Izv. Akad. Nauk SSSR
Ser. Mat. Tom 34 (1970), No. 3

Math. USSR-Izvestija
Vol. 4 (1970), No. 3

HOMOTOPY INVARIANTS OF NONSIMPLY CONNECTED MANIFOLDS. I RATIONAL INVARIANTS

Abstract

A. S. Miscenko

UDC 513-8

Abstract

Invariants of nonsimply connected manifolds are investigated of the same type as the signature of a manifold, or of "higher signature" for manifolds with free Abelian fundamental group, which correspond to the possibility of surgery on a manifold. It is proved that these invariants depend only on the homotopy type of the manifold and a bordism class of manifolds.

Introduction

We begin with a description of a typical problem connected with the Morse modifications. Let $f: M_{1}^{n} \rightarrow M_{2}^{n}$ be a map of degree 1 between closed (or with boundary) redimensional manifolds, let η be a fiber bundle over the manifold M_{2}^{n} and F a stable fiber bundle trivialization $\nu\left(M_{1}^{n}\right) \oplus f^{*}(\eta)$, where $\nu\left(M_{1}^{n}\right)$ is the normalbundle of the manifold M_{1}^{n}. In this situation the question arises as to whether there exist a manifold with boundary $W^{n+1}, \partial W^{n+1}=M_{1}^{n} \cup \bar{M}_{1}^{n}$, a map $g: W^{n+1} \rightarrow M_{2}^{n}$ extending the map f and a stable fiber bundle trivialization $G: \nu\left(W^{n+1}\right) \oplus g^{*}(\eta)$ extending the trivialization F such that the map $g \mid \bar{M}_{1}^{n}$ is a homotopy equivalence. In [1] Wall studies the obstruction to the existence of such manifolds with boundary, or, as they say, obstructions to surgery on a manifold (see also $\left[{ }^{2}\right],\left[{ }^{3}\right]$ and $\left[{ }^{4}\right]$). For each fundamental group n one constructs groups $L_{n}(\pi)$. The obstruction to surgery $a\left(M_{1}^{n}, M_{2}^{\pi}, f, F\right)$ is an element of the group $L_{n}(\pi)$, and, moreover, a necessary and sufficient condition for the existence of surgery on the manifold M_{1}^{n} is that the element $\alpha\left(M_{1}^{n}, M_{2}^{n}, f, F\right)$ be zero. Note further that the element $\alpha\left(\boldsymbol{M}_{1}^{n}, \boldsymbol{M}_{2}^{n}, f, F\right)$ depends only on the "bordism" class of the manifold M_{2}^{n} defined by the triple ($\left.M_{1}^{n}, f, F\right)$.

In fact all problems about Morse modifications can be put in the form indicated above.

In the case of a simply connected manifold the groups $L_{n}(\mathbf{1})$ were described a long time ago $\left(\left[{ }^{5}\right],\left[{ }^{6}\right]\right)$; they $L_{4 k}(\mathrm{I})=\mathbf{Z}, L_{4 k+2}(\mathrm{I})=\mathrm{Z}_{2} \mathrm{~d} \quad L_{2 k+1}(1)=0 . \quad$ e we will be interested in the following situation. As is well known, the group $L_{4 k}(\pi)$ is the Grothendieck group generated by the nondegenerate symmetric scalar products on free modules over the group ring $\mathbf{Z}[\pi]$. In the case $\pi=\mathbf{1}$ the unique invariant of such
scalar products is the signature, i.e. the difference in the dimensions of the subspaces where the scalar product is positive definite and negative definite. Thus when studying the obstruction to surgery of the map

$$
f: M_{1}^{n} \rightarrow M_{2}^{n}
$$

and the stable trivialization $\left.F:{ }^{\wedge} Ш_{1}^{\prime \prime}\right){ }^{\circledR} f^{*}(r j)$ the obstruction is defined as the signature of the scalar product on the group $\operatorname{Ker}\left(H_{*}\left(M_{1}^{n}\right) \rightarrow H_{*}\left(M_{2}^{n}\right)\right)$. Here the homology can be considered with rational coefficients. On the other hand the signature $\sigma(M)$ can be defined for each manifold separately when studying the scalar product on its homology groups with rational coefficients. Then

$$
\sigma\left(M_{1}^{n}, M_{3}^{n}, f, F\right)=\sigma\left(M_{1}^{n}\right)-\sigma\left(M_{2}^{n}\right) .
$$

This result explains to what degree the obstrua($\left.M_{1}^{n}, M_{2}^{n}, f, F\right)$ ends on the different elements $M_{1}^{n}, M_{2}^{n}, f, F$.

The aim of the present work is to investigate the degree to which the obstruction $\alpha\left(M_{1}^{n}, M_{2}^{n}, f, F\right) \in L_{n}(\pi)$ depends on the manifolds themselves, the map f and the trivialization F.

To each manifold M^{n} we associate an element $\sigma\left(M^{n}\right) \in L_{n}(\pi), \pi=\pi_{1}\left(M^{n}\right)$. It will be shown that

1. $\alpha(M], M \backslash,\{, F)=a\left\{M^{n}\right)-a\left\{M^{\wedge}\right.$.
2. $\sigma\left(M^{n}\right)$ is a homotopy invariant.
3. $\sigma\left(M^{n}\right)$ is a bordism invariant of the space $K(\pi, 1)$ defined by the manifold M^{n}.

