} \times H$ путем факторизации по действию группы π с помощью представлений \hat{T}^i , τ . е.

$$\mathcal{H}^i = (\hat{X} \times H)/\hat{T}^i$$
.

Тогда функция $\hat{A}(x)$ индуцирует послойно линейное и фредгольмово отображение $A: \mathcal{H}^1 \to \mathcal{H}^2.$

В самом деле, если $\xi \in \mathcal{H}^1$, $(x,h) \in \xi$, то положим $A(\xi) = (x,\hat{A}(x)h)$. По условию

 $(x,\,h) \sim (gx,\,T^1(g)\,h),$

и нужно проверить, что точки $(x, \hat{A}(x)h)$ и $(gx, \hat{A}(gx)T^1(g)h)$ эквивалентны в расслоении \mathcal{H}^2 . Имеем:

$$(gx, \hat{A}(gx)T^{1}(g)h) = (gx, T^{2}(g)\hat{A}(x)h) \sim (x, \hat{A}(x)h).$$

 $\Pi EMMA~2.1.~B$ сякое расслоение \mathcal{H} со слоем H над клеточным комплексом X эквивалентно тривиальному, τ . е. существует послойно линейный изоморфизм

$$B: X \times H \rightarrow \mathcal{H}.$$

Всякие два изоморфизма такого вида гомотопны.

Пусть $B_1: X \times H \rightarrow \mathcal{H}_1$, $B_2: X \times H \rightarrow \mathcal{H}_2$ — два таких изоморфизма, которые существуют согласно лемме 2.1. Рассмотрим композицию

$$B_2^{-1}AB_1: X \times H \to X \times H.$$
 (2.2)

Положим $(x, A(x)h) = B_2^{-1}AB_1(x, h)$. Из указанного уравнения (2.2) функция A(x) определяется однозначно по функции $\hat{A}(x)$ с точностью до гомотопии в классе фредгольмовых операторов, т. е. однозначно определяется элемент $\xi_T \in \mathcal{K}(X)$.

Построим теперь нужную нам функцию $\hat{A}(x)$. Выберем в каждой нульмерной орбите действия группы π на \hat{X} по представителю x_1, \ldots, x_s . Положим

$$\hat{A}(x_i) = F$$
, $\hat{A}(gx_i) = T^2(g) FT^{i*}(g)$, $1 \leqslant i \leqslant s$.

Таким образом, мы определили функцию $\hat{A}(x)$ на нульмерном остове комплекса \hat{X} , удовлетворяющую условию (2.1). Пусть теперь функция $\hat{A}(x)$ продолжена на (k-1)-мерный остов комплекса \hat{X} и удовлетворяет на нем условию (2.1), причем

для любой пары точек
$$x, y \in [\hat{X}]^{(k-1)}$$
 оператор $\hat{A}(x) - \hat{A}(y)$ является компактным. $\}$

Выберем из каждой k-мерной орбиты действия группы π на \hat{X} по одному представителю σ_1^k , ..., σ_s^k . На границе $\partial \sigma_i^k$ функция $\hat{A}(x)$ уже задана, причем если x_0^i , $x \in \partial \sigma_i^k$, то оператор $\hat{A}(x_0^i) - \hat{A}(x)$ является компактным. Тогда существует продолжение функции $\hat{A}(x)$ на весь симплекс σ_i^k , причем оператор $\hat{A}(x_0^i) - \hat{A}(x)$ компактен для любого $x \in \sigma_i^k$. Положим, далее,

$$\hat{A}(gx) = T^{2}(g)\hat{A}(x)T^{1*}(g),$$

что определяет нам функцию $\hat{A}(x)$ на k-мерном остове $[\hat{X}]^k$. Ясно, что выполняется условие (2.1). Если $x, y \in [\hat{X}]^k$, то при некотором выборе $g_1g_2 \in \pi$ $x = g_1x_1, y \in g_2y_2, x_1 \in \sigma_i^k, x_2 \in \sigma_j^k$. Тогда

$$\hat{A}(x) = T^2(g_1) \hat{A}(x_1) T^{1*}(g_1) = T^2(g) (\hat{A}(x_0^i) + S) T^{1*}(g_1)$$

и, аналогично,

$$\hat{A}(y) = T^{2}(g_{2})(\hat{A}(x_{0}^{i}) + S')T^{1*}(g_{2}),$$

где операторы S и S' компактны. Тогда $\hat{A}(x) = \hat{A}'(gx_0^i)$ — компактный, $\hat{A}(y) = \hat{A}(gx_0^i)$ — компактный, т. е. $\hat{A}(x) - \hat{A}(y)$ — компактный оператор.

Отметим, что если мы имеем другое продолжение функции $\hat{A}(x)$ на k-мерный остов, удовлетворяющее условиям (2.1) и (2.3), то два таких продолжения гомотопны в классе функций, удовлетворяющих условиям (2.1) и (2.3).

Продолжая построение функции $\hat{A}(x)$ по индукции, мы закончим корректное определение элемента $\xi_T = K(X)$.

Пусть A, B — два унитарных оператора. Тогда мы построим новое фредгольмово представление

$$T' = (A^{-1}T^{1}B, B^{-1}FA + S, BT^{2}B^{-1}),$$

где S — компактный оператор, определяющее тот же элемент, т. е. $\xi_T = \xi_{T}$.

§ 3. Сигнатуры квадратичных форм

Пусть $\lambda = \|\lambda_{ij}\| - (n \times n)$ -матрица, $\lambda_{ij} \in \Lambda = \mathbf{Z}[\pi]$, причем:

а) λ — невырожденная матрица,

$$\delta) \ \lambda_{ij} = \boldsymbol{\lambda}_{ii}^*,$$

где $*: \Lambda \to \Lambda$ индуцируется отображением $*(g) = g^{-1}$, $g \in \pi$. Пусть T — унитарное представление группы π в гильбертовом пространстве H. По-

строим обратимый самосопряженный оператор

$$\lambda_T: H^n \to H^n$$
.

Если $\alpha = \Lambda$, $\alpha = \sum \alpha_g g$, $\alpha_g = \mathbf{Z}$, то положим

$$\alpha_T = \sum_i \alpha_g T(g).$$

Ясно, что $(\alpha_T)^* = (\alpha^*)_T$, поскольку

$$(\alpha_T)^* = \left(\sum \alpha_g T\left(g\right)\right)^* = \sum \alpha_g T^*\left(g\right) = \sum \alpha_g T^{-1}\left(g\right) = \sum \alpha_g \left(T\left(g^{-1}\right)\right) = (\alpha^*)_T.$$

Определим оператор λ_T матрицей

$$\lambda_T = \| (\lambda_{ij})_T \|.$$

Проверим, что оператор λ_T самосопряжен и обратим.

а) Самосопряженность:

$$(\lambda_T)^* = \|((\lambda_{ji})_T)^*\| = \|(\lambda_{ji}^*)_T\| = \|(\lambda_{lj})_T\| = \lambda_T.$$

б) Обратимость. Поскольку λ — невырожденная матрица, то найдется матрица $\mu = \|\mu_{ij}\|$ такая, что

$$\sum_{j}\mu_{ij}\lambda_{jk}=\delta_{ik}.$$

Тогда

$$\delta_{ik}E = \left(\delta_{ik}\right)_T = \sum_{i} \left(\mu_{ij}\lambda_{jk}\right)_T = \sum_{i} \left(\mu_{ij}\right)_T \left(\lambda_{jk}\right)_T.$$

Следовательно, $\mu_{T}\lambda_{T}$ — единичная матрица.

Пусть теперь задано фредгольмово представление $T=(T^1,\,F,\,T^2)$. Определим тогда три оператора на гильбертовом пространстве $H^n:\lambda_{T^1},\,\lambda_{T^2}$ и $\overline{F},\,\overline{F}=\|F\delta_{ij}\|.$

ЛЕММА 3.1. Оператор $\overline{F}\lambda_{T^1} - \lambda_{T^2}\overline{F}$ является компактным.

 $\mathbb Z$ оказательство. Оператор $\overline F \lambda_{T^1} - \lambda_{T^2} \overline F$ задается матрицей $\mathcal S = \| s_{ij} \|$,

$$s_{ij} = F(\lambda_{ij})_{T^1} - (\lambda_{ij})_{T^2}F.$$

Пусть $\lambda_{ij} = \sum \alpha_g g$. Тогда

$$s_{ij} = F\left(\sum \alpha_g T^1\left(g\right)\right) - \left(\sum \alpha_g T^2\left(g\right)\right) F = \sum \alpha_g\left(FT^1\left(g\right) - T^2\left(g\right)F\right),$$

т. е. операторы s_{ij} являются компактными.

ЛЕММА 3.2. Пусть λ_1 , λ_2 — два обратимых самосопряженных оператора, F — фредгольмов оператор, $F\lambda_1$ — λ_2F — компактный оператор. Тогда можно так изменить оператор F на компактный, что тройка (λ_1 , λ_2 , F) станет суммой двух троек, причем в первой тройке операторы λ_1 и λ_2 положительны, а во второй — отрицательны. Разложение однозначно.

