
I N T E G R A L  G E O D E S I C S  O F  A F L O W  ON L I E  G R O U P S  

A.  S .  M i s h c h e n k o  

The problem of determining the integrals of a flow on an n-dimensional  solid body was posed in 1964 
by V. I. Arnol 'd  (see also [lj). In the present  work we calculate a ser ies  of such in tegra ls .  

§ 1 .  N o t a t i o n  

Let G be a Lie group; let X be the vector  field of the group G, and f a smooth function. Then X0 e) 
denotes the derivative of the func t ionf  along the vector  field X. If  q is a diffeomorphism of the group G, 
then q induces an automorphism of the r ing of functions and the space of vector  fields:  

~o q) (x)  ~= f (q~ (~)), ~(xi(f)(x) = x (~ ( ,q )  (qr,(x)).  

As usual Lg, Rg denote dif feomorphisms Lg(X) = gx, Rg(x) = xg, i .e. ,  left and right t ranslat ions.  The space 
of Ief t- invariant  vec tor  fields X, i .e. ,  fields for which Lg(x) =X, is a Lie algebra q of the group G. If  we 
are  given a met r ic  on the manifold G, then for any vector  of the fields X, Y it is possible to const ruct  a 
function with values on the manifold G, equal to the sca la r  product <X, Y>. The metr ic  is said to be leR- 
invariant if < Lg(X), Lg(Y)> = Lg(<X, Y>). For any metr ic  on the manifold G we can ass ign  a covariant  
differentiation of vec tors  of the fields, by the following express ion (see [2], p. 60) : 

2 (X ,  Vzr )  = Z(<X, Y) )  + (Z, [X, r]> I- Y(<X, Z>) -~- <r, IX, Z]) - - X  (<r, Z > ) -  <X, IV, Zl>. (1) 

Let TG be the tangent bundle for the group G. Then the left t ranslat ion Lg induces a left t ranslat ion 
of the tangent bundle Lg : TG ~ TG and a project ion o f  the tangent bundle of the tangent space T e to the unit 
o f  the g r o u p  L : oTG ~ T e. 

§2 .  T h e  F l o w  E q u a t i o n  

Assume we a re  given a lef t - invariant  metr ic  on the group G. It then is defined in a single-valued 
manner  by the met r ic  on the tangent space T e and the mapping L. 

The field X is said to be geodesic if  VxX ~ 0. It is c lear  that an integral  curve of the geodesic field 
X is a geodesic curve,  while converse ly ,  any geodesic curve can be represented as the integral  curve of 
some geodesic field. 

Proposi t ion 1. If X is a geodesic field then Lg(X) is also a geodesic field. 

Proposi t ion 2, A vec tor  field on the tangent bundle TG, corresponding to a flow equation, is left-  
invariant; i .e. ,  the project ion L : TG ~ Te is consistent  with this vector  field. 

Proposi t ion 3, The equation for  the geodesics  of a vector  field has the form 

X ( ( X ,  Y>) = t Y ( < X ,  X>)-- (X, IY, X]), 

where X is some des i red  geodesic field and Y is some vec tor  field. 

COROLLARY, If X is a geodesic field, then X(<X, X>) - 0. 

Let x(t) E G be a geodesic curve,  X(t) E TG the tangent vector  at the point x(t), and let Ye be any vec-  
t o r  of the space T e .  
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Proposi t ion 4. For  any geodesic curve and any vec tor  Ye we have the identity 

(Rx  (t) (Y~), X (t))  - -  const. 

The functions standing in the left-hand side of the identity a re  obtained by integrals of the geodesics 
of the vector  field in the tangent bundle T(G) and a re  r e f e r r ed  to as kinetic moments .  

Let us set  C(t) = L(X(t)) = Lx(t)-l(X(t)). It is c lear  that for every  t, C(t) is a vector  of the tangent 
space T e. It can be called the angular veloci ty fixed to the system of coordinates of the body. We will now 
descr ibe  the flow equation of the vector  C(t). 

Proposi t ion 5. Let Ye(t) E Te be any vec tor  function. Then 

(t), Ve (t)X/ -- <C (t), [C (t), Ve(t)J). (*.) 
dt 

COROLLARY. There ex is ts  an in tegra l  of  the "k inet ic  energy" (d/dt) < C(t), C(t) > = 0 or <C(t), 
C(t) > =cons t .  

§ 3 .  T h e  I n t e g r a l  o f  t h e  " K i n e t i c  M o m e n t "  

Integrals  of the "kinetic moment" are  given on the tangent bundle TG. However, some of them 
cannot be "placed" upon the tangent space at the unit, T e. 