In the first part of the paper we study the construction of an invariant in the group $L_{n}^{Q}(\pi)$, analogous to the Wall group $L_{n}(\pi)$, in which in place of the group ring $\mathbf{Z}[\pi]$ of the group n we take the group ring $Q[\pi]$ with rational coefficients; more precisely, with dyadic rational coefficients. These groups correspond to surgery modulo elements of finite order in the homotopy groups of the manifolds. On the other hand, reflecting the general idea of the method, the consideration of rational coefficients technically simplifies the construction.

In the second part of the paper we give a complete description of the invariant $\sigma(M)$ and consider a number of special cases. For example, it will be shown that on smooth manifolds with fundamental group $\mathbf{Z}_{\mathbf{p}}$ and dimension $\mathbf{4} \boldsymbol{k}-\mathbf{1}, \boldsymbol{k} \geq \mathbf{2}$, there exist a finite number of pairwise nonequivalent smooth structures. It is clear also that by examining the method it is possible to answer the question on the number of distinct free actions of finite groups on manifolds.

I would like to note that in writing the present article my valuable discussions with S. P. Novikov had a most stimulating significance, and so also did my joint work with I. M. Gel fand in studying quadratic forms over rings of continuous functions.

§1. Algebraic Poincare'complexes

Let Ω be a finitely generated group, and Ω the group ring over the group n with
coefficients in the ring of dyadic rational numbers $\mathbf{Z}[1 / 2]$, i.e. $\Lambda=\mathbf{Z}[1 / 2][\pi]$. An involution $\boldsymbol{\Lambda} \rightarrow \boldsymbol{\Lambda}$ which is generated by the involution in the group $\pi: \overline{\boldsymbol{x}}=\boldsymbol{x}^{\mathbf{- 1}}$ is defined in Λ. Let M be a right $\Lambda \cdot$ module. Denote by M^{*} the module $\operatorname{Hom}_{\Lambda}(M, \Lambda)$. If M is a free module, then there exists a natural isomorphism $M \rightarrow\left(M^{*}\right)^{*}$. For any homomorphism $\phi: N \rightarrow M$ we will denote by ϕ^{*} the dual homomorphism.

Let us consider a complex of free Л-modules $C=\left\{C_{i}, d_{i}\right\}$ of length n :

$$
C_{0} \stackrel{d_{1}}{\leftarrow} C_{1} \stackrel{d_{2}}{\leftarrow} C_{2} \leftarrow \ldots \stackrel{d_{n}}{\leftarrow} C_{n} .
$$

We will say that an algebraic Poincaré complex is given if we are given homomorphisms

$$
\xi_{i}: C_{n-i}^{\bullet} \rightarrow C_{i}
$$

such that the relations

$$
\begin{align*}
d_{i} \xi_{i} & =(-1)^{l} \xi_{i-1} d_{n-i+1}^{*} \tag{1}\\
\xi_{i} & =(-1)^{(n-i) i} \xi_{n-i}^{*} \tag{2}
\end{align*}
$$

are satisfied and moreover the homology homomorphism

$$
\xi_{*}: H\left(C^{*}\right) \rightarrow H(C),
$$

induced by the homomorphisms $\boldsymbol{\xi}=\left\{\xi_{i}\right\}$, is an isomorphism.
Analogously, considering a complex of free Λ-modules $C=\left\{C_{i}, \boldsymbol{d}_{i}\right\}$ of length $n+1$ and a subcomplex of free Λ-modules $C^{0}=\left\{C_{i}^{0}, d_{i}\right\}$ of length n which is a direct summand, we will say that an algebraic Poincare'pair is given if we are given homomorphisms

$$
\xi_{i}: C_{n+1-i}^{*} \rightarrow C_{i}
$$

such that the conditions

$$
\begin{gathered}
d_{i} \xi_{i}=(-1)^{i} \xi_{i-1} d_{n-i+2}^{*} \bmod C^{0} \\
\xi_{i}=(-1)^{(n+1-i) i} \xi_{n+1-i}^{*}
\end{gathered}
$$

are fulfilled and moreover the induced homorphism in homology is an isomorphism between the homology of the complex C^{*} and the homology of the factor complex C / C° :

$$
\xi^{*}: H\left(C^{*}\right) \rightarrow H\left(C / C^{0}\right)
$$

Lemma 1.1. The complex ($\left.C^{0}, d\right)$ admits a natural Poincare complex structure.
Proof. Consider the homomorphism

$$
\varphi_{i-1}=d_{i} \xi_{i}-(-1)^{i} \xi_{i-1} d_{n-i+2}^{*}
$$

Let $\beta: C \rightarrow C / C^{0}$ be the projection. Then by definition we have $\beta_{i-1} \phi_{i-1}=\mathbf{0}$. Since

$$
\begin{gathered}
\varphi_{i-1}^{*}=\xi_{i}^{*} d_{i}^{*}-(-1)^{l} d_{n-i+2} \xi_{i-1}^{*} \\
=(-1)^{(n+1-i) \xi_{n+1-i} d_{i}^{*}-(-1)^{(n+2-i)(i-1)+i} d_{n-l+2} \xi_{n-i+2}} \\
=(-1)^{(n-(i-1))(i-1)}\left(d_{n-i+2} \xi_{n-i+2}-(-1)^{(n-i+3)} \xi_{n+1-i} d_{i}^{*}\right) \\
=(-1)^{(n-(i-1))(i-1)} \varphi_{n-(i-1)}
\end{gathered}
$$

then $\phi_{n-(i-1)} \beta_{i-1}^{*}=\mathbf{0}$. Consequently the homomorphism ϕ_{i-1} defines uniquely the homomorphism

$$
\xi_{i-1}^{0}: C_{n-(i-1)}^{0^{*}} \rightarrow C_{i-1}^{0}
$$

An immediate check confirms that the conditions (1) and (2) are fulfilled. To complete the proof we establish the following lemma. Let $\alpha: C^{0} \rightarrow C$ be the inclusion homomorphism.