Доказательство. Представим гильбертово пространство H в виде прямой суммы $H = H_1 \oplus H_2$ и $H = H_1' \oplus H_2'$ так, чтобы операторы λ_1

и λ₂ определялись матрицами

$$\lambda_1 = \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} A' & 0 \\ 0 & -B' \end{pmatrix}$$

в этих разложениях, причем A, B, A', B' — положительные обратимые самосопряженные операторы. Пусть оператор $F: H_1 \oplus H_2 \to H_1' \oplus H_2'$ определяется матрицей

$$F = \begin{pmatrix} F_1 & F_2 \\ F_3 & F_4 \end{pmatrix}.$$

Тогда условие компактности оператора $F\lambda_1 - \lambda_2 F$ примет вид:

$$\begin{split} F\lambda_{1} - \lambda_{2}F &= \begin{pmatrix} F_{1} & F_{2} \\ F_{3} & F_{4} \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix} - \begin{pmatrix} A' & 0 \\ 0 & -B' \end{pmatrix} \begin{pmatrix} F_{1} & F_{2} \\ F_{3} & F_{4} \end{pmatrix} = \\ &= \begin{pmatrix} F_{1}A - A'F_{1} & -F_{2}B - A'F_{2} \\ F_{3}A + B'F_{3} & B'F_{4} - F_{4}B \end{pmatrix}, \end{split}$$

или

$$F_1A = A'F_1,$$

 $F_2B + A'F_2 = 0,$
 $F_2A + B'F_3 = 0,$
 $F_4B = B'F_4$

по модулю компактных операторов.

 Π EMMA 3.3. Пусть A, B — обратимые положительные самосопряженные операторы. Пусть AX+XB — компактный оператор. Тогда оператор X компактен.

Доказательство. Рассмотрим уравнение

$$AX + XB = Y, (3.1)$$

где A, B — обратимые положительные самосопряженные ограниченные операторы, а Y — ограниченный оператор. Пусть $\mathfrak A$ — банахово пространство всех ограниченных операторов с нормой

$$||A|| = \operatorname{Sup} \frac{||Ax||}{||x||}.$$

Тогда оператор

$$h: \mathfrak{A} \to \mathfrak{A},$$

 $h(X) = AX + XB,$

ограничен. Докажем, что h обратим. Допустим сначала, что в некотором разложении $H=\bigoplus_{i=1}^n H_i$ операторы $A,\ B$ записываются в виде матриц

$$A = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}, \quad B = \begin{pmatrix} \mu_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mu_n \end{pmatrix},$$

$$0 < \varepsilon \leqslant \lambda_i, \quad \mu_i \leqslant E < \infty.$$

Тогда, положив

$$X = ||X_{ij}||, \quad Y = ||Y_{ij}||,$$

имеем:

$$\lambda_i X_{ij} + X_{ij} \mu_j = Y_{ij},$$

т. е.

$$X_{ij} = (\lambda_i + \mu_i)^{-1} Y_{ij}.$$

Таким образом,

$$||X_{ij}|| \leqslant \frac{2}{\varepsilon} ||Y_{ij}||.$$

Отметим, что пространство \mathfrak{A} канонически разлагается в прямую сумму $\mathfrak{A} = \oplus \mathfrak{A}_{ij}$ замкнутых подпространств, причем $h(\mathfrak{A}_{ij}) \subset \mathfrak{A}_{ij}$, а норма оператора $h^{i,j}$ на \mathfrak{A}_{ii} оценивается числом $2/\varepsilon$:

$$||h_{\mathfrak{A}_{i,j}}^{-1}|| \leqslant \frac{2}{\varepsilon}.$$

Пусть теперь A, B — произвольные обратимые положительные самосопряженные операторы. Существуют такие пространства

$$H_1 = L_2(X_1, \Sigma_1, \mu_1), \quad X_1 \subset R^1,$$

 $H_2 = L_2(X_2, \Sigma_2, \mu_2), \quad X_2 \subset R^1,$

и унитарные операторы

$$U_1: H \rightarrow H_1,$$

 $U_2: H \rightarrow H_2,$

что операторы

$$A' = U_1 A U_1^{-1} : H_1 \rightarrow H_1,$$

 $B' = U_2 A U_2^{-1} : H_2 \rightarrow H_2$

суть операторы умножения на функцию $f(\lambda) = \lambda$, $\lambda \in \mathbb{R}^4$, Тогда уравнение (2.1) примет следующий вид:

$$A'Z + ZB' = W$$

где $Z=U_1\times U_2^{-1}$, $W=U_1YU_2^{-1}$. Можно при этом считать, что множества X_1 , X_2 лежат в отрезке [ε , E], $0<\varepsilon< E<\infty$. Пусть дано число $\delta>0$. Разобъем отрезок [ε , E] на конечное число интервалов $\Delta_i=[\varepsilon_i,\ \varepsilon_{i+1}]$ длины $<\delta$ и положим $g(\lambda)=\varepsilon_i,\ \varepsilon_i\leqslant \lambda<\varepsilon_{i+1}$. Тогда $|\lambda-g(\lambda)|<\delta$. Пусть A'', B''— операторы умножения на функцию $g(\lambda)$ соответственно в пространствах H_1 и H_2 . Согласно разбиению отрезка [ε , E] пространства H_1 и H_2 представляются в виде суммы $H_i=\bigoplus H_{ij}$, где H_{ij} — пространство функций с носителем в интервале Δ_j . Тогда операторы A'' и B'' сохраняют структуру прямой суммы и, вообще, имеют вид:

$$A''=B''=egin{pmatrix} arepsilon_1 & \ldots & 0 \ \ddots & \ddots & \ddots \ \ddots & \ddots & \ddots \ 0 & \ldots & arepsilon_s \end{pmatrix}$$
, $arepsilon=arepsilon_1 < arepsilon_2 < \ldots < arepsilon_s = E - \delta.$

Пространство операторов $\mathfrak A$ из H_1 в H_2 тоже разлагается в сумму $\mathfrak A = \oplus \mathfrak A_{ij}$, причем операторы

$$h'(Z) = A'Z + ZB',$$

 $h''(Z) = A''Z + ZB''$

ограничены и $\|h'-h''\| \leqslant \delta$. Таким образом, $h'(\mathfrak{A})_{ij} \subset \mathfrak{A}_{ij}$, $h''(\mathfrak{A}_{ij}) \subset \mathfrak{A}_{ij}$, а оператор $h''|_{\mathfrak{A}_{ij}}$ обратим, $\|(h''_{\mathfrak{A}_{ij}})^{-1}\| \leqslant \frac{2}{\epsilon}$. Следовательно, если $\delta \frac{2}{\epsilon} < 1$, то и оператор $h'|_{\mathfrak{A}_{ij}}$ обратим, т. е. оператор h' обратим. Это значит, что и оператор $h: \mathfrak{A} \to \mathfrak{A}$ обратим.

Покажем, что оператор $h'^{-1}(W_{ij})$ компактен. Поскольку $\|h'-h''\|<\delta$, то

$$||h'(Z_{ij}) - h''(Z_{ij})|| \leq \delta ||Z_{ij}||$$

Следовательно,

$$h'(Z_{ij}) = (\varepsilon_i + \varepsilon_j) Z_{ij} + R(Z_{ij}),$$

$$\|R(Z_{ij})\| \leqslant \delta \|Z_{ij}\|.$$

Тогда

$$Z_{ij} = \frac{W_{ij}}{\varepsilon_i + \varepsilon_j} - \frac{R(W_{ij})}{\varepsilon_i + \varepsilon_j} + \ldots + (-1)^k \frac{R^k(W_{ij})}{(\varepsilon_i + \delta_j)^k} + \ldots,$$

причем

$$\left\|\frac{R^{k}(W_{ij})}{(\varepsilon_{i}+\varepsilon_{j})^{k}}\right\| \leq q^{k} \|W_{ij}\|,$$

где $q=rac{\delta}{arepsilon_i+arepsilon_j}$. Қаждый из членов ряда является компактным оператором. Значит, и \mathbf{Z}_{ii} является компактным оператором.

Лемма 3.3 доказана.

Из леммы 3.3 следует, что F_2 , F_3 — компактные операторы. Пусть дано другое разложение пространства в прямую сумму. Тогда если

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$$

- унитарный оператор такой, что

$$X^*\begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix} X = \begin{pmatrix} \overline{A} & 0 \\ 0 & -\overline{B} \end{pmatrix},$$

то $AX_2+X_2B=0$, $X_3A+BX_3=0$, т. е. $X_2=X_3=0$. Значит, разложение пространства в прямую сумму однозначно.

Определение 3.4. Положим

Sign
$$(\lambda_1, \lambda_2, F) = \text{index } F_1 - \text{index } F_4$$
,
Sign_T $(\lambda) = \text{Sign } (\lambda_{T^1}, \lambda_{T^2}, \overline{F})$,

где $T = (T^1, F, T^2)$ — фредгольмово представление, а λ — квадратичная форма.

TEOPEMA 3.5. Функция $Sign_{\tau}(\lambda)$ корректно определена на группе $L_{4k}(\pi)$ и является гомоморфизмом.

