QUADRATIC FORMS OVER COMMUTATIVE GROUP
RINGS AND THE K~-THEORY

1. M. Gel'fand and A. S. Mishchenko

This work originated from the solution of a problem stated Ly S. P. Novikov [1]. Namely, he noticed
that in classification of smooth manifolds and also in other problems of smooth topology of not simply
connected manifolds, an algebraic problem about classification of quadratic forms with coefficients in group
rings arises. This problem is considered in the second section of this work for the commutative case. It
" is very interesting that the invariants obtained can be easily described in terms of the K-functor. It is
better to consider the given problem as a particular case of a more general problem, namely the equiva-
lence problem of quadratic forms, the coefficients of which depend on a point of the manifold.

We consider, for example, the simplest setting up of the problem. We consider a commutative dis-
crete group G, for example, a free abelian group with a finite number of generators. Let li ajk(g) Il =A be
a matrix the elements of which are complex valued (for example, finite) functions over the group (elements
of the group ring). We assume that A is an Hermitian matrix, i.e., that A* = A, where A* = ﬂEki(g") B
We say that A and B are equivalent if an invertible matrix X = [[xjx(g) | exists such that B = X*AX. The
problem is to determine conditions of equivalence of mat.ices, among other conditions for a matrix to be

equivalent to
E 0
a~(¢ _)

0 —E/’
where Ep and Eq are identity matrices of orders p and q, respectively.

We discuss in brief the initial considerations in solution of this problem. Passing from the group G
to the character group G¥*, we obtain that a quadratic form ajk(x), depending on the point y € G*is given;
here aki(y) =ajk(x). There arises then the equivalence problem of quadratic forms A(x) = lajk(x If, where
x runs through the character group. The idea of description of the invariants of the quadratic form A(y) .
is to consider a stratification, the layer of which at every point y consists of all methods of reduction of
the quadratic form at the same point y to a canonical form. '

It turns out that the answer is formulated in terms of a K-functor of the character group of the free
abelian group G. The majority of these elementary considerations do not depend on the fact that Gis a
character group. Thus, the classification of quadratic forms over group rings is reduced to the problem
of classification of quadratic forms depending continuously on the point of a complex.

Analogous results hold for real symmetric and antisymmetric forms., They lead to a KR-functor
and to a new functor, which we denote by SK.

We bring an example of a theorem. Assume that we have a matrix [lajj(t) ||, where t = (ty, . . ., tn)
runs through a n-dimensional torus. Two forms A(t) = [lajj(t) | and B(t) = Ibjj(t) | are called equivalent if
a matrix X(t) = l|xx(t) | (Det X(t) = 0foranyt) exists such that B(f) = X*t)A()X(t). Assume that DetA(t) = 0.
The invariants of A(f) will then be, first of all, the sigrature p~q of the matrix A(t) at each point t. This
signature is constant as a result of continuity. It turns out that in addition to the signature we have 2071-1
integral invariants of the form "aik(t) I (if p and q are not simultaneously smaller than n). For example,
on the circle (n = 1) the signature is the unique invariant.
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This work allows us also to compute simply the rank of the group of quadratic forms over group
rings, obtained earlier by Shaneson from considerations of smooth topology.

1. A Useful Construction of a Classifying Space of the Group Ul{n)

Let X be a finite cell complex, and let A(x) be a function on the complex X assuming values in the
spaces Sy of Hermitian non-degenerate matrices of order n. We put in correspondence to each such func-
tion A{x) an element of the group K(X).

1.1. Equivalence of Hermitian forms Depending on a Point of the Space. LetS(p,q),p +q =nbea
subspace of the Sy, consisting of all matrices with signature equal p~q. Every matrix A ¢€S(p, g}, hence, it
can be brought by transformations of the form A — C*AC to the canonical form

E, 0
IIM?‘_; 0 __Eq)v

where Ep, Eq are identity matrices of orders p, q respectively. It is therefore possible to construct

2 mapping T: GL(n, C) — S(p, q), which puts in correspondence to each non-degenerate matrix C¢ L(n, C)
the matrix 7(C) = C*lp,qC €S(p, @). Let U(p, q) be the subgroup of the group GL(n, C), which leaves fixed
the matrix Ip g, i.e., C*p,qC =1Ip,q for all C € U(p, g}. It is easy to see that the mapping is a principal
stratification with the layer U(p, q). Insofar as the group U(p, q) contracts to the group U{p) X U(q), and
the group L(n, C) to the group U(n), it follows that the space S(p, q) is homotopically equivalent to the space
U(n)/U(p) X U(g). Introducing the stabilization of the matrices S{p, @ —~S{p+1, q+1) according to the form-

A0 O
ula A—>(Q 1 0), we obtain that the space S = lim Sp is homotopically equivalent to the classifying space
00 —I -

Z X BU of an infinite dimensional unitary group U (U is understood to be lim U(n)}). Thus, the space S of
Hermitian non-degenerate matrices is a classifying space of a unitary K-theory. An element of the group
K(X) determined by the function A(x) will be denoted by [A].