Lemma 1.2. The diagram

is commutative. All vertical homomorphisms are isomorphisms.
Proof. The commutativity of the diagram is obvious. By definition the homomorphism $(\beta \xi)_{*}$ is an isomorphism. According to condition (2*) the homomorphism $\left(\xi \beta^{*}\right){ }_{*}$ is, up to sign, the dual of the homomorphismı $(\beta \xi)_{*}$ and consequently is also an isomorphism. From the Five Lemma the homomorphism $\left(\xi^{0}\right)_{*}$ is also an isomorphism.

The proof of Lemmas 1.1 and 1.2 is completed.
The Poincare'complex (C^{0}, d, ξ^{0}) will be called the boundary of the Poincaré pair $\left(C, C^{0}, d, \xi\right)$.

Let two algebraic Poincaré complexes $\alpha_{1}=\left(C_{1}, d_{1}, \xi_{1}\right)$ and $\alpha_{2}=\left(C_{2}, d_{2}, \xi_{2}\right)$ of the same dimension be given. The complex $\left(C_{1} \oplus C_{2}, d_{1} \oplus d_{2}, \xi_{1} \oplus \xi_{2}\right)$ will be called the disjoint sum $\alpha_{1} \cup \alpha_{2}$. It is not difficult to confirm that this is a Poincare' complex. By a change of orientation in the Poincare' complex $\alpha=(C, d, \xi)$ we will mean that we are considering the new complex $-\alpha=(C, d,-\xi)$. We will say that two algebraic Poincare' complexes α_{1} and α_{2} are bordant if there exists a Poincaré pair $\beta=$ $\left(C, C^{0}, d, \xi\right)$ such that its boundary $\partial \beta=\left(C^{0}, d, \xi^{0}\right)$ is $\alpha_{1} U-\alpha_{2}$.

Lemma 1.3. Let algebraic Poincare complexes α_{1}, a_{2} and a_{3} be given. If. a_{1} is bordant to α_{2} and α_{2} is bordant to α_{3} then α_{1} is bordant to a_{3}.

Proof. Let

$$
\beta=\left(C, C^{0}, d, \xi\right), \quad \beta^{\prime}=\left(C^{\prime}, C^{0^{\prime}}, d^{\prime}, \xi^{\prime}\right)
$$

be two Poincare' pairs where $C^{0}=F_{1} \oplus F_{2}, d=d_{1} \oplus d_{2}, \xi^{0}=\eta_{1} \oplus \eta_{2}, C^{0}=F_{2} \oplus F_{3}$, $d^{\prime}=d_{2} \oplus d_{3}$ and $\xi^{\prime 0}=-\eta_{2} \oplus \eta_{3}$. We will construct a new Poincaré pair $\gamma=$ $\left(A, A^{0}, \partial, \zeta\right)$. Put $A=\left(C \oplus C^{\prime}\right) / F_{2}$ and $A^{0}=\left(C^{0} \oplus C^{0 \prime}\right) / F_{2} \oplus F_{2}$, where F_{2} is embedded diagonally in $C \oplus C^{\prime}$, It is clear that the modules A and A^{0} are free and that A^{0} is a direct summand in A. The differential $\boldsymbol{\partial}$ is by definition induced by the differential $d \oplus d^{\prime}$ in the module $C \oplus C^{\prime}$. The homomorphism ζ is defined as the composition

$$
A^{*} \xrightarrow{\pi^{*}}\left(C \oplus C^{\prime}\right)^{*} \xrightarrow{\xi \oplus \xi^{\prime}}\left(C \oplus C^{\prime}\right) \xrightarrow{\pi} A
$$

where $\pi: C \oplus C^{\prime} \rightarrow A$ is the natural projection. Let us verify whether the conditions
imposed on a Poincare pair are all fulfilled. In the given case condition (1') has the form

$$
\partial_{i} \zeta_{i}-(-1)^{i} \zeta_{i-1} \partial_{n+2-i}^{*} \in A^{0}
$$

In fact, from condition (1') for the Poincaré pairs β and β^{\prime} it follows that

$$
\zeta_{i-1}^{0}=\partial_{i} \zeta_{i}-(-1)^{i} \zeta_{i-1} \partial_{n+2-l}^{*} \in A^{0} \oplus \pi\left(F_{2}^{\prime} \oplus \overrightarrow{F_{2}^{*}}\right)
$$

However the second component of the homomorphism ζ_{i-t}^{0} is obviously zero, because on F_{2}^{\prime} it is equal to η_{2} and on $F_{2}^{\prime \prime}$ it is equal to $\left(-\eta_{2}\right)$. Condition (2') is automatically fulfilled. It is trivial to check that the homomorphism $\zeta: A^{*} \rightarrow A / A^{0}$ induces an isomorphism in homology.