Доказательство. Пусть $T=(T^1,\ F,\ T^2)$ — фредгольмово представление. Ясно, что

$$Sign_{T}(\lambda \oplus \mu) = Sign_{T}(\lambda) + Sign_{T}(\mu)$$

для любых двух невырожденных самосопряженных матриц λ и μ . Пусть $\lambda = \|\lambda_{ij}\|$ и $\lambda'' = \|\lambda'_{ij}\|$ — две матрицы, причем

$$\lambda' = X^* \lambda X$$

где $X = \|x_{ij}\|$ — невырожденная матрица над групповым кольцом. Тогда, очевидно,

$$\lambda_{T^l}' = X_{T^l}^* \lambda_{T^l} X_{T^l} = (X_{T^l})^* \lambda_{T^l} X_{T^l},$$

причем операторы

$$FX_{T^1} - X_{T^2}F, \quad FX_{T^1}^* - X_{T^3}^*F$$

компактны. Выберем разложения $H=H_1\oplus H_2,\ H=H_1^{'}\oplus H_2^{'}$ так, чтобы выполнялись равенства

$$\lambda_{T^1} = \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix}, \quad \lambda_{T^2} = \begin{pmatrix} A' & 0 \\ 0 & -B' \end{pmatrix},$$

а также равенство

$$F = \begin{pmatrix} F_1 & 0 \\ 0 & F_A \end{pmatrix}.$$

Аналогично, выберем вторую пару разложений $H=\overline{H}_1\oplus\overline{H}_2$, $H=\overline{H}_1'\oplus\overline{H}_2'$ так, чтобы

$$\lambda_{T^1}' = \begin{pmatrix} \overline{A} & 0 \\ 0 & -\overline{B} \end{pmatrix}, \quad \lambda_{T^2}' = \begin{pmatrix} \overline{A}' & 0 \\ 0 & -\overline{B}' \end{pmatrix},$$

$$F = \begin{pmatrix} \overline{F}_1 & 0 \\ 0 & \overline{F}_4 \end{pmatrix}$$

(последнее равенство с точностью до компактных операторов). Пусть

$$L: \overline{H}_{1} \oplus \overline{H}_{2} \to H_{1} \oplus H_{2},$$

$$M: \overline{H}'_{1} \oplus \overline{H}'_{2} \to H'_{1} \oplus H'_{2}$$

- ортогональные замены координат в указанных разложениях. Тогда

$$\begin{pmatrix} \overline{F}_1 & 0 \\ 0 & \overline{F}_4 \end{pmatrix} = M^{-1} \begin{pmatrix} F_1 & 0 \\ 0 & F_4 \end{pmatrix} L,$$

$$\begin{pmatrix} \overline{A} & 0 \\ 0 & -\overline{B} \end{pmatrix} = L^{-1} X_{T^1}^* \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix} X_{T^1} L,$$

$$\begin{pmatrix} \overline{A'} & 0 \\ 0 & -\overline{B'} \end{pmatrix} = M^{-1} X_{T^2}^* \begin{pmatrix} A' & 0 \\ 0 & -B' \end{pmatrix} X_{T^2} M.$$

Положим $\Phi = X_{T^2}L$, $\Psi = \dot{X}_{T^2}M$. Тогда получим следующие равенства:

$$\begin{pmatrix}
\overline{F}_{1} & 0 \\
0 & \overline{F}_{4}
\end{pmatrix} = \Psi^{-1}X_{T^{2}} \begin{pmatrix}
F_{1} & 0 \\
0 & F_{4}
\end{pmatrix} X_{T^{1}}^{-1}\Phi,$$

$$\begin{pmatrix}
\overline{A} & 0 \\
0 & -B
\end{pmatrix} = \Phi^{*} \begin{pmatrix}
A & 0 \\
0 & -B
\end{pmatrix} \Phi,$$

$$\begin{pmatrix}
\overline{A}' & 0 \\
0 & -\overline{B}'
\end{pmatrix} = \Psi^{*} \begin{pmatrix}
A' & 0 \\
0 & -B'
\end{pmatrix} \Psi.$$

Первое равенство мы можем переписать следующим образом:

$$\begin{pmatrix} \overline{F}_1 & 0 \\ 0 & \overline{F}_4 \end{pmatrix} = \Psi^{-1} \begin{pmatrix} F_1 & 0 \\ 0 & F_4 \end{pmatrix} \Phi,$$

или

$$\Psi\begin{pmatrix}\overline{F}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & \overline{F}_{\mathbf{4}}\end{pmatrix} = \begin{pmatrix}F_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & F_{\mathbf{4}}\end{pmatrix}\Phi.$$

Пусть

$$\Phi = \begin{pmatrix} \Phi_1 & \Phi_2 \\ \Phi_3 & \Phi_4 \end{pmatrix}, \quad \Psi = \begin{pmatrix} \Psi_1 & \Psi_2 \\ \Psi_3 & \Psi_4 \end{pmatrix}.$$

Тогда последнее равенство примет следующий вид:

$$\Psi_{1}\overline{F}_{1} = F_{1}\Phi_{1},$$
 $\Psi_{4}\overline{F}_{4} = F_{4}\Phi_{4},$
 $\Psi_{2}\overline{F}_{4} = F_{1}\Phi_{2},$
 $\Psi_{3}\overline{F}_{1} = F_{4}\Phi_{3}.$

с точностью до компактных операторов.

ЛЕММА 3.6. Операторы Φ_1 , Φ_4 , Ψ_4 , Ψ_4 обратимы. Доказательство. Рассмотрим равенство

$$\begin{pmatrix} \overline{A} & 0 \\ 0 & -\overline{B} \end{pmatrix} = \Phi^{\star} \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix} \Phi.$$

Имеем:

$$\begin{split} \Phi^* \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix} \Phi &= \begin{pmatrix} \Phi_1^* & \Phi_3^* \\ \Phi_2^* & \Phi_4^* \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & -B \end{pmatrix} \Phi &= \\ &= \begin{pmatrix} \Phi_1^* A_1 \Phi_1 - \Phi_3^* B \Phi_3 & \Phi_1^* A \Phi_2 - \Phi_3^* B \Phi_4 \\ \Phi_2^* A \Phi_1 - \Phi_4^* B \Phi_3 & \Phi_2^* A \Phi_2 - \Phi_4^* B \Phi_4 \end{pmatrix}. \end{split}$$

Таким образом,

$$\Phi_1^*A\Phi_1 - \Phi_3^*B\Phi_3 = \overline{A},$$

$$\Phi_1A\Phi_1 = \overline{A} + \Phi_3^*B\Phi_3.$$

Поскольку оператор \overline{A} положителен, самосопряжен и обратим, а оператор $\Phi_3^*B\Phi_3$ положителен, то $\Phi_1^*A\Phi_1$ обратим. Тогда и Φ_1 — обратимый оператор. Аналогично доказываются и другие утверждения леммы.

Из леммы 3.6 следует, что

$$index \overline{F}_1 = index F_1,$$
 $index \overline{F}_4 = index F_4.$

Для завершения доказательства теоремы 3.5 достаточно проверить, что если

$$\lambda = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 ,

то $sign_T(\lambda) = 0$. В самом деле,

$$\lambda_{T^{I}} = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \quad \overline{F} = egin{pmatrix} F & 0 \ 0 & F \end{pmatrix}.$$

Существует ортогональная замена координат вида

$$\frac{1}{\sqrt{2}}\begin{pmatrix}1 & -1\\1 & 1\end{pmatrix}$$
,

при которой

$$\lambda_{T^{i}} \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$\overline{F} \to \begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}.$$

Но тогда индексы операторов F дадут одинаковый вклад в число $\operatorname{sign}_{\tau}(\lambda)$ с разными знаками.

Теорема 3,5 доказана.

Замечание 3.7. Мы на самом деле показали, что инвариантным относительно замен координат является не только разность индексов операторов F_1 и F_4 , но и их сумма. Однако

$$index F_1 + index F_4 = n index F$$
,

где n — размерность матрицы λ , т. е. эта сумма не зависит от матрицы λ .

§ 4. Сигнатуры многообразий

Пусть $T = (T^1, F, T^2)$ — фредгольмово представление группы π , M — гладкое многообразие, $\pi_1(M) = \pi$, $f: M \rightarrow K(\pi, 1)$ — каноническое отображение, индуцирующее изоморфизм фундаментальных групп.

Согласно § 2 на пространстве $K(\pi, 1)$ имеется два расслоения \mathcal{H}_1 и \mathcal{H}_2 со слоем гильбертово пространство H. Эти расслоения \mathcal{H}_1 и \mathcal{H}_2 допускают следующую структуру локально тривиальных расслоений. Пусть $\{U_\alpha\}$ — покрытие пространства $K(\pi, 1)$ открытыми множествами. Тогда если

$$\pi_i: \mathcal{H}_i \to K(\pi, 1)$$

— проекции, то $\pi_i^{-1}(U_\alpha)$ послойно изоморфны прямому произведению, т. е. существуют изоморфизмы

$$\varphi_{\alpha,i}: \pi_i^{-1}(U_\alpha) \to H \times U_\alpha,$$

причем функции склейки

$$\Psi_{\alpha,\beta,i}: H \times U_{\alpha\beta} \rightarrow H \times U_{\alpha\beta}$$

локально постоянны, т. е. на каждой линейно связной компоненте множества $U_{\alpha\beta}$ имеют место равенства

$$\Psi_{\alpha,\beta,i}(\xi,x)=(T_i\xi,x),$$

где T_i — унитарный оператор.

Оператор T_i можно определить следующим образом. Фиксируем в каждой карте U_{α} по точке x_{α} и фиксируем пути γ_{α} с началом в точке x_{0} и концом в точке x_{α} . Предположим, что все множества U_{α} и $U_{\alpha\beta}$ стягиваемы. Тогда если $x_{\alpha\beta} = U_{\alpha\beta}$ — некоторая точка, а $\gamma_{\alpha\beta}$ — путь из точки $x_{\alpha\beta}$. В $x_{\alpha\beta}$, полностью лежащий в U_{α} , то оператор T_{i} определяется как $T^{i}(g)$, где $g = \pi_{1}(K(\pi, 1))$ — элемент, задаваемый замкнутым путем $\gamma_{\beta}^{-1}\gamma_{\beta\alpha}^{-1}\gamma_{\alpha\beta}\gamma_{\alpha}$.

