INTEGRAL GEODESICS OF A FLOW ON LIE GROUPS

A. S. Mishchenko

The problem of determining the integrals of a flow on an n-dimensional solid body was posed in >1964
by V. I. Arnol'd (see also {1)). In the present work we calculate a series of such integrals.

§1. Notation

Let G be a Lie group; let X be the vector field of the group G, and £ a smooth function. Then X(f)
denotes the derivative of the functionf along the vector field X. If ¢ is a diffeomorphism of the group G,
then ¢ induces an automorphism of the ring of functions and the space of vector fields:

e =Few). XN E =X T ®)

As usual Lg, Rg denote diffeomorphisms Lg(x) = gx, Rg(x) =xg, i.e., left and right translations. The space
of left-invariant vector fields X, i.e., fields for which Lg(x) =X, is a Lie algebra g of the group G. If we
are given a metric on the manifold G, then for any vector of the fields X, Y it is possible to construct a
function with values on the manifold G, equal to the scalar product <X, Y>. The metric is said to be left-
invariant if < Lg(X), Lg(Y)> = Lg(<X, Y>). For any metric on the manifold G we can assign a covariant
differentiation of vectors of the fields, by the following expression (see [2], p. 60):

2¢X, V¥ = Z(X, V3) +<Z, X, YI> - F Y (KX, Z3) <Y, [X, 2] — XY, Z3) —<X, Y, ZD). (1)

Let TG be the tangent bundle for the group G. Then the left translation Lg induces a left translation
of the tangent bundle Lg : TG — TG and a projection of the tangent bundle of the tangent space Tg to the unit
of the group L :. TG — Te.

$§2. The Flow Equation

Assume we are given a left-invariant metric on the group G. It then is defined in a single-valued
manner by the metric on the tangent space Te and the mapping L.

The field X is said to be geodesic if VxX = 0. It is clear that an integral curve of the geodesic field
X is a geodesic curve, while conversely, any geodesic curve can be represented as the integral curve of
some geodesic field.

Proposition 1. If X is a geodesic field then Lg<X) is also a geodesic field.

Proposition 2. A vector field on the tangent bundle TG, corresponding to a flow equation, is left-
invariant; i.e., the projection L : TG — Te is consistent with this vector field.

Proposition 3. The equation for the geodesics of a vector field has the form
X (X, ¥3) =S¥ (X, X5)— <X, 1Y, XD,
where X is some desired geodesic field and Y is some vector field.

COROLLARY. If X is a geodesic field, then X(<X, X>) = 0.

Let x(t) € G be a geodesic curve, X(t) € TG the tangent vector at the point x(t), and let Yg be any vec-
tor of the space Te..
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Proposition 4. For any geodesic curve and any vector Ye we have the identity
{Ry 5 (Ye), X (t)y = const.

The functions standing in the left-hand side of the identity are obtained by integrals of the geodesics
of the vector field in the tangent bundle T(G) and are referred to as kinetic moments.

Let us set C(t) = L{X(t)) = Lyt)-1(X(t)). It is clear that for every t, C(t) is a vector of the tangent
space Tg. It can be called the angular velocity fixed to the system of coordinates of the body. We will now
describe the flow equation of the vector C(t).

Proposition 5. Let Yg(t) € Te be any vector function. Then

<—C<t> V0> = €O CH. Yo, 2)

COROLLARY. There exists an mtegral of the "kinetic energy" (d/dt) <C(t), C(t)> =0 or <C(¥),
C(t)> =const.

§3. The Integral of the ""Kinetic Moment"

Integrals of the "kinetic moment" are given on the tangent bundle TG. However, some of them
cannot be "placed"” upon the tangent space at the unit, Te.