Lemma 1.4. An algebraic Poincaré complex α is bordant to itself.
Pronf. T.ft $\alpha=(C, d, \xi)$ be a Poincaré complex. Let us construct a Poincaré pair $\beta=\left(B, B^{0}, \delta, \eta\right)$. Put

$$
\begin{gathered}
B_{l}=C_{i} \oplus C_{i-1} \oplus C_{i}, \\
B_{i}^{0}=C_{i} \oplus C_{i}, \\
\delta_{i}=\left(\begin{array}{lll}
d_{i} & (-1)^{i} & 0 \\
0 & d_{i-1} & 0 \\
0 & (-1)^{i+1} & d_{i}
\end{array}\right), \\
\eta_{i}=\frac{1}{2}\left(\begin{array}{ccc}
0 & (-1)^{n+1} \xi_{i} & 0 \\
(-1)^{i} \xi_{i-1} & 0 & (-1)^{i} \xi_{i-1} \\
0 & (-1)^{n+1} \xi_{i} & 0
\end{array}\right) .
\end{gathered}
$$

It is not difficult to verify that β is a Poincare pair and

$$
\beta^{0}=\left(B^{0}, d, \eta^{0}\right)=\alpha \cup(-\alpha)
$$

§2. Modifications of algebraic Poincaré complexes

In this section we give one simple construction on a Poincaré pair analogous to "attaching" handles to a smooth manifold with boundary.

Let an algebraic Poincaré pair (C, C^{0}, d, ξ) of dimension $n+\mathbf{1}$ be given. Let $\pi=\left\{\pi_{j}\right\}, \pi_{j}: C_{i}^{0} \rightarrow C_{j}$, be the inclusion of the submodule C^{0} in the module C. We fix a certain free module A, the number i and a homomorphism $\beta: A \rightarrow C_{n-i}^{*}$ such that $d_{n-i+1}^{*} \beta=\mathbf{0}$. We construct a new Poincaré pair ($\bar{C}, \bar{C}^{0}, \delta, \eta$). Put

$$
\begin{aligned}
& \quad \bar{C}_{j}=C_{i} \text { when } j \neq i+1, n-i-1, n-i, \\
& \bar{C}_{j}=C_{j} \oplus A \text { when } j=i+1, n-i-1, n-i, \\
& \bar{C}_{j}^{0}=C_{j}^{0} \text { when } j \neq i+1, n-i-1, \\
& \bar{C}_{j}^{0}=C_{j}^{0} \oplus A \text { when } j=i+1, n-i-1 .
\end{aligned}
$$

The inclusion $\pi: \bar{C}^{0} \rightarrow \bar{C}$ is defined by

$$
\begin{aligned}
\bar{\pi}_{i+1} & =\left(\begin{array}{ll}
\pi_{i+1} & 0 \\
0 & 1
\end{array}\right), \\
\bar{\pi}_{n-i-1} & =\left(\begin{array}{ll}
\pi_{n-i+1} & 0 \\
0 & 1
\end{array}\right), \\
\bar{\pi}_{n-i} & =\binom{\pi_{n-1}}{0},
\end{aligned}
$$

$\bar{\pi}_{j}=\pi_{j}$ for the remaining numbers j.

We define a homomorphism $a: A \rightarrow C_{:}^{0}$ by

$$
\alpha=\xi_{i}^{0} \pi_{n-i}^{*} \beta
$$

In this case we have the relation

$$
\pi_{i} \alpha=\left(d_{i+1} \xi_{i+1}-(-1)^{i+1} \xi_{i} d_{n+1-i}^{*}\right) \beta .
$$

We define the boundary homomorphism in the following way:

$$
\begin{gathered}
\delta_{i+1}=\left(d_{i+1}, \pi_{i} \alpha\right), \\
\delta_{i+2}=\binom{d_{i+2}}{0}, \\
\delta_{n-i-1}=\left(\begin{array}{ll}
d_{n-i-1}, & 0
\end{array}\right), \\
\delta_{n-i}=\left(\begin{array}{ll}
d_{n-i} & 0 \\
\beta^{*} & 1
\end{array}\right), \\
\delta_{n-i+1}=\binom{d_{n-i+1}}{0},
\end{gathered}
$$

$$
\boldsymbol{\delta}_{j}=\boldsymbol{d}_{j} \text { for all remaining numbers } j
$$

Further, put

$$
\begin{gathered}
\eta_{i+1}=\left(\begin{array}{cc}
\xi_{i+1} & -\xi_{i+1} \beta \\
0 & 1
\end{array}\right), \\
\eta_{i+2}=\left(\xi_{i+2}, 0\right) \\
\eta_{n-i-1}=\binom{\xi_{n-i-1}}{0}, \\
\eta_{n-i}=\left(\begin{array}{cc}
\xi_{n-i} & 0 \\
-\beta^{*} \xi_{n-i} & (-1)^{(n-i)(t+1)}
\end{array}\right) \\
\eta_{j}=\xi_{j} \text { for all remaining numbers } j
\end{gathered}
$$

Special cases occur when $n=2 k+1, i=k-1$ and when $n=2 k, i=k-1$. In the first case we put

$$
\begin{aligned}
\delta_{i+2} & =\delta_{n-i-1}=\left(\begin{array}{ll}
d_{i+2} & 0 \\
0 & 0
\end{array}\right) \\
\eta_{i+2} & =\eta_{n-i-1}\left(\begin{array}{ll}
\xi_{i+2} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

In the second case we put

$$
\begin{gathered}
\bar{C}_{k}=C_{k} \oplus A \oplus A, \\
\bar{C}_{k+1}=C_{k+1} \oplus A, \\
\bar{C}_{k}^{0}=C_{k}^{0} \oplus A \oplus A, \\
\delta_{k}=\left(d_{k}, \pi_{k-1} \alpha, 0\right), \\
\delta_{k+1}=\left(\begin{array}{cc}
d_{k+1} & 0 \\
0 & 0 \\
\beta^{*} & 1
\end{array}\right), \\
\eta_{k}=\left(\begin{array}{ll}
\xi_{k} & -\xi_{k} \beta \\
0 & 1 \\
0 & 0
\end{array}\right), \\
\eta_{k+1}=\left(\begin{array}{lll}
\xi_{k+1} & 0 & 0 \\
-\beta^{*} \xi_{k+1} & 1 & 0
\end{array}\right) .
\end{gathered}
$$

An immediate check of the conditions (1^{\prime}) and (2^{\prime}) shows that the Poincare pair $\left(\bar{C}, \bar{C}^{0}, \delta, \eta\right)$ is well defined. The boundary of this pair $\left(\bar{C}^{0}, \delta, \eta^{0}\right)$ is, according to Lemma 1.1, a Poincaré complex. We will say that the complex ($\bar{C}^{0}, \delta, \eta^{0}$) is obtained as a result of a modification on the complex (C^{0}, d, ξ^{0}) with respect to the homomorphism $\pi_{n-i}^{*} \beta$.