Прообразы $f^*(\mathcal{H}_i)$ будем по-прежнему обозначать через \mathcal{H}_i . Для этих расслоений справедливы предыдущие слова о функциях склейки. Фиксируем на многообразии M некоторую риманову метрику. Пусть $\Lambda_k(M,\mathcal{H}_i)$ обозначает пространство всех гладких внешних дифференциальных форм k-го порядка со значением в расслоении \mathcal{H}_i , т. е. $\omega \in \Lambda_k(M,\mathcal{H}_i)$ — это полилинейная кососимметрическая функция на семействе векторных полей, значение $\omega(X_1,...,X_k)$ есть сечение в расслоении \mathcal{H}_i . Метрика на многообразии M и структура гильбертового пространства в слое расслоения \mathcal{H}_i определяют спаривание форм. Если ω_1 , $\omega_2 \in \Lambda_k(M,\mathcal{H}_i)$, то $\langle \omega_1, \omega_2 \rangle$ есть функция на многообразии M. Значение функции $\langle \omega_1, \omega_2 \rangle$ в точке $x \in M$ определяется следующим образом. Пусть $\xi_1, ..., \xi_n$ — ортонормированный базис касательных векторов в точке $x \in M$. Тогда

$$\omega_i = \sum_{(\alpha_1...\alpha_k)} f_{\alpha_1...\alpha_k}^i dx_{\alpha_1} \wedge \ldots \wedge dx_{\alpha_k},$$

где $dx_i(\xi_i) = \delta_{ii}, f^i_{\alpha_1...\alpha_k} \subset H.$

Положим

$$\langle \omega_1, \omega_2 \rangle (x) = \sum_{(\alpha_1, \dots, \alpha_k)} (f^1_{\alpha_1 \dots \alpha_k}, f^2_{\alpha_1 \dots \alpha_k}).$$

Указанное выражение не зависит от выбора локальной карты $U_{\alpha} \Longrightarrow x$ и базиса $\xi_1, ..., \xi_n$.

Зададим оператор

$$d: \Lambda_k(M, \mathcal{H}_i) \to \Lambda_{k+1}(M, \mathcal{H}_i)$$

локально формулами:

$$df(X) = X(f), \quad f \in \Lambda_0(M, \mathcal{H}_i),$$

$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{\deg \omega_1} \omega_1 \wedge d\omega_2$$

для $\omega_1 = \Lambda_k(M, \mathcal{H}_i)$, $\omega_2 = \Lambda_s(M, R)$. Ясно, что определение не зависит от выбора карты U_α . Мы получаем комплекс пространств

$$\Lambda_0(M, \mathcal{H}_i) \stackrel{d}{\to} \Lambda_1(M, \mathcal{H}_i) \stackrel{d}{\to} \dots \stackrel{d}{\to} \Lambda_n(M, \mathcal{H}_i).$$

С другой стороны, имеется отображение F расслоений

$$F: \mathcal{H}_1 \to \mathcal{H}_2$$

фредгольмовое на каждом слое. Можно считать, что F — гладкое отображение. Отображение F индуцирует отображение

$$F_k: \Lambda_k(M, \mathcal{H}_1) \to \Lambda_k(M, \mathcal{H}_2).$$

ЛЕММА 4.1. Оператор $A = F_k d - dF_{k-1}$ является оператором умножения на форму первого порядка, коэффициенты которой суть компактные операторы.

Доказательство. Как было показано в § 2, локально отображение F имеет вид $F = F_0 + K(x)$, где K(x) — компактный оператор, причем $T_g^{\ 1}F_0T_g^{\ 2^{-1}}$ — F_0 — тоже компактный оператор. Можно, разумеется, считать, что K(x) — гладкая функция. Пусть $\omega \in \Lambda_k(M, \mathcal{H}_1)$. Тогда в локальной системе координат форма ω имеет вид

$$\omega(x) = \sum f_{\alpha_1...\alpha_k}(x) dx_{\alpha_1} \wedge ... \wedge dx_{\alpha_k},$$

$$f_{\alpha_1...\alpha_k}(x) \in H.$$

Следовательно,

$$(F_{k+1}d - dF_k)(\omega) = F_{k+1}\left(\sum \frac{\partial}{\partial x_j} f_{\alpha_1...\alpha_k}(x) dx_j \wedge dx_{\alpha_1} \wedge ... \wedge dx_{\alpha_k}\right) - \sum d\left(F_k\left(f_{\alpha_1...\alpha_k}(x)\right) dx_{\alpha_1} \wedge ... \wedge dx_{\alpha_k}\right) =$$

$$= \sum (F_0 + K(x)) \frac{\partial}{\partial x_j} f_{\alpha_1...\alpha_k}(x) dx_j \wedge dx_{\alpha_1} \wedge ... \wedge dx_{\alpha_k} -$$

$$- \sum \frac{\partial}{\partial x_j} \left((F_0 + K(x)) f_{\alpha_1...\alpha_k}(x)\right) dx_j \wedge dx_{\alpha_1} \wedge ... \wedge dx_{\alpha_k} =$$

$$= \sum \frac{\partial K(x)}{\partial x_j} dx_j \wedge f_{\alpha_1...\alpha_k}(x) dx_{\alpha_1} \wedge ... \wedge dx_{\alpha_k} = \Omega \wedge \omega,$$

где

$$\Omega = -\sum \frac{\partial K(x)}{\partial x_i} dx_i.$$

Лемма 4.1 доказана.

Введем на пространстве $\Lambda_{\mathtt{k}}(M,\mathscr{H}_i)$ структуру гильбертового пространства, положив

$$(\omega_1, \omega_2) = \int_{M} \langle \omega_1, \omega_2 \rangle d\mu,$$

где $d\mu$ — мера на многообразии M, порожденная римановой метрикой. Пусть

$$\delta: \Lambda_k(M, \mathcal{H}_i) \to \Lambda_{k-1}(M, \mathcal{H}_i)$$

— оператор, сопряженный к оператору d. Тогда $d^2=\delta^2=0$, а $\Delta=(d+\delta)^2$ отображает пространство $\Lambda_k(M,\,\mathcal{H}_i)$ в себя. Ясно, что Δ — положительный оператор. Введем на пространстве $\Lambda_k(M,\,\mathcal{H}_i)$ соболевские нормы, положив

$$(\omega_1, \omega_2)_s = ((1 + \Delta)^s \omega_1, \omega_2).$$

Соответствующие пополнения обозначим через $\Lambda_k^s(M, \mathcal{H}_l)$. ЛЕММА 4.2. Операторы

$$d: \Lambda_k^{s}(M, \mathcal{H}_i) \to \Lambda_{k+1}^{s-1}(M, \mathcal{H}_i),$$

$$\delta: \Lambda_k^{s}(M, \mathcal{H}_i) \to \Lambda_{k-1}^{s-1}(M, \mathcal{H}_i)$$

непрерывны.

Доказательство. Имеем:

$$(d\omega, d\omega)_{s-1} = ((1+\Delta)^s d\omega, d\omega) = (\delta (1+\Delta)^s d\omega, \omega) =$$

= $((1+\Delta)^s \delta d\omega, \omega) \leq ((1+\Delta)^{s+1}\omega, \omega),$

поскольку оператор δd положителен. Аналогично устанавливается и второе равенство.

ЛЕММА 4.3. Оператор из леммы 4.1 $A = F_k d - dF_{k-1}$

$$A: \Lambda_k^s(M, \mathcal{H}_1) \to \Lambda_{k+1}^{s-1}(M, \mathcal{H}_2)$$

является компактным оператором.

Доказательство. Согласно лемме 4.1 оператор A является умножением на 1-форму Ω , коэффициенты которой суть компактные операторы, т. е. локально форма Ω представляется в виде

$$\Omega = \sum S_i(x) dx_i,$$

и если

$$\omega \subseteq \Lambda_k(M, \mathcal{H}_1),$$

$$\omega = \sum f_{i_1...i_k}(x) dx_{i_1} \wedge \ldots \wedge dx_{i_k},$$

TO

$$A(\omega) = \sum S_i(x) (f_{i_1...i_k}(x)) dx_i \wedge dx_{i_1} \wedge ... \wedge dx_{i_k}$$

Поэтому оператор A представим в виде суммы

$$A=\sum_{i}A_{i},$$

где $A_{i}=A_{0\phi_{j}}$, $\{\phi_{i}\}$ — разбиение единицы, подчиненное покрытию $\{U_{\alpha}\}$. Следовательно, достаточно проверить, что оператор A компактен при отображении замкнутого пространства

$$H_{\alpha} \subset \Lambda_k^s (M, \mathcal{H}_1),$$

порожденного финитными формами с носителями, лежащими в \overline{U}_{α} . Это, в свою очередь, означает, что можем считать оба расслоения \mathcal{H}_1 и \mathcal{H}_2 тривиальными, а M — областью в эвклидовом пространстве.

Если расслоение \mathcal{H}_i тривиально, то пространства $\Lambda_k^s(M,\mathcal{H}_1)$ и $\Lambda_{k-1}^{s-1}(M,\mathcal{H}_2)$ изоморфны тензорным произведениям

$$\Lambda_k^{\mathrm{s}}(M, \mathcal{H}_1) = \Lambda_k^{\mathrm{s}}(M) \, \hat{\otimes} \, H,$$

$$\Lambda_{k+1}^{\mathrm{s}-1}(M, \mathcal{H}_2) = \Lambda_{k+1}^{\mathrm{s}-1}(M) \, \hat{\otimes} \, H.$$

Аппроксимируем коэффициенты $S_i(x)$ оператора A многочленами с компактными коэффициентами, так что аппроксимирующий оператор A' есть линейная комбинация: $A' = \sum F_i \otimes G_i$, где $F_i \colon \Lambda_k^s(M) \to \Lambda_{k+1}^{s-1}(M)$ — оператор умножения на 1-форму, а $G_i \colon H \to H$ — компактный оператор. Тогда A' — компактный оператор. Следовательно, A тоже компактен.