We will say that two vec tors  C I, C 2 E Te a r e  equivalent if there exists  an element g E G such that for 
any vector  D E Te we have the equation <Lg_IRgD, CI> = <D, C2>. 

Proposi t ion 6. Any function defined on the space T e and assuming equal values on equivalent vec tors ,  
is by means of an integral  of Eq. (2), dependent on the integral  of the "kinetic moment."  Other lef t - invar i -  
ants of integrals ,  dependent on the integrals  of the "kinetic moment,"  do not exist.  

§ 4 .  M o t i o n  of  a R i g i d  n - D i m e n s i o n a l  B o d y  w i t h  S t a t i o n a r y  P o i n t s  

Let us examine the par t i cu la r  case  when the group G = SO(n) is that of orthogonal mat r ices .  The 
space Te can be identified with that of all skew-symmet r i c  mat r ices ,  and the tangent space TG of the 
bundle, with mat r ices  of the form AB or  BA, where A is skew-symmet r i c ,  and B is orthogonal. Examining 
the motion of a solid n-dimensional  body, whose configuration space is the group SO(n), it is easi ly shown 
that the met r ic  on the group is lef t - invariant .  For  n > 3 not every  lef t - invariant  metr ic  corresponds  to the 
flow of a solid body, and only those met r i cs  do, which are  obtained in the following manner .  Let I be some 
diagonal mat r ix  with positive eigen-values ~i. We then define a metr ic  on the group by the formula 

(X, Y~ = tr ( X I Y '  ~ ):'IX'), 

where X, Y E TG, a n d X '  denotes the t ransposed matrix.  It is easi ly seen that this metr ic  is left- invariant .  

Proposi t ion 7. The flow equation on the tangent space Te has the form 

d--- X • I -F I d--- X : :  I X X  - -  X X I .  (3) 
dt dt 

Proposi t ion 8. Equation (3) has the following integrals :  

L, (X) = tr I X I k X f  ~-kl , s >~ O. 
\;__0 

By virtue of §3 par t  of the collection of integrals of the "kinetic moment" can be examined on the 
tangent space T e. Since in the case  of the group SO(n), equivalence of vec tors  in the space Te is usually 
conjugacy of the mat r ices  q~(X) relat ive to in ter ior  automorphisms of the mat r ices ,  where ~ (YD = XI + IX, 
it is possible to choose an independent sys tem of invariants ,  and namely,  coefficients of the polynomial 
det (cp(X)-#E) for odd order .  We denote these coefficients by Mn_2s, 1 -< s -<n/2. 

THEOREM. The sys tem of integrals Mn_2s, I -< s --<(n/2), Ls,  0 -< s --- n - 2 ,  s ~ 1, is independent. 

Thus the equation of flow of an n-dimensional  solid body has (n(n-1)/2)  + n - 2  independent integrals 
in the tangent bundle TG and (n-2)  + [n/2] independent integrals  in the tangent space Te. 
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§ 5 .  T h e  C a s e  G = S O ( 4 )  

In this case dim Te = 6, and the number of integrals is even, i.e., the invarlant manifold of this flow 
is a closed sur face .  Since the set  of vec tors  X, where dX/dt reduces to zero ,  has dimensionali ty equal to 
three ,  a lmost  every  surface  is a torus.  Let  us now examine the invariant  manifold in the tangent bundle. 
The integral  of the "kinetic moment"  has the form 

F(C, A) = A(CI + IC)A' == P ~ const, 

where A is orthogonal ,  and C is a skew-symmet r i c  matrix.  Let us fix the matr ix  P. Then the level mani-  
fold Mp of the function F is the image Cleft translation) of a project ion in the tangent space To, 

L : Mp-> L (Mp). 

Let ~o: C -~ CI + IC be an isomorphism of the space T e onto itself.  The mapping A -* A~o-I(A 'PA) is a diffeo- 
morphism between the group G and the manifold Mp. The continuous mapping G ~ Mp ~ L(Mp), defined 
by the formula A -~ A 'PAds  a smooth strat if icat ion.  The layer  a t  the point P is a subgroup of the group G. 
In our case this subgroup is a two-dimensional t o r u s .  Thus the invariant  manifold of geodesic flow for the 
group SO(4) is a 4-dimensional  manifold with layers  and a basis  (the torus) a lmost  everywhere  in the tan- 
gent bundle of the group. 