Let us note that modifications can be carried out on Poincaré complexes which are not the boundaries of a Poincaré pair. In addition, modifications can be carried out on Poincaré pairs themselves. Let $\left(C, C^{0}, d, \xi\right)$ be a Poincaré pair of dimension n.

Put

$$
\vec{C}_{i}=C_{i} \oplus A, \quad j=i+1, n-i-1,
$$

$$
\begin{gathered}
\bar{C}_{i}=C_{i} \oplus A, \quad j=i+1, n-i-1 \\
\delta_{i+1}=\left(d_{i+1}, \alpha\right) \\
\delta_{i+2}=\binom{d_{i+2}}{0}
\end{gathered}
$$

where $\beta: A \rightarrow C_{n-i}^{*}$ is a homomorphism such that $\left.\begin{array}{c}\delta_{n-i-1} \\ =\left(d_{n-i+1},\right. \\ d_{n-1}^{*}\end{array}\right]=0$,

$$
\begin{gathered}
\eta_{i+1}=\left(\begin{array}{ll}
\xi_{i+1} & 0 \\
0 & 1
\end{array}\right), \\
\boldsymbol{\eta}_{n-i-1}=\left(\begin{array}{ll}
\xi_{n-i-1} & 0 \\
0 & (-1)^{(n-i+1)(i+1)}
\end{array}\right) .
\end{gathered}
$$

Proposition 2.1. Let α be an algebraic Poincaré complex and $\bar{\alpha}$ the result of a modification of it. Then the complex α is bordant to the complex \bar{a}.

The proposition follows easily from Lemma 1.4.
Proposition 2.2. Let a be an algebraic Poincare' complex. Then the complex α is
bordant to another Poincaré complex β for which all the homology, with the exception of the homology in the middle dimension (for even n) or in the two middle dimensions (for odd n), is zero. Analogously every Poincare' pair can be modified to a pair for which the homology is zero except in the middle (or the two middle) dimensions.

Proof. Let $H_{i}(C)$ be the first nontrivial homology group of the complex C, $i<(n-1) / 2$. Then the module Ker d_{n-i+1}^{*} is a projective module. Consequently there exists an epimorphism β from a certain free module A onto the module $\operatorname{Ker} d_{n-i+1}^{*} \subset$ C_{n-i}^{*}. Let us carry out a modification of the complex C with respect to the homomorphism β. We obtain a new complex \bar{C} for wh $H_{i}(C)=0 \mathrm{o} \mathrm{r} j \leq i$. The rest of the proof is carried out by induction.

§3. Homotopically equivalent algebraic Poincare'complexes

Two Poincaré complexes $\alpha=(C, d, \xi)$ and $a^{\prime}=\left(C^{\prime}, d^{\prime}, \xi^{\prime}\right)$ will be called homotopically equivalent if there exists a homomorphism $f: C \rightarrow C^{\prime}$ such $\quad \mathrm{t} 1 f d=d^{\prime} f \mathrm{n} \mathrm{d}$ $\xi^{\prime}=f \xi f^{*}$ and moreover f induces an isomorphism in homology.

Lemma 3.1. Homotopically equivalent algebraic Poincare complexes are cobordant.
Proof. As in Lemma 1.3, let $\beta=\left(C, C^{0}, d, \xi\right)$ and $\beta^{\prime}=\left(C^{\prime}, C^{0 \prime}, d^{\prime}, \xi^{\prime}\right)$ be algebraic Poincare pairs where $C^{0}=F_{1} \oplus F_{2}, d=d_{1} \oplus d_{2}, \xi^{0}=\eta_{1} \oplus \eta_{2}, C^{0^{\prime}}=$ $F_{2}^{\prime} \oplus F_{3}, d^{\prime}=d_{2}^{\prime} \oplus d_{3}, \xi^{\prime 0}=-\eta_{2}^{\prime} \oplus \eta_{3}$ and the complexes $\left(F_{2}, d_{2}, \eta_{2}\right)$ and $\left(F_{2}^{\prime}, d_{2}^{\prime}, \eta_{2}^{\prime}\right)$ are homotopically equivalent, i.e. there exists a homomorphism f : $F_{2} \rightarrow F_{2}^{\prime}$ such that $f d_{2}=d_{2}^{\prime} f, \eta_{2}^{\prime}=f \eta_{2} f^{*}$. Define the inclusion $i: F_{2} \rightarrow C^{0} \oplus C^{0 \prime}$ by the formula $i(x)=(x, f(x))$. Put $A=\left(C \oplus C^{\prime}\right) / i\left(F_{2}\right)$ and $A^{0}=C^{0} \oplus C^{0 \prime} /\left(F_{2} \oplus F_{2}^{\prime}\right)$, and define the homomorphism ζ as the composition

$$
A^{*} \rightarrow\left(C \oplus C^{\prime}\right)^{*} \xrightarrow{-\oplus \oplus \xi^{\prime}}\left(C \oplus C^{\prime}\right) \rightarrow A
$$

The remainder of the proof is analogous to the proof of Lemma 1.3. The existence of Poincaré pairs β and β^{\prime} is guaranteed by Lemma 1.4.