Построим теперь новый комплекс $C = (C_i, A_i)$:

$$C_i = \Lambda_i^{s-i}(M, \mathcal{H}_1) \oplus \Lambda_{i-1}^{s-i+1}(M, \mathcal{H}_2),$$

$$A_i: C_i \to C_{i+1}, \quad A_i = \begin{pmatrix} d & 0 \\ (-1)^i F_i & d \end{pmatrix}, \quad s \geqslant n.$$

Ясно, что A_iA_{i-1} — компактный оператор. В самом деле,

$$A_{i}A_{i-1} = \begin{pmatrix} d & 0 \\ (-1)^{i}F_{i} & d \end{pmatrix} \begin{pmatrix} d & 0 \\ (-1)^{i-1}F_{i-1} & d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ (-1)^{i}(F_{i}d - dF_{i-1}) & 0 \end{pmatrix}.$$

ЛЕММА 4.4. Комплекс (C_i , A_i) является фредгольмовым комплексом. Д о к а з а т е л ь с т в о. Существуют такие операторы

$$G_k: \Lambda_k^s(M, \mathcal{H}_2) \to \Lambda_k^s(M, \mathcal{H}_1),$$

что $G_{k}F_{k}$ и $F_{k}G_{k}$ являются гомоморфизмами расслоений $\mathcal{H}_{i} \rightarrow \mathcal{H}_{i}$, локальномимеющими вид 1+K(x), где K(x) — компактный оператор.

Пусть

$$B_i: C_{i+1} \rightarrow C_i$$

определяется матрицей

$$B_i = (1 + \Delta)^{-1} \begin{pmatrix} (1 + \Delta)^{-1} d^* & (-1)^i G_i \\ 0 & (1 + \Delta)^{-1} d^* \end{pmatrix}.$$

Тогда

$$B_{i}A_{i} + A_{i-1}B_{i-1} = (1+\Delta)^{-1} \begin{pmatrix} (1+\Delta)^{-1}d^{*}d + G_{i}F_{i} & (-1)^{i}G_{i}d \\ (-1)^{i}d^{*}F_{i} & d^{*}d \end{pmatrix} + \\ + (1+\Delta)^{-1} \begin{pmatrix} dd^{*}(1+\Delta)^{-1} & (-1)^{i-1}dG_{i-1} \\ (-1)^{i-1}F_{i-1}d^{*} & F_{i-1}G_{i-1} + (1+\Delta)^{-1}d^{*}d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

с точностью до компактных операторов.

Введем теперь оператор

$$\alpha: \Lambda_i(M, \mathcal{H}) \to \Lambda_{n-i}(M, \mathcal{H}),$$

удовлетворяющий следующей формуле:

$$(\alpha\omega, \omega') = \int (\omega \wedge \omega')_H,$$

где $(\omega \wedge \omega')_H$ — такая числовая n-форма на многообразии M, которая локально определяется следующим образом: если

$$\omega = \int dx_1 / \ldots / dx_i, \quad \omega' = g dx_{i+1} / \ldots / dx_n,$$

то

$$(\boldsymbol{\omega} \wedge \boldsymbol{\omega}')_H = (g, f) d\mathbf{x}_1 \wedge \ldots \wedge d\mathbf{x}_n.$$

Нетрудно убедиться, что оператор α существует и непрерывен в нормах:

$$\alpha: \Lambda_i^{\mathbf{s}}(M, \mathcal{H}) \to \Lambda_{n-i}^{\mathbf{s}}(M, \mathcal{H}).$$

В самом деле, положим

$$\gamma^{\beta,\alpha} = \begin{cases} &0, \text{ если } (\alpha,\,\beta) \text{ не образует перестановки,} \\ &1, \text{ если } (\alpha,\,\beta) — четная перестановка,} \\ &-1, \text{ если } (\alpha,\,\beta) — нечетная перестановка,} \end{cases}$$

где $\alpha = (\alpha_1, ..., \alpha_k), \beta = (\beta_1, ..., \beta_{n-k})$ — мультииндексы.

Пусть $\omega \in \Lambda_i(M, \mathcal{H})$ имеет локально вид

$$\omega = \sum f_{\alpha_1...\alpha_i}(x) dx_{\alpha_1} / \ldots / dx_{\alpha_i} = \sum f_{\alpha}(x) dx^{\alpha_i},$$

а метрика задана тензором

$$g = \sum g_{\alpha\beta}(x) dx^{\alpha} dx^{\beta}.$$

Пусть $g^{\alpha\beta}(x)$ — обратная матрица к $g_{\alpha\beta}(x)$,

$$G^{\alpha,\beta}(x) = g^{\alpha_1\beta_1}(x) g^{\alpha_2\beta_2}(x) \dots g^{\alpha_k\beta_k}(x)$$

для $\alpha = (\alpha_1, ..., \alpha_k)$, $\beta = (\beta_1, ..., \beta_k)$. Тогда скалярное произведение записывается следующим равенством:

$$(\omega_1, \omega)_2 = \int f_{\alpha,1}(x) f_{\beta,2}(x) G^{\alpha,\beta}(x) \sqrt{\det g} dx^r.$$

Положим

$$\alpha(\omega) = \sum h_{\beta}(x) dx^{\beta},$$

$$h_{\beta}(x) = G_{\beta,\alpha}(x) \frac{f_{\delta} \gamma^{\delta,\alpha}}{V \det g}.$$
(4.1)

Проверим равенство

$$(\alpha\omega_1, \omega_2) = \int (\omega_1 \wedge \omega_2)_H$$

Имеем:

$$(\alpha\omega_1, \omega_2) = \int f_{\alpha,2}G^{\alpha,\beta}G_{\beta,\delta}\gamma^{\tau,\delta}f_{\tau,1} dx^n = \int f_{\alpha,2}\gamma^{\tau,\alpha}f_{\tau,1} dx^n,$$

$$\int (\omega_1 \wedge \omega_2)_H = \int f_{\alpha,1}dx^\alpha \wedge f_{\beta,2}dx^\beta = \int f_{\alpha,1}f_{\beta,2}\gamma^{\alpha,\beta} dx^n.$$

Равенство стало очевидным.

Таким образом, если в некоторой точке x выбрана такая система координат, что координатные направления ортонормированы, то (4.1) примет следующий вид:

$$h_{\beta}(x) = \sum_{i} \gamma^{\delta, \beta} f_{\delta}. \tag{4.2}$$

Имеет место следующее свойство: если

$$\alpha^2: \Lambda_i(M) \to \Lambda_i(M)$$

ТО

$$\alpha^2 = (-1)^{(n-i)i}. (4.3)$$

Пусть $\alpha^2(\omega) = \sum k_s(x) dx^s$. Тогда

$$k_s(x) = \sum \gamma^{\beta,s} h_{\beta} = \sum \gamma^{\beta,s} \gamma^{\delta,\beta} f_{\delta} = \sum \gamma^{\beta,s} \gamma^{s,\beta} f_s = (-1)^{(n-t)i} f_s.$$

Справедливо следующее равенство:

$$\alpha^* = (-1)^{(n-i)i}\alpha. \tag{4.4}$$

В самом деле,

$$\ell(\alpha\omega,\,\omega')=(\omega,\,\alpha^*\omega')=\int(\omega\, igwedge \, \omega')_H=(-1)^{\ell(n-\ell)}\int(\omega'\, igwedge \, \omega)_H=(-1)^{\ell(n-\ell)}(\alpha\omega',\,\omega).$$

Следовательно,

$$\mathbf{\alpha}^* = (-1)^{i(n-i)}\mathbf{\alpha}.$$

Так же, как и в конечномерном случае, операторы α и d коммутируют:

$$\alpha d + (-1)^{\dim[\omega_{\mathbf{x}}]} \delta \alpha = 0. \tag{4.5}$$

Следовательно, оператор α коммутирует с операторами d^* , Δ , а значит, сохраняет соболевские нормы.

Рассмотрим теперь комплекс гильбертовых пространств

$$L_i = \{L_{i,i}, d\},\$$

полагая

$$L_{i,i} = \Lambda_i^{s-i} (M, \mathcal{H}_i).$$

Положим, далее,

$$\xi_i: L_{n-i,j} \to L_{i,j},$$

$$\xi_i = (1 + \Delta)^{-\frac{n}{2} + i} \alpha.$$

ЛЕММА 4.5. Имеют место следующие соотношения:

$$d\xi_{i} = (-1)^{n-i}\xi_{i+1}d^{*},$$

$$\xi_{i}^{*} = (-1)^{i(n-i)}\xi_{i}.$$

Обозначим через $H^t(L, d)$ «гомологии» комплекса (L, d), определяемые как фактор группы Ker d по замыканию подгруппы Im d. Нетрудно

убедиться, что при отображениях комплексов индуцируется естественный непрерывный гомоморфизм его групп гомологий, а (цепная) гомотопия не меняет гомоморфизма групп гомологий. Следовательно, гомоморфизм $\xi = (\xi_i)$ индуцирует изоморфизм групп гомологий $H^t(L, d^*)$ и $H^t(L, d)$.

ЛЕММА 4.6. Имеется естественный изоморфизм $H^t(L, d) \approx \text{Ker } D \approx H^t(L, d^*)$, где $D = (d+d^*)^2$.

Доказательство. Пусть $x \in \text{Ker } D$, тогда $0 = (Dx, x) = ((d+d^*)^2x, x) = ((d+d^*)x, (d+d^*)x)$, значит, $(d+d^*)x = 0$, т. е. $dx = d^*x = 0$. Таким образом, Ker $D \subset \text{Ker } d \cap \text{Ker } d^*$. Пусть $x \in \text{Ker } D$, x = dy, тогда $d^*x = d^*dy = 0$. С другой стороны, $(x, x) = (dy, dy) = (y, d^*dy) = 0$, т. е. x = 0.

Наконец, пусть $x \in \text{Ker } d$, $x \perp \text{Im } d$. Это значит, что для любого y имеет место равенство (x, dy) = 0. Другими словами, $(d^*x, y) = 0$ для любого y, т. е. $d^*x = 0$, $x \in \text{Ker } d^*$. Отсюда следует, что $x \in \text{Ker } D$. Лемма 4.6 доказана.

 Π EMMA 4.7. Пространство L_{ii} представимо в виде прямой суммы

$$L_{l,i} = [\operatorname{Im} d] \oplus \operatorname{Ker} D \oplus [\operatorname{Im} d^*].$$

Доказательство. Пусть $x \perp \text{Im } d$, $\text{Im } d^*$, Ker D, тогда для любого y имеют место равенства:

$$(x, dy) = 0, (x, d^*y) = 0,$$

т. е. $dx = d^*x = 0$, $x \in \text{Ker } D$, значит, x = 0. Итак, подпространства [Im d], Ker D, [Im d^*] порождают $L_{i,j}$.