We will say that two vectors Cy, C, € Te are equivalent if there exists an element g € G such that for
any vector D € Te we have the equation <Lg_1RgD, Cy> =<D, Cy>

Proposition 6. Any function defined on the space Ty and assuming equal values on equivalent vectors,
is by means of an integral of Eq. (2), dependent on the integral of the "kinetic moment." Other left-invari-
ants of integrals, dependent on the integrals of the "kinetic moment," do not exist.

§4. Motion of a Rigid n-Dimensional Body with Stationary Points

Let us examine the particular case when the group G =SO(n) is that of orthogonal matrices. The
space Tg can be identified with that of all skew-symmetric matrices, and the tangent space TG of the
bundle, with matrices of the form AB or BA, where A is skew-symmetric, and B is orthogonal. Examining
the motion of a solid n-dimensional body, whose configuration space is the group SO(n), it is easily shown
that the metric on the group is left-invariant. For n> 3 not every left-invariant metric corresponds to the
flow of a solid body, and only those metrics do, which are obtained in the following manner. Let I be some
diagonal matrix with positive eigen-values Aj. We then define a metric on the group by the formula

X, Yy =tc(X/Y' -+ YIX),
where X, Y € TG, and X' denotes the transposed matrix. It is easily seen that this metric is left-invariant.

Proposition 7. The flow equation on the tangent space Te has the form
Ax o r L X e IXX — XX 3)
dt dt
Proposition 8. Equation (3) has the following integrals:
Ly(X) = tr (‘“ IXI”XI‘S“"’) §>0.
k=0 i

By virtue of §3 part of the collection of integrals of the "kinetic moment" can be examined on the
tangent space Te. Since in the case of the group SO(n) , equivalence of vectors in the space Te is usually
conjugacy of the matrices ¢(X) relative to interior automorphisms of the matrices, where ¢ (X) = XI +IX,
it is possible to choose an independent system of invariants, and namely, coefficients of the polynomial
det (¢ (X)~pE) for odd order. We denote these coefficients by My-,g, 1 =s =n/2.

THEOREM. The system of integrals My-,g, 1 =5 =(n/2), Lg, 0 =8 =n—2, s #1, is independent.

Thus the equation of flow of an n-dimensional sohd body has (n(n—1)/2) +n—2 independent integrals
in the tangent bundle TG and (n—2) + [n/2] mdependent integrals in the tangent space Te.
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§5. The Case G = S0O(4)

In this case dim Te = 6, and the number of integrals is even, i.e., the invariant manifold of this flow
is a closed surface. Since the set of vectors X, where dX/dt reduces to zero, has dimensionality equal to
three, almost every surface is a torus. Let us now examine the invariant manifold in the tangent bundle.
The integral of the "kinetic moment" has the form

F(C, A) = A(CI -+ IC)A’ = P = const,

where A is orthogonal, and C is a skew-symmetric matrix. Let us fix the matrix P. Then the level mani-
fold Mp of the function F is the image (left translation) of a projection in the tangent space Te,

L : Mp—>L(Mp).

Let ¢: C — CI +1IC be an isomorphism of the space Tg onto itself. The mapping A — A¢@ “1A'PA) is a diffeo-
morphism between the group G and the manifold Mp. The continuous mapping G & Mp - L(Mp), defined

by the formula A — A'PA,is a smooth stratification. The layer at the point P is a subgroup of the group G.
In our case this subgroup is a two-dimensional torus., Thus the invariant manifold of geodesic flow for the
group SO(4) is a 4~-dimensional manifold with layers and a basis (the torus) almost everywhere in the tan-
gent bundle of the group.

§6. Proof of the Theorem

For the proof we choose, in the tangent space Tg, 2 basis from the skew-symmetric matrix P; i for
which, in the place (i, j) we have +1, and in (j, i) the value —1, while in the remaining points we have zero.
It is easily seen that {Pjj, Pjk] = Pik, Pij = —Pjj.