Corollary 3.2. Let the Poincare complex $\alpha=(C, d, \xi)$ have the form $C_{i}=\bar{C}_{i} \oplus A$, $C_{i+1}=\bar{C}_{i+1} \oplus A$ and $C_{j}=\bar{C}_{j}$ for the remaining numbers j. Let

$$
d_{i+1}=\left(\begin{array}{ll}
\bar{d}_{i+1} & 0 \\
0 & 1
\end{array}\right)
$$

Then the complex $\bar{a}=(\bar{C}, \bar{d}, \bar{\xi})$ is a Poincare complex bordant to the complex a.
We are now in a position to strengthen Proposition 2.2.
Proposition 3.3- Let a be an algebraic Poincare' complex. Then the complex a is bordant to a Poincare complex $\beta=(C, d, \xi)$ for which the modules C_{i} are zero except in the middle dimension (for even n) or the two middle dimensions (for odd n).

The proof springs immediately from Proposition 2.2 and Corollary 3.2.
§4. The construction of an element of the Wall groups $L_{n}^{Q}(\pi)$.
Even-dimensional case
Theorem 4.1. To each algebraic Poincare complex there can be associated an element of the group $L_{n}^{Q}(\pi)$ which depends only on the bordism class of the complex.

Proof. By modifying the complex if necessary, according to Proposition 3.3 we may suppose that there is only one module $C_{k}, n=2 k$, which is not zero. Thus the homomorphism $\xi_{k}: C_{k}^{*} \rightarrow C_{k}$ is an isomorphism, where $\xi_{k}^{*}=(-\mathrm{I})^{k} \xi_{k}$ according to condition (2) of $\S 1$. This means that there is a nondegenerate scalar product given on the free module C_{k} with values in the ring Λ which is symmetric or cosymmetric depending on the sign of $(-1)^{k}$. Consequently we can associate with the complex α an element of the group $L_{n}^{Q}(\pi)$. Let us show that this element is correctly defined and does not depend on the representative of the given bordism class. For this it is sufficient to show that if $\alpha=\partial \beta$ then the complex a corresponds to the zero element of the group $L_{n}^{Q}(\pi)$.

Thus, let $\alpha=\partial \beta$. Inasmuch as only the module C_{k}^{0} in the complex α is nonzero, it is possible to modify the pair β so that only the modules C_{k} and C_{k+1} are nonzero. Let us consider an arbitrary homomorphism of the free module A

$$
\begin{aligned}
& \beta: A \rightarrow C_{k+1^{*}}^{*} \\
& \beta: A \rightarrow C_{k+1^{+}}^{*}
\end{aligned}
$$

Put

$$
\begin{gathered}
\alpha=5_{k} \beta \\
\bar{C}_{k}=C_{k} \oplus A \oplus A \\
\bar{C}_{k+1}=C_{k+1} \oplus A
\end{gathered}
$$

$$
\bar{C}_{k}^{0}=C_{k}^{0} \oplus A \oplus A
$$

$$
\bar{C}_{k+1}^{0}=0
$$

Further put

$$
\begin{gathered}
\delta_{k+1}=\left(\begin{array}{ll}
d_{k+1} & \alpha \\
0 & 1 \\
\beta^{*} & 0
\end{array}\right), \\
\eta_{k}=\left(\begin{array}{ll}
\xi_{k} & 0 \\
0 & 0 \\
0 & 1
\end{array}\right), \\
\eta_{k+1}=\left(\begin{array}{lll}
\xi_{k+1} & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

It is not difficult to verify that we obtain a Poincare pair whose boundary ($\bar{C}_{k}^{0}, \eta_{k}^{0}$) defines the same element in the group $L_{n}^{Q}(\pi)$ as the complex $\left(C_{k}, \xi_{k}\right)$. By choosing the
homomorphism β in a suitable way we can arrange that the homology $H_{h}\left(C, C^{0}\right)$ is trivial. Consequently we can suppose that $C_{k}^{0}=C_{k}$. Thus we have the diagram

Inasmuch as the homomorphism ξ induces an isomorphism between the homology of the complex C^{*} and the homology of the complex C / C^{0}, it follows that homomorphisms d_{k+1}^{*}, ξ_{k}^{*} are monomorphisms and moreover the product homomorphism

$$
d_{k+1}^{*} \oplus \xi_{k}^{*}: C_{k}^{0_{k}} \rightarrow C_{k+1}^{*} \oplus C_{k+1}
$$

is an isomorphism. Making a change of coordinates with the help of the isomorphism $\left(d_{k+1}^{*} \oplus \xi_{k}^{*}\right.$), we quickly confirm that the scalar product on the module C_{k}^{0} is trivial.

§5. The construction of an element of the Wall group $L_{n}^{Q}(\pi)$.
 Odd-dimensional case

Theorem 5.1. To each algebraic Poincare complex there can be associated an element of the group $L_{n}^{Q}(\pi)$ depending only on a bordism class of complexes.