С другой стороны, если $x \in \text{Im } d$, $y \in \text{Ker } D$, $z \in \text{Im } d^*$, то

$$(x, y) = (du, y) = (u, d^*y) = 0,$$

 $(z, y) = (d^*v, y) = (v, dy) = 0,$
 $(x, z) = (du, d^*v) = (d^2u, v) = 0,$

т. е. пространства [Im d], Ker D, [Im d^*] попарно ортогональны. Положим

$$egin{aligned} \mathcal{L}_{m{j}} &= igoplus_{l+1}^n L_{l,m{j}}, \ A &= d + d^* \colon \mathscr{L}_{m{j}}
ightarrow \mathscr{L}_{m{j}}, \ au(x) &= i^{p(p-1) + rac{n}{2}} \xi(x), \quad x \in L_{p,m{j}}. \end{aligned}$$

Легко проверить, что $\tau^2=\mathrm{id}$. Пусть \mathscr{L}_i^+ , \mathscr{L}_i^- —собственные подпространства инволюции τ . Так как $A\tau=-\tau A$, то $A(\mathscr{L}_i^+)\subset\mathscr{L}_i^-$, $A(\mathscr{L}_i^-)\subset\mathscr{L}_i^+$. Поскольку оператор

$$F: \mathcal{L}_1 \to \mathcal{L}_2$$

коммутирует с инволюцией т, то мы получим фредгольмов комплекс

$$\mathcal{L}_{1}^{+} \xrightarrow{F} \mathcal{L}_{2}^{+}$$

$$A \downarrow \qquad A \downarrow$$

$$\mathcal{L}_{1}^{-} \xrightarrow{F} \mathcal{L}_{2}^{-}$$

Индекс index этого комплекса согласно теории эллиптических псевдодифференциальных операторов с операторнозначным символом [см. (¹), (²)] можно вычислить в терминах характеристических классов:

$$index = \langle L(M) ch \xi_T, [M] \rangle. \tag{4.6}$$

Впрочем, легко доказать формулу (4.6), не используя работы (2). В самом деле, при гомотопии операторов F, A в описанном классе индекс не будет меняться. Мы можем построить гомотопию операторов F и A так, чтобы в результате эти операторы стали коммутировать и при этом чтобы оператор F индуцировался таким отображением расслоений $F:\mathcal{H}_1 \rightarrow \mathcal{H}_2$, что ядро и коядро были гладкими конечномерными расслоениями. Тогда index можно вычислять как разность двух операторов типа оператора Хирцебруха на $\ker F$ и $\operatorname{Coker} F$. Далее применяем формулу индекса $\operatorname{Атья} \longrightarrow \operatorname{Зингера}$.

§ 5. Основная формула

Мы докажем следующее утверждение:

ТЕОРЕМА 5.1. Пусть M — гладкое многообразие, $\dim M = 4k$, $\pi_1(M) = \pi$, $T = (T_1, F, T_2)$ — фредгольмово представление группы π . Тогда

$$\operatorname{sign}_{T}(\sigma(M)) = \langle L(M) \operatorname{ch} \xi_{T}, [M] \rangle,$$

где $\sigma(M) \in L_{4k}(\pi)$ — инвариант, определенный в (3) *.

В работе (3) для каждого многообразия M, $\pi_1(M) = \pi$, был определен алгебраический комплекс Пуанкаре, связанный с симплициальным подразделением многообразия M. Пусть $C_i - i$ -мерные группы цепей универсального накрытия M, рассматриваемые как свободные Λ -модули. Пусть $T = (T_1, F, T_2)$ — фредгольмово представление в гильбертовых пространствах H_1 и H_2 . Пусть $C_i^{H_j}$ — гильбертовы пространства Λ -гомоморфизмов $C_i \rightarrow H_i$. Тогда комплекс цепей

$$C_0 \stackrel{d_1}{\leftarrow} C_1 \stackrel{d_2}{\leftarrow} \dots \stackrel{d_n}{\leftarrow} C_n$$

индуцирует комплекс гильбертовых пространств

$$N_i = \{C_0^{H_i} \rightarrow C_1^{H_i} \rightarrow \ldots \rightarrow C_n^{H_i}\}.$$

Построим отображение

$$F: N_1 \to N_2,$$

$$F_i: C_i^{N_1} \to C_i^{N_2}.$$

Для этого, выбрав базис в модуле C_i , отождествим $C_i^{H_j}$ с пространством функций на базисе. Тогда F_i индуцируется отображением F.

^{*} В работе (3), ч. 2, под группами $L_n(\pi)$ понимаются модифицированные группы Уолла, в которых не учитывается Arf-инвариант. На остсутствие этого указания в § 4 упомянутой работы любезно обратил мое внимание Кэппел.

ЛЕММА 5.2. Отображения F_i фредгольмовы и с точностью до ком-пактных операторов не зависят от базиса. Операторы dF_i — $F_{i+1}d$ ком-пактны.

Далее, построим гомоморфизмы

$$h: L_{i,j} \to C_i^{H_j},$$

полагая $h\left(\omega\right)\left(e\right)=\int\limits_{e}^{\cdot}\omega$, где $\theta-i$ -мерная клетка.

 Π EMMA 5.3. Гомоморфизмы h коммутируют c дифференциалами d, c точностью до компактных операторов коммутируют c отображениями F u являются эпиморфизмами.

Положим

$$D_{i} = h\xi_{i}h^{*} : C_{n-i}^{H_{j}} \rightarrow C_{i}^{H_{j}}.$$

 ${\rm JIEMMA}\ 5.4.$ Гомоморфизм h индуцирует изоморфизм групп гомологий. Гомоморфизм $D=\{D_i\}$ индуцирует изоморфизм групп гомологий.

Доказательство. Пространства $L_{i,j}$ можно рассматривать как сечения пучков $\mathbf{L}_{i,j}$ ростков таких дифференциальных форм ω порядка i

со значением в расслоении \mathcal{H}_{i} , что форма $(1+\Delta)^{\frac{s-l}{2}}$ ω локально суммируема с квадратом. Нетрудно показать, что комплекс пучков

$$\mathbf{L}_{0,j} \xrightarrow{d} \mathbf{L}_{1,j} \xrightarrow{d} \dots \xrightarrow{d} \mathbf{L}_{n,j} \to 0$$

точен. В самом деле, из априорных оценок следует [см., например, (4)], что в любой малой окрестности U для любого сечения $\omega \in \Gamma(\mathbf{L}_{i,j}, U)$ найдутся такие формы

$$\alpha \in \Gamma(\mathbf{L}_{i-1,j}, U), \quad \beta \in \Gamma(\mathbf{L}_{i+1,j}, U), \quad \gamma \in \Gamma(\mathbf{L}_{i+3,j}, U),$$

ЧТО

$$\omega = d\alpha + \delta\beta$$
, $d\beta = \delta\gamma$.

Тогда, используя равенство $d\omega = 0$, получаем:

$$(d\delta + \delta d)\beta = \Delta \beta = 0.$$

Значит, форма β имеет класс гладкости C^{∞} [см. (5), стр. 195], т. е. форма $\delta\beta$ тоже имеет класс гладкости C^{∞} . Поскольку $d\delta\beta=0$, то из классической теоремы де Рама следует, что найдется такая форма $\xi \in \Gamma(L_{i-1}, j, U)$, что $d\xi = \delta\beta$. Таким образом, $\omega = d(\alpha + \xi)$, что и требовалось доказать.

Чтобы завершить доказательство леммы 5.4, рассмотрим биградуированный комплекс коцепей со значением в пучках $\mathbf{L}_{i,j}$. Ясно, что комплекс точен во всех членах, а ядра его дифференциалов равны, соответственно, $L_{i,j}$ и $C_i^{H_j}$.

Два алгебраических комплекса Пуанкаре ($C_i^{H_j}$, d, D) и отображение $F = \{F_i\}$ образуют фредгольмов комплекс Пуанкаре. Для фредгольмовых комплексов Пуанкаре аналогично (3) строятся перестройки, приводящие к тривиальным гомологиям во всех размерностях, кроме средней.

ЛЕММА 5.5 Фредгольмовы комплексы Пуанкаре (L, d, ξ, F) и (C, d, D, F) допускают конечную последовательность перестроек вместе с продолжением отображения h, индуцирующего изоморфизм гомологий, причем в результате оба комплекса имсют тривиальные гомологии во всех размерностях, кроме средней.

ЛЕММА 5.6. Результат перестройки комплекса (L, d, ξ, F) не меняет его индекса в смысле формулы (4.6).

Следующий шаг заключается в факторизации комплексов (L, d, ξ , F) и (C, d, D, F) по некоторым ацикличным подкомплексам. В результате мы получим два комплекса следующего вида ($n\!=\!2k$):

$$C_{k}^{H_{1}} \xrightarrow{F} C_{k}^{H_{2}} \qquad L_{k,1} \xrightarrow{F} L_{k,2}$$

$$D_{k} \uparrow \qquad \uparrow^{D_{k}}, \qquad \xi_{k} \uparrow \qquad \uparrow \xi_{k},$$

$$C_{k}^{H_{1}} \xrightarrow{F} C_{k}^{H_{2}} \qquad L_{k,1} \xrightarrow{F} L_{k,2}$$

причем h является уже изоморфизмом. Таким образом, индекс левой диаграммы равен $sign_T(\sigma(M))$, а индекс правой диаграммы равен $\langle L(M) \ ch \ \xi_T, [M] \rangle$. Следовательно, мы доказали теорему 5.1.