If X - 3 xyPy; is any skew-symmetric matrix, then the integrals Lg have the form
’ 1<y

A+ A

+ l (7\.5+1 . xs—}-l) xi’j:

Ls(X) = Ls (xy) = Z

i<j by —~ l

where Aj, as indicated above, are the eigenvalues of the diagonal matrix 1. We will show that the functions
Lg, 0 =s =n—2, are independent. For this it is necessary to compute the rank of the matrix consisting of
the partial derivatives of the functions Lg at the points xjj =1, i <j.

e
The integrals of Mp-,s equal to the coefficients of the polynomial det (¢ (X) —p(E)) will be calculated
at the points xg; =—xjy = 1, Xpk-q, sk = ~Xok, 2k-1 = 1. Xjj =0 for the remaining indices (i, j).

Let the initial n be an even number.

Then

i : S W T
w 1 2i—1) Xy, 2i—1 at!” X1, 3i
det (¢ (X)—nE %o (A A Mg Xy, ) X [ 1+ = .
((p ( ) * ) tl-—[l (y’ ( . : e p‘g + (y +2y)? x:s ﬁ-—é l"‘ + a’zi—; + A‘zl)’ xgi——l. al
In the case of odd n we obtain a formula of similar type. It is easily seen that the integral Mp-, coincides
with the integral L.

Let us denote by 0g the s-th order elementary symmetrlc polynomlals in the variables (Ay.q + Ay)?,
2=1=(n/2), 1Ss = (n/2)-1. Analogously we denote by j0s and s the s-th elementary symmetric
polynomials in the variables (Age—y + Agk)?, 2 =k = (n/2), k =i or k' #i, k #j. The coordinates of the grad-
ient of the function Lg (respectively, the function Mg) at the points indicated above will be denoted by
Ls, i,j (respectively, by Ms,i,j), where (i, j) is the index of the corresponding coordinate.

The calculation of these gradients is done by using the following equation:

. l + 541 s+1
Ls.t./"‘ M—’v,' (A‘ A'] )
fori=1lorfori=2k +1,j=2k;
Ls.i.!—"‘-‘o
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for the remaining values (i, j), which, however, are not of interest to us;
Muas, 1, i = (M + M) 05y
Mags, 1, of = (M + A'1)1’2 Oy, (23

n/3
Mn—z;. 2i—1, 3 = 0"2!—1 + A'ai)z(fﬂs—l + (;"1 + A'z s? Us—z) + 2, (}“Hl—l + A'ai)z ((M + a‘zle—l)’i +‘ (M + M)’);«g Os—3, i> 2.

k=3
k¥t

We now form the matrices of numbers Ls,i,j and Mp-y,5,i,j. of 8 columns and index (i, j) along the
rows. By means of a series of elementary transformations the elements of the matrix are replaced by the
following numbers:

Ls. LT M‘H - l?“, Mn-—zs, [ g (A'f — }‘-7)‘{ Os—1» ] > 3,

P 3
Mp— g, 1, 3> (M — Ag) 0, Ls, gi1, 20— 0,

. nls
Mp—ss, 2l—1, 20 —> (x;l—x - xgi) ((7"1 + 7"2)27 Os— + Z ((M + A'713—1.)2 + ()“1 + Mk)z) 18 O's—z)-

k=2
ksl

Now our matrix is of block tridiagonal type, whose diagonal consists of two blocks. The determinant of the
first block is obviously not equal to zero. Now let A; =0, Ay =1, Ay;_yNp; =1. Then settingaj g = Mp-yg,
si~1,21 (Mj-1—2%) 7!, we obtain the elements of the second block in the foilowing form:

nfz
4;, s = 405 + 2 ((,"ak—l + }“-zlz)z —“2)? 205~ 2Lign2, 25<n/2.
R=1,k#3

Moreover, we have
ai,s=(l—n+425) 4002+ (s— 1) 1051

It is now easily seen that the matrix #i s is nondegenerate. The proof for even n is complete. The case of
odd n reduces to the previous one by letting A — 0.
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