If two functions A(x) and B(x) are homotopic, then they define the same element of the group K(X).
We shall, however, be interested in what follows in another equivalence relation of functions. We say that
two functions A(x), B(x): X — Sp are equivalent if there exists a function C(x): X - L(n, C), such that
CHXIA(X)C(x) =B(x), x €X. ‘ :

PROPOSITION 1.1, Two functions A{x), B(x): X — S5(p, q) are equivalent if and only if they are
homotopic.

Proof. To every function A(x); X — S{p, q) there corresponds a principal U(p) X Ulg)-stratification
{4, induced by the stratification #: L(n, C) — S(p, q). If the functions A(x) and B(x) are equivalent then the
prinecipal U(p) x U(g)-stratifications corresponding to them are also equivalent. Indeed, let C(x): X —
L(n, C) be a function such that C*x)A(x}C(x) = B(x}. Leta: {5 - L(n, C),b: {p — L(n, C) be mappings of

" the principal stratifications induced by the functions A, B, respectively. We constructa mapping f: A —

£B. Ify € £A is a point covering the point x € X, thenf(y) € £B is determined as a unique point covering
the point x for which b(f(y)) =a(y)Cx).

1t follows from here that the prinecipal U(p)-stratifications which are projections, say, on the first
factor of the group U(p) X U(qg) are also equivalent. Insofar as the space S is a classifying space for U(p)-
stratifications, the mappings A(x) and B(x) are homotopic.

Conversely, if the mappings A(x) and B(x) are homotopic, then there exists a principal U(p) x Ulq)-
stratification 7 on the complex X x I, and 71X x {0} = £a, nlX x {1} = £p. Hence, the stratifications £A
and {B are equivalent. Let, as before, £o — ¢B be a mapping of the principal stratifications. Let the
point y € £A cover the point x € X. We set C(x) =a(y) " !b(f(y)). The value of C(x) does not depend on the
choice of the point y covering the point x, and, as it is easy to see, the relation B(x) = C*x)A(x)C(») holds.

The functions A(x) ama B(x) are consequently equivalent.

Thus, if we form the Grothendieck group, generated by all classes of equivalent functions A(x}, the
addition in which is defined as a direct sum of matrices, then this group is isomorphic to the group K(X).
We notice the following property of the functions A(x).
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PROPOSITION 1.2. Let EA, ¢3 be projections of the principal U(p) X U(q)-stratification {A on the
first and second factors of the group U(p) X U(q). Then [(}]=— [64], where [£A] is an element of the group
K(X), corresponding to the principal U(p) X U(q)-stratification.

Proof. We can assume, without loss of generality, that the signatare of the quadratic form A(x)
equals zero. Let m: U(2n) ~ U(2n) /U(n) X U(n) be the principal U(n} X U(n)-~stratification. We want to
prove that it is trivial over the group U(2n). We associate with the stratification ¥ the stratification with
the group U {(2n) over the basis X =U(2n)/U(n) XU(n). The space of this stratification E can be constructed
as a factor-space of the space U(2n) X U(2n} with respect to the equivalence relation

(ag, b) = (a, gb), gecU(n) xU(r_;)‘c:U(zn).

We construct a section in this stratification: f: X — E. Letx €X, 7(a) =x. ThenSf(x) =(a, a™!). The
definition of the functionf is correct, since if #(a") =x, then a' =ag; hence (a’', aA"‘) =(a, 2"},

COROLLARY 1.3. If Cix) = A{x) ® B(x), then we have in the group fi(X) the equality |C| =2[A][B].

1.2. Real Quadratic Forms. An analog of a real K~theory for complexes with involutions has been
counsidered in [3]. We consider for every complex X with involution a complex vector stratification £, with
an anticomplex involution 7, i.e., if x € £, then T(Ax)= A7(x). Grothendieck’s group generated by the above
stratifications is denoted by KR(X). For the theory of cohomologies constructed over the functor KR(X)
cohomologies of a point are computed, which allows us to compute the groups KR(X) for various spaces,

The construction done in point 1.1 can be extended also to the case of the functor KR(X). We con-
sider the functions A(x): X — S8(p, q), satisfying the condition A(x) =A(7(x)). Two functions A(x) and B(x)
are called equivalent if a function C(x): X — L(n, C) exists such that C(x) = C(7{(x)}, and C*x)A(x)C(x) =B(x).
It turns out that the classes of equivalent functions obtained in this way generate a group isomorphic to
the group KR(X). Indeed, we have

PROPOSITION 1.4. A representing object for the functor KR(X) is the space U(n)/U(p) XU(Q), p +q=n,
on which the involution 7 acts according to the formula

1{C)=C, CeU(n).