В качестве следствия мы получаем, что высшая сигнатура

$$\langle L(M) \operatorname{ch} \xi_T, [M] \rangle$$

многообразия М является гомотопическим инвариантом.

§ 6. Аналог теоремы Атья — Хирцебруха для дискретных групп

В предыдущем параграфе мы исследовали некоторые гомотопические инварианты неодносвязных многообразий — высшие сигнатуры. Возникает естественный вопрос, как велика подгруппа $\Xi \subset K(B\pi)$ тех элементов, которые представимы в виде ξ_T для некоторого фредгольмового представления T. Напомним, что для компактных групп Ли группа Ξ всюду плотна в группе $K(B\pi)$ (теорема Атья — Хирцебруха (6)).

TEOPEMA 6.1. Пусть B_{π} — гладкое компактное многообразие с метрикой неположительной кривизны. Тогда существует такое непрерывное семейство фредгольмовых представлений

$$T_x = (T_{1,x}, F_x, T_{2,x}). \quad x \in TB\pi,$$

что F_x — обратимый оператор при больших x и для "любого $g \in \pi$ норма оператора $F_x T_{1,x}^g - T_{2,x}^g$ F_x мала по сравнению c нормой оператора F_x^{-1} при больших x. Семейство T_x определяет элемент

$$\xi_{T_x} \subset K (TB\pi \times B\pi).$$

Имеет место формула

$$\cosh \xi_{T_x} = \sum \lambda_{ij} \sigma a_i \otimes a_j,$$

где $a_i = H^*(B\pi, Q)$ — базис когомологий, $\|\lambda_{ij}\|$ — матрица, обратная к матрице пересечений в группе $H^*(B\pi, Q)$, σ — изоморфизм Тома.

Доказательство. Рассмотрим универсальное накрытие $\widetilde{B\pi}$ многообразия $B\pi$, диффеоморфное эвклидовому пространству R^n . Соответственно, универсальное накрытие $T\widetilde{B\pi}$ пространства $TB\pi$ будет диффеоморфно R^{2n} . На пространствах $\widetilde{B\pi}$ и $T\widetilde{B\pi}$ свободно действует группа π . На пространстве $\widetilde{B\pi}$ имеется метрика неположительной кривизны, эквивариантная относительно действия группы π . Координаты пространства $\widetilde{B\pi}$ обозначим через x, а координаты пространства $T\widetilde{B\pi}$ обозначим через (ξ , x). Рассмотрим на пространстве $T\widetilde{B\pi}$ комплекс внешних степеней комплексификации касательного расслоения многообразия $\widetilde{B\pi}$:

$$\Lambda: \Lambda_0 \xrightarrow{a_0} \Lambda_1 \xrightarrow{a_1} \dots \xrightarrow{a_{n-1}} \Lambda_n.$$

Гомоморфизмы a_i определим как операторы внешнего умножения на форму $i\xi + \omega(x)$ в точке (ξ, x) . Группа π действует послойно линейно на расслоениях Λ_i . Пусть $g \in \pi$, $\eta \in \Lambda_i$ — вектор над точкой (ξ, x) . Тогда $ga_i(\eta) - a_i(g\eta)$ — вектор над точкой $(g\xi, gx)$. Имеет место формула:

$$ga_{i}(\eta) - a_{i}(g\eta) = g(\omega(x)) \wedge g\eta - \omega(gx) \wedge g\eta = (g(\omega(x)) - \omega(gx)) \wedge g\eta.$$

ЛЕММА 6.2. Комплекс Λ точен во всех точках, где $i\xi + \omega(x) \neq 0$.

Определим теперь форму $\omega(x)$. Пусть $x \in \widetilde{B}\pi$ и γ_x — геодезическая (единственная), соединяющая начало координат с точкой x. Определим значение $\omega(x)$ как двойственный касательный вектор, равный $\varphi(x)\tau(\gamma_x)$, где $\tau(\gamma_x)$ — касательный вектор единичной длины к кривой γ_x в точке x, а $\varphi(x)$ — гладкая функция, $0 \leqslant \varphi(x) \leqslant 1$, $\varphi(0) = 0$, $\varphi(x) \equiv 1$ на бесконечности.

ЛЕММА 6.3. Форма $g(\omega(x)) - \omega(gx)$ стремится к нулю по норме в кокасательных векторах при $x \to \infty$.

Пусть $p:TB\pi \to TB\pi$ — проекция. Определим комплекс гильбертовых расслоений

$$p_1(\Lambda): p_1(\Lambda_0) \xrightarrow{A_0} p_1(\Lambda_1) \xrightarrow{A_1} \dots \xrightarrow{A_{n-1}} p_1(\Lambda_n),$$

определяя $p_1(\Lambda_i)$ как расслоение над $TB\pi$, слоем которого над точкой (ξ, y) является гильбертово пространство, равное прямой сумме конечномерных слоев над всеми прообразами точки (ξ, y) .

ЛЕММА 6.4. Операторы A_i образуют фредгольмов комплекс в любой точке $(\xi, y) \in TB\pi$ и точный комплекс во всех точках за исключением точки p(0, 0).

В каждом слое расслоения $p_1(\Lambda_i)$ действует группа π , переставляя прямые слагаемые. Из леммы 6.3 следует, что представление группы π в каждом слое $p_1(\Lambda_i)$ коммутирует с операторами A_i с точностью до компактных операторов. Это и есть семейство фредгольмовых комплексов представлений T_x .

Согласно § 2 над каждой точкой (ξ , x) $\in TB\pi$ мы можем построить фредгольмово семейство над $B\pi$, т. е. фредгольмово семейство над

 $TB\pi \times B\pi$. Нетрудно усмотреть, что в силу вещественности формы $\omega(x)$ полученное семейство фредгольмовых комплексов точно при $\xi \neq 0$, т. е. мы получим элемент из компактного K-функтора

$$\xi_{T_r} \subset K (TB\pi \times B\pi).$$

ЛЕММА 6.5. Пусть $\eta \in K(B\pi)$. Тогда

$$(1 \otimes \eta) \xi_{T_r} = \xi_{T_r} (\eta \otimes 1).$$

Доказательство. Построение элемента ξ_{r_x} проводилось в § 2 как построение эквивариантного семейства фредгольмовых операторов на $\widetilde{B\pi}$ с диагональным действием группы π . В нашем случае можно на самом деле построить не только эквивариантное семейство комплексов гильбертовых расслоений

$$p_{!}(\Lambda): p_{!}(\Lambda_{0}) \xrightarrow{A_{0}} p_{!}(\Lambda_{1}) \xrightarrow{A_{1}} \dots \xrightarrow{A_{n-1}} p_{!}(\Lambda_{n})$$

над $TB\pi \times \widetilde{B\pi}$, но построить эквивариантное семейство конечномерных расслоений

$$\Lambda: \Lambda_0 \xrightarrow{a_0} \Lambda_1 \xrightarrow{a_1} \dots \xrightarrow{a_{n-1}} \Lambda_n$$

над $TB\pi \times B\pi$, задавая диагональное действие группы π и продолжая операторы a_i с помощью продолжения форм $g(\omega(x)) - \omega(gx)$ с клеток меньшей размерности на клетки большей размерности. Таким образом, элемент $\xi_{T_x} \in K(TB\pi \times B\pi)$ получается следующим образом. Пусть

$$L: L_0 \rightarrow L_1 \rightarrow \ldots \rightarrow L_n$$

— эквивариантный комплекс векторных расслоений над $\widetilde{TB\pi} \times \widetilde{B\pi}$ с диагональным действием, причем для любой точки $(\xi, x, y) \in \widetilde{TB\pi} \times \widetilde{B\pi}$ этот комплекс точен, если $(\xi, x) \neq (0, 0)$. Тогда комплекс

$$L/\pi: L_0/\pi \to L_1/\pi \to \ldots \to L_n/\pi$$
,

определенный как фактор-комплекс по действию группы π над пространством $(\widetilde{TB\pi} \times \widetilde{B\pi})/\pi$, тоже точен всюду, за исключением $\xi = 0$. Пусть

$$q: (TB\pi \times \widetilde{B\pi})/\pi \to TB\pi \times B\pi$$

— накрытие (не регулярное). Тогда $q_1(L/\pi) = \xi_{T_x}$. Пусть теперь η — расслоение над $B\pi$, $\tilde{\eta}$ — его накрытие над $B\tilde{\pi}$, имеющее действие группы π . Легко проверить, что элемент $\xi_{T_x} \otimes (\eta \otimes 1)$ можно строить как $q_1((L \otimes \eta_1)/\pi)$, где η_1 — прообраз расслоения η на $T\tilde{B}\pi \times \tilde{B}\pi$ с диагональным действием группы π при проекции $T\tilde{B}\pi \times \tilde{B}\pi \to TB\pi \to B\pi$. С другой стороны, комплекс $(L \otimes \eta_1)/\pi$ есть тензорное произведение комплекса L/π и расслоения η_1/π . Поскольку пространство $(T\tilde{B}\pi \times \tilde{B}\pi)/\pi$ гомотопически эквивалентно $B\pi$ (второму сомножителю), то

$$q_!((L \otimes \eta_1)/\pi) = q_!(L/\pi) \otimes (1 \otimes \eta).$$

Лемма 6.5 доказана.