Proof. Recall that the Wall group $L_{n}^{Q}(\pi)$ in the odd-dimensional case $n=2 k+1$ is a group of invertible matrices of order $2 m$ preserving the scalar product given by the matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
(-1)^{k} & 0
\end{array}\right)
$$

factorized by the subgroup generated by the so-called elementary transformations. The matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and matrices of the type

$$
\left(\begin{array}{ll}
A & C \\
B & D
\end{array}\right)
$$

where A is an invertible matrix, are related to elementary transformations. It is easy to see that if $C=(-1)^{k+1} C^{*}$ then the matrix

$$
\left(\begin{array}{ll}
1 & C \\
0 & 1
\end{array}\right)
$$

is elementary.
Now let a Poincare complex a be given. According to Proposition 3-3 the complex a is bordant to a complex of the type

In a module $C_{k+1} \oplus C_{k+1}^{*}$ we introduce a scalar product by means of the matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
(-1)^{k} & 0
\end{array}\right)
$$

It is clear that the imbedding $\phi: C_{k}^{*} \rightarrow C_{k+1} \oplus C_{k+1}^{*}, \phi=\xi_{k+1} \oplus d_{k+1}^{*}$, is an embedding onto a direct summand, and that the scalar product is trivial on the image $\operatorname{Im} \phi$. Consequently there exists a transformation A of the module $C_{k+1} \oplus C_{k+1}^{*}$ which preserves the scalar product and $A=(\phi, \psi)$, i.e. an element of the group $L_{n}^{Q}(\pi)$ has been defined.

Let us show that if the complex α is the boundary of a Poincare pair then the element defined above of the group $L_{n}^{Q}(\pi)$ is zero. Let $a=\partial \beta$ and $\beta=\left(C, C^{0}, d, \xi\right)$. Let us modify the pair β so that only $C_{k}^{0}=C_{k}$ and C_{k+1} are nonzero. Adding, if necessary, a module in dimension $k+2$, we can suppose that the horaomorphism ξ_{k} : $C_{k+2}^{*} \rightarrow C_{k}^{0}$ is an epimorphism. By carrying out a modification of the pair β with respect to a certain map $A \rightarrow C_{k+2}^{*}$ we may suppose that the homomorphism d_{k+1} : $C_{k+1} \rightarrow C_{k}^{0}$ maps a certain submodule $A \subset C_{k+1}, A \cap C_{k+1}^{0}=0$, epimorphically onto the module C_{k}^{0}. After this we can again "split off" the module C_{k+2} and make it zero. Thus we may suppose that $C_{k}^{0}=A, C_{k+1}=A \oplus B \oplus C, C_{k+1}^{0}=B, d_{k}=(\mathbf{1}, d, 0)$ and $\xi_{k+1}=\left\|\xi_{i j}\right\|$, where $\xi_{k+1}^{*}=(-1)^{k+1} \xi_{k+1}$.

Consider the new Poincaré pair

$$
\begin{gathered}
\bar{C}_{k}^{o}=\bar{C}_{k}=A \oplus C, \\
\bar{C}_{k+1}=A \oplus C \oplus B \oplus C, \\
\bar{C}_{k+1}^{o}=B \oplus C, \\
\delta_{k+1}=\left(\begin{array}{llll}
1 & 0 & d & 0 \\
0 & 1 & 0 & -1
\end{array}\right), \\
\eta_{k+1}=\left(\begin{array}{lllr}
\xi_{11} & \xi_{13} & \xi_{12} & \xi_{13} \\
\xi_{31} & \xi_{33} & \xi_{32} & \xi_{33} \\
\xi_{21} & \xi_{23} & \xi_{22} & \xi_{23} \\
\xi_{31} & \xi_{33} & \xi_{32} & \xi_{33}
\end{array}\right) .
\end{gathered}
$$

It is easy to see that the embedd $\overline{\mathcal{M}} \bar{C}_{b}^{0_{b}^{*}} \rightarrow \bar{C}_{b+1}^{o}, \oplus \bar{C}_{b \perp,}^{o}$,
is defined by the matrix

$$
\bar{\varphi}: \bar{C}_{k}^{o^{*}} \rightarrow \bar{C}_{k+1}^{o} \oplus \overline{\mathrm{C}}_{k+1}^{o+}
$$

$$
\bar{\varphi}=\left(\begin{array}{lr}
d^{*} & 0 \\
0 & -1 \\
\xi_{k+1}^{l} & 0 \\
\text { same ef anent of the }
\end{array}\right. \text { eroup }
$$

pair (C, C^{0}, d, ξ) which can be represented in the form

$$
\begin{gathered}
A=C_{k}^{0}, \quad C_{k+1}^{0}=B, \\
C_{k+1}=A \oplus B, \\
d_{k+1}=(1, d), \\
\eta_{k+1}=\left(\begin{array}{ll}
\xi_{11} & \xi_{12} \\
\xi_{21} & \xi_{22}
\end{array}\right) .
\end{gathered}
$$

It is easy to see thai: $\xi_{12}=(-1)^{k+1} \xi_{21}^{*}$ is an isomorphism. By carrying out a suitable change of coordinates in the module A we may put $B=A^{*}$ and $\xi_{12}=1$. Then $d=(-1)^{k+1} d^{*}$. The embedding $\phi: C_{k}^{0^{*}} \rightarrow C_{k+1}^{0} \oplus C_{k+1}^{0 *}$ is given by the matrix

$$
\binom{1+\xi_{22} d^{*}}{\Omega^{*}}
$$

The change of coordinates in the module $C_{k+1}^{0} \oplus C_{k+1}^{0 *}$ given by the matrix

$$
\left(\begin{array}{rr}
1 & \xi_{22} \\
0 & 1
\end{array}\right)
$$

changes the matrix of the embedding ϕ into

$$
\binom{1}{d^{*}}
$$

The theorem is proved.
§6. Modifications of smooth manifolds
For each smooth manifold M^{n} with fundamental group there is defined an algebraic Poincaré complex in the sense defined in $\S 1$. One utilizes for this the \cap product between chains and cochains (see for example $\left.t^{1}\right]$). Conditions (2) and (2^{\prime}) can be fulfilled by using the ring Λ with coefficients modulo 2 . If a homotopy equivalence between two manifolds is given then the algebraic Poincaré complexes corresponding to them are also homotopically equivalent. Thus the results of $\S \S 3,4$ and 5 give the following theorem.