§6 .  P r o o f  o f  t h e  T h e o r e m  

For the proof  we choose,  in the tangent space T e,  a basis  from the skew-symmet r i c  mat r ix  Pij, for 
which, in the place (i, j) we have +1, and in (j, i) the value - 1 ,  while in the remaining points we have zero .  
I t  is eas i ly  seen that [Pij, Pjk] = Pik, Pij = - P j i .  

I f  X .... ~,  xt;P~i is  any skew-symmet r i c  matr ix,  then the integrals L s have the form 

1<] l I 

where ;~i, as indicated above, a r e  the eigenvalues of the diagonal mat r ix  I. We will show that the functions 
Ls,  0 < s < n - 2 ,  are  independent. F o r  this it is necessa ry  to compute the rank of the matr ix  consist ing of 
the part ia l  der ivat ives  of the functions Ls at the points xij = 1, i < j. 

The integrals  of Mn_2s equal to the coefficients of the polynomial dot UP(X) -~t(E)) will be calculated 
at the points xli = - x i l  = 1, Xzk_l, ~k =-X2k,  2k-I = 1, xij =0 for the remaining indices (i, j). 

Let the initial n be an even number.  

Then 

de( (q~ (X)-- IrE) 1-[ (~  -!- (~,~-, +: ' ' 
~=~ ~ l  + (~,~ + ~,~.)~ x~ 2 ,~' " t=~ ~s + (~ ._~  + x~l ), ~li-L ~, J 

In the case of odd n we obtain a formula  of s imi la r  type. It is easi ly seen that the integral  Mn-~ coincides 
with the integral  L t. 

Let us denote by ffs the s - th  o rde r  e lementa ry  symmet r i c  polynomials in the var iables  (A~i-I + Xfl )2, 
2 --< i --< (n/2), 1 --< s --< ( r d 2 ) - l .  Analogously we denote b y t e s  and~'~rs the s- th  e lementary  symmet r i c  
polynomials in the variables  (A~k-I + X~k )2, 2 --- k < (n/2), k ¢ i  or  k ¢ i ,  k ~j .  The coordinates of the g rad-  
ient of the function Ls (respectively,  the function Ms) at the points indicated above will be denoted by 
Ls,  i,j (respectively,  by Ms, i, j), where (i, j) is the index of the corresponding coordinate,  

The calculation of these gradients is done by using the following equation: 

f o r i  = l o r f o r i - - 2 k  + l , j - - - 2 k ;  

Ls. i. i ~ 0 
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for  the r e m a i n i n g  va lues  (i, j) ,  which ,  h o w e v e r ,  a r e  not  o f  i n t e r e s t  to us;  

M,,._,~, l, ~ = (~'L + ~'~ o,-1; 

Mn-~. ~. ,i = (kz + X,)~a,_,, i > 3; 
nlz 

We now f o r m  the  m a t r i c e s  of n u m b e r s  L s , i , j  and M n _ z , s , i ,  j, of  s co lumns  and index (i, j) a long the 
rows .  By m e a n s  of  a s e r i e s  o f  e l e m e n t a r y  t r a n s f o r m a t i o n s  the e l e m e n t s  o f  the m a t r i x  a r e  r e p l a c e d  by  the 
fol lowing n u m b e r s :  

L~,,,;--.x~+'--~ +~, M._.,, , ,~(~, '--~)~_,, i>~3, 

M,_,,. x., --> (gl - -  gl) a~_,, L~. st-,. ,; --~ 0, 

n/'z 
gs 

k -71= l 

Now our  m a t r i x  is of  b lock  t r id i agona l  type ,  whose  d iagonal  cons i s t s  of two b locks .  The d e t e r m i n a n t  of the 
f i r s t  b lock  is  obvious ly  not  equal  to z e r o .  Now let  ?'l = 0, ?~2 = 1, X2j_iX2j = 1. Then  se t t ing  a i ,s  = Mn-2s 

(,2 _x2 )-i  2i-1,2i ~2i-1 2i , we obtain the e l e m e n t s  of  the second  b lock  in the fol lowing f o r m :  

n]s 

a~ .~ : ?o '~ _2+  ~, ((~_z+~,.,~)2--2)?Us~_~, 2 . ~ i - ~ n / 2 ,  2 ~ s ~ n / 2 .  
k ~ l , k ~  

M o r e o v e r ,  we have  

a~,~ = (1 - -  n + 2s) ~ ~s~_~ + (s - -  1) ~ ~s,_. 

It  is now eas i ly  seen  that  the  m a t r i x  a i , s  is nondegene ra t e .  The p r o o f  for  even  n is comple t e .  The c a s e  of 
odd n r e d u c e s  to the p rev ious  one by  le t t ing Xn --~ 0. 
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