Вычислим теперь ограничение элемента ξ_{τ_x} на пространство $j:(TB\pi)\times(x_0)\subset TB\pi\times B\pi$. Ясно, что это просто прямой образ элемента $L{\equiv}K(TB\pi)$ при проекции $TB\pi{\rightarrow}TB\pi$. Следовательно, элемент $j^{\bullet}(\xi_{\tau_x})$ имеет максимально возможную фильтрацию 2n и определяет образующий элемент последней клетки. Таким образом, если $a_i{\equiv}H^{\bullet}(B\pi;Q)$ — базис в когомологиях и

$$\operatorname{ch}\left(\xi_{T_{x}}\right) = \sum \mu_{ij} \sigma a_{i} \otimes a_{j}, \tag{6.1}$$

 $a_0 = 1 \in H^0(B\pi; Q), a_N \in H^n(B\pi; Q), \text{ to } \mu_{N, 0} = 1.$

Пусть $\|\lambda_{ij}\|$ — матрица умножений в кольце $H^*(B\pi, Q)$, т. е. если a_i , a_j — дополнительные размерности, то a_i , a_j = $\lambda_{ij}a_N$, λ_{ij} =0 при i+j<n. Из леммы 6.5 следует, что

$$(a_i \otimes 1) \operatorname{ch} \xi_{T_x} = \operatorname{ch} \xi_{T_x} (1 \otimes a_i). \tag{6.2}$$

Пусть матрица $\|\lambda_{ij}\|$ приведена к каноническому виду, т. е. лишь для одного индекса j имеет место равенство $\lambda_{ij} = 1$, а для остальных индексов $\lambda_{ij} = 0$. Равенство (6.1) имеет вид:

$$\operatorname{ch} \xi_{T_x} = \sigma a_N \otimes a_0 + \sum_{(i,j) \neq (N,0)} \mu_{ij} \sigma a_i \otimes a_j. \tag{6.3}$$

Применим формулу (6.2). Правая часть формулы (6.2) даст нам в равенстве (6.3) слагаемое вида

$$\sigma a_N \otimes a_i + \sum \mu_{ki} \sigma a_k \otimes a_j a_i. \tag{6.4}$$

Следовательно, такое же слагаемое до тжно быть и в левой части (6.2). Пусть b_{sl}^k — матрица умножений, т. е.

$$a_s a_l = \sum b_{sl}^k a_k.$$

Тогда матрица пересечений равна $\|b_{st}^N\|$ и элемент (6.4) примет вид:

$$\sigma a_N \otimes a_i + \sum_i \mu_{kj} b_{ji}^r \sigma a_k \otimes a_r.$$
 (6.5)

Левая часть формулы (6.2) даст нам элемент

$$\sum \mu_{kj} b_{kj}^r \sigma a_r \otimes a_j. \tag{6.6}$$

Сравним (6.5) и (6.6). Имеем:

$$\sum \mu_{kj}b_{ji}^r = \sum \mu_{ir}b_{ji}^k.$$

В частности.

$$\sum_{i} \mu_{ir} b_{ji}^{N} = \sum_{i} \mu_{Nj} b_{ji}^{r} = b_{0i}^{r}.$$

Но $b_{0t}^r=1$ при i=r, 0 при $i\neq r$, т. е. $\|\mu_{lr}\|$ — матрица, обратная к матрице $\|b_{it}^N\|$.

Теорема 6.1 полностью доказана.

Теорема 5.1 из предыдущего параграфа имеет естественную модификацию для случая семейств фредгольмовых представлений:

ТЕОРЕМА 6.6. Пусть M—гладкое многообразие, $\dim M = 4k$, $\pi_1(M) = \pi$, $T = (T_1, M, T_2)$ — семейство фредгольмовых представлений группы π , параметризованное точками пространства X. Тогда элемент $\operatorname{sign}_T(\sigma(M))$ определяется как элемент группы K(X), причем справедлива формула:

$$\operatorname{ch} \operatorname{sign}_T (\sigma(M)) = \langle L(M) \operatorname{ch} \xi_T, [M] \rangle \subset H^*(X; Q).$$

Следствие 6.7. Если B_{π} — компактное многообразие с метрикой неположительной кривизны, то высшие сигнатуры многообразия M^{4k} , $\pi_1(M^{4k})=\pi$, гомотопически инвариантны.

Замечание. Теорема 6.1 и все следствия из нее справедливы также, если ограничиться требованием метрической полноты пространства $B\pi$ вместо условия его компактности. Доказательства не меняются.

приложение

Исторический обзор по проблеме гомотопической инвариантности рациональных характеристических классов

Первые результаты по исследованию гомотопической инвариантности характеристических классов появились около 1950 г. Рохлин (7) и Том (8) вывели гомотопическую инвариантность класса Понтрягина на четырехмерных многообразиях из найденной ими формулы для сигнатуры. Далее, в 1956 г. Хирцебрух (9), используя теорию кобордизмов Тома, установил общую формулу для сигнатуры 4k-мерного многообразия. Вскоре после результатов Серра о конечности стабильных гомотопических групп сфер Дж. Уайтхедом, Дольдом и Томом был найден пример, показывающий, что классы Понтрягина, вообще говоря, не являются гомотопическими инвариантами. Далее, Браудер (10) и С. П. Новиков (11) показали, что для односвязных многообразий единственным гомотопическим инвариантным классом Понтрягина является старший класс Хирцебруха *.

В 1965 г. С. П. Новиков (12), (13) установил гомотопическую инвариантность класса Понтрягина — Хирцебруха коразмерности 1 и более частные результаты для других коразмерностей. Здесь же он сформулировал гипотезу о гомотопической инвариантности чисел вида $\langle Lx, [M] \rangle$, где L — класс Понтрягина — Хирцебруха, а x — произведение одномерных классов когомологий. В 1966 г. Рохлин (14) доказал эту гипотезу для коразмерности 2. Полностью гипотеза Новикова была доказана независимо Фаррелом и Чангом (15) и Каспаровым (16) тем же методом перестроек подмногообразий.

В 1969 г. Гельфандом был предложен метод изучения квадратичных форм над групповым кольцом с помощью теории конечномерных пред-

^{*} В данном гомотопическом типе.

ставлений свободной абелевой группы; метод был развит в совместной работе (17).

Автором в работах (3) многообразию был сопоставлен важный гомотопический инвариант — невырожденная квадратичная форма над групповым кольцом. Возникла естественная гипотеза, что все гомотопически инвариантные выражения от характеристических классов являются алгебриаическими функциями от этой квадратичной формы (обсуждение этой гипотезы см. в работе (18)).

В 1971 г., основываясь на соединении идеи конструкции автора (3) и теории эллиптических операторов в конечномерных расслоениях, Люстиг (19) дал новое доказательство теоремы Новикова — Рохлина — Фаррела — Чанга — Каспарова и с помощью алгебраических результатов Матсусима установил гомотопическую инвариантность отдельных высших сигнатур для дискретных подгрупп группы Sp(2n, R).

Используя развитый ранее автором аппарат и развитие идей Люстига с привлечением методов функционального анализа и бесконечномерных представлений, автору в настоящей работе удалось полностью завершить решение проблемы о гомотопической инвариантности высших сигнатур для всех групп π , у которых $K(\pi, 1)$ является компактным многообразием с метрикой неположительной кривизны, в частности, для дискретных подгрупп полупростых некомпактных групп Ли.

Поступило 8.XII.1972

Литература

- ¹ Atiyah M. F., Singer I. M., The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc., 69 (1961), 422—433.
- ² Lucke G., Pseudo-differential operators on Hilbert bundles, 1971 (preprint).
- ³ Мищенко А. С., Гомотопические инварианты неодносвязных многообразий. І, Изв. АН СССР. Сер. матем., 34 (1970), 501—514; ІІ, Изв. АН СССР. Сер. матем., 35 (1971), 664—675; ІІІ, Изв. АН СССР. Сер. матем., 35 (1971), 1332—1371.
- ⁴ Хермандер Л., Линейные дифференциальные операторы с частными производными, М., «Мир», 1965.
- 5 Де Рамм Ж., Дифференцируемые многообразия, М., ИЛ, 1956.
- ⁶ Атья М. Ф., Хирцебрух Ф., Векторные расслоения и однородные пространства, «Математика», 6:2 (1962), 3—39.
- ⁷ Рохлин В. А., Новые результаты в теории четырехмерных многообразий, Докл. АН СССР, т. 84 (1952), 221—224.
- ⁸ Thom R., Definition intersèque des puissances de Steenrod, в книге Colloque de Topologie, Strasbourge, 1952.
- ⁹ Hirzebruch F., Neue topologische Methoden in der algebraischen Geometrie, Berlin, 1956.
- ¹⁰ Browder W., Homotopy type of differential manifolds, Colloquium on algebraic topology, August, 1962, Aarchus University, 1—10.
- ¹¹ Новиков С. П., Гомотопически эквивалентные гладкие многообразия, Изв. АН СССР. Сер. матем., 28 (1964), 365—474.
- ¹⁷ Новиков С. П., Гомотопическая и топологическая инвариантность некоторых рациональных классов Понтрягина, Докл. АН СССР, т. 162 (1965), 1248—1251.
- 13 Новиков С. П., О многообразиях со свободной абелевой фундаментальной группой и их применения, Изв. АН СССР. Сер. матем., 30 (1966), 207—246.

- 14 Рохлин В. А., Класс Понтрягина Хирцебруха коразмерности 2, Изв. АН СССР. Сер. матем., 30 (1966), 705—718.
- ¹⁵ Farrell F. T., Hsiang W. C., A geometric interpretation of the Künneth formula for algebraic K-theory, Bull. Amer. Math. Soc., 74 (1968), 548—553.
- 16 Каспаров Г. Г., О гомотопической инвариантности рациональных чисел Понтрягина, Докл. АН СССР, т. 190 (1970), 1022—1025.
- ¹⁷ Гельфанд И. М., Мищенко А. С., Квадратичные формы над коммутативными групповыми кольцами и *K*-теория, Функц. анализ, т. 3 (1969), 28—33.
- ¹⁸ Новиков С. П., Эрмитовы аналоги алгебраической К-теории, Изв. АН СССР. Сер. матем., 34 (1970), 253—288; т. 34 (1970), 475—500.
- 19 Lusztig G., Novikov's higher signature and family of elliptic operators, J. Different. Geom., 7, № 1—2 (1972), 229—256.