Theorem 6.1. There exists a function associating with each manifold M^{n} an element $\sigma\left(M^{n}\right) \in L_{n}^{Q}(\pi)$, where $\pi_{\cdot}\left(M^{n}\right)=\pi$, and $\pi_{1}\left(M^{n}\right)$ preserves die orientation of M^{n}. The element $\sigma\left(M^{n}\right)$ is a homotopy invariant and an invariant of the bordism $\Omega_{*}(K(\pi, 1))$.

Theorem 6.2. Let $f: M_{1}^{n} \rightarrow M_{2}^{n}$ be a map of degree 1 and F a stable fiber bundle trivialization $t\left(M_{1}^{n}\right) \oplus f^{*}(\xi)_{1}$, where ξ is a certain fibration over m_{2}^{n} and $f_{*}: \pi_{1}\left(M_{1}^{n}\right) \rightarrow$
 the manifold M_{1}, and let $q: L_{n}(\pi) \rightarrow L_{n}^{Q}(\pi)$ be the natural inclusion. Then

$$
q\left(\alpha\left(M_{1}, f, F\right)\right)=\sigma\left(M_{1}^{n}\right)-\sigma\left(M_{2}^{n}\right)
$$

Proof. The corresponding map between algebraic Poincaré complexes is an epimorphism. Let us consider the complex $C_{3}=\operatorname{Ker} f_{.}$It is clear that $C_{\mathbf{3}}^{*} \approx \operatorname{Coker} f^{*}$, and therefore ξ^{1} induces the structure of a Poincare complex o ${ }_{1} C_{3^{\circ}} 11 \mathrm{us}$ we have the diagram

Further, to each modification of the triple (M_{1}, f, F) there corresponds a certain modification of the complexes C_{3} and C_{1} which commutes with the inclusion g. Thus for even $n=2 k$ we modify the complex C_{1} until \hat{C}_{3} consists only of a group in the middle dimension. Inasmuch as the homomorphism \boldsymbol{g} induces a monomorphism in homology, we can represent the complex C_{1} in the form of a direct s,$C_{3} \oplus C_{2}$, e r e the differential d^{\prime} has the form

$$
d^{\prime}=\left(\begin{array}{ll}
0 & d \\
0 & d^{2}
\end{array}\right)
$$

and $d \neq 0$ only in dimensions $k+1$. The homomorphism ξ^{1} in view of the self-duality can be represented in the form

$$
\xi^{1}=\left(\begin{array}{cc}
\xi^{3} & 0 \\
0 & \xi^{2}
\end{array}\right)
$$

Further, in every dimension $i<k$ we carry out simultaneous modifications in the complexes C_{2} and C_{3}, identifying them by means of the isomorphism f. Then the unique nondiagonal differential d_{k+1}^{\prime} maps the module $C_{2, k+1} \approx C_{3, k+1}$ onto a direct summand of the $\operatorname{modc} C_{2, k} \mathrm{hich}$ does not intersect the module $C_{3, k}$. Thus by a suitable choice of the direct decomposition it is possible to modify the complexes C_{2} and C_{3} up to the middle dimension.

For odd $n=2 k+1$ we carry out a modification up to the middle dimensions in an analogous way, and decompose the complex C_{1} into the direct sum $C_{1}=C_{2} \oplus C_{3}$. Then the element of the group $L_{n}^{Q}(\pi)$ is defined by an embedding matrix of the form

$$
\left(\begin{array}{ll}
\varphi_{3} & \varphi \\
0 & \varphi_{2}
\end{array}\right)
$$

where ϕ_{3} and ϕ_{2} are embeddings onto a direct summand in the module with trivial scalar product. Thus the homomorphism ϕ may be represented in the form $\phi=a \phi_{2}$. Consequently

$$
\left(\begin{array}{ll}
\varphi_{3} & \varphi \\
0 & \varphi_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & \alpha \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
\varphi_{3} & 0 \\
0 & \varphi_{2}
\end{array}\right)
$$

i.e. the element of the group $L_{n}^{Q}(\pi)$ defined by the matrix

$$
\left(\begin{array}{ll}
\varphi_{3} & \varphi \\
0 & \varphi_{2}
\end{array}\right)
$$

is equal to the direct sum $\left(\phi_{3}\right)+\left(\phi_{2}\right)$. Theorem 6.2 is proved.

BIBLIOGRAPHY

[1] C. T. C Wall, Surgery of compact manifolds, preprint, Liverpool Univi., 1968.
[2]-, Surgery of non-simply-connected manifolds, Ann. of Math. (2) 84 (1966), 217-276. MR 35 \#3692.
[3] J. L. Shaneson, Wall's surgery obstruction groups for $Z \times G$, for suitable groups G, Bull. Amer. Math. Soc. 74 (1968), 467-471. MR 36 \#7149.
[4] S. P. Novikov, Manifolds with free Abelian fundamental groups and their applications \{Pontrjagin classes, smoothnesses, multidimensional knots), Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 207-246; English transl., Amer. Math. Soc. Transl. (2) 71 (1968), 1-42. MR 33 \#4951.
[5]-, Homotopically equivalent smooth manifolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 365-474; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 271-396. MR 28 \#5445.
[6] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 \#5584.

Translated by:
A. West