Proof. According to the results of 4], if #: E — X is a principal G-stratification in the category of
spaces with involution, where G is a group with involution and the functor of the homotopic groups wqy(E).
is trivial, 0 = q =N, N sufficiently large, then the space X is a representing object of the category of
principal G-stratifications over an arbitrary complex with involution Y. We verify first that the mapping
m: U(n) —~ U(n)/U(p) x Ulg) is a principal stratification in the category of spaces with involution. Let O(n)
be the space of fixed points of the space U(n); let X, be the space of fixed points of the space X. Then
*(O(n)} = X,. Indeed, a point x € X can be represented as a p~dimensional complex subspace L of the space
Cn, If 7(x) =x, then the subspace L is invariant with respect to the involution of complex conjugacy, i.e.,
it is determined by equations with real coefficients. Hence, there exists a y € O(n); such that x(y) =x.
Further, if yy, y, € O(n) and #(yy) = 7(yy) € X,, then y;y;! € Ofp) X O{g). Thus, the fixed points form a princ-
ipal O(p) x O(q)-stratification:

n":0{n)— 0 {ny0 (p) x0{g).

Similarly, the fixed points form, in the space U(n) /U(p),a set isomorphic to O(n}/O(p). The mapping
U(n)/U(p) ~ U(n)/U(p) x U(g) is, therefore, a principal U(q)-stratification in the category of spaces with
involution, and the functor of homotopic groups wq(U(n)/U(p)) is trivial up to dimension p, which was what
we were required to prove.

PROPOSITION 1.3, Two functions A(x) and B(x) are equivalent if and only if they are homotopic in
the category of spaces with involution.

The proof is analogous to the proof of Proposition 1.1.

1.3. Real Antisymmetric Forms. A second analog of K-theory for spaces with involution is the
group, generated by all functions A(x): X — Sy, for which equality A(x) =—A(TX), x € X holds. Two func-
tions A(x) and B(x) are said to be equivalent if a function C{x}): X -~ L(n, Clexists such that C(x) = C{T(x))
and CHx)A(X)C(x) = B(x). We denote Grothendieck's group generated by the above functions by SK(X}.
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PROPOSITION 1.6, There exist natural homomorphisms & and 8
w: K (X)— SK(X), B:SK(X)——jK(X)

such that Bea(x) =x—X% a° B(x) =2x. X denotes here a complex-conjugate stratification.

—i
I i
. Jr=J1,
:C(x)-._-.l‘(A(x) 0 ')Jzi(A(x)—-/_lirx) i(A(x)tZ(fx)))
0 —A(x))  2\(A() +A(w) Ax)—A(w)

Proof. We consider the matrix J = —’——(

7 ) . The following relations:

hold for this matrix. It is clear that C(T%) =—C(x). The mapping @ puts in correspondence to the func-
tion A(x) the function C(x). To equivalent matrices correspond equivalent ones. The mapping 8 reduces,
in fact, to "forgetting" of the involution on the complex X.

COROLLARY 1.7, SK(s%*%) ® Q = @, SK(S%) ® Q = 0. Q is here the field of rational numbers.

2. Quadratic Forms Over Commutative Group Rings

The results of the previous section allow us to determine the invariants of quadratic forms,the coef-
ficients of which belong to a commutative group ring, in homotopic terms. Let G be an abelian finitely
generated group, and Z(G) its group ring. We consider a nondegenerate symmetric or antisymmetric
scalar product in a finitely generated free Z(G)-module M. The scalar product will be assumed trivial if

: 0 E
it can be represented in some basis by the matrix ( +EO ) where E is the identity matrix. All such

Z(G)-modules with a scalar product generate a Grothendieck group L(G). The problem consists of describ-
ing the group L(G) for various groups G. We fix in the module M an arbitrary Z(G)-basis and obtain by the
scalar product a matrix A = [lajkl, the elements of which belong to the ring Z(G) and satisfy the condition.

afj; = + ayj, where the involution * is generated by the correspondence g —~ g1, g €G.

In order to pass to homotopic terms of description of invariants of the group L(G) we replace the
algebraic problem by an analytic one. First we replace the ring of integers Z by the field of real or com-
plex numbers. Secondly, we replace the group ring of the abelian group G by a ring consisting of continu-
ous functions on the character group G* of the group G. Distinct completions of the group ring lead to dis-
tinet subrings of the ring of continuous functions on the character group G¥ however, this probably influ-
ences only slightly the homotopic invariants determined by those subrings.

We shall concentrate in the case of a free abelian group G, for example, on the ring of series
S‘a(g)g, the coefficients a(g) of which are such that P(g) * a(g) tends to zero for any polynomial P(g) (the

elements g are considered as elements of an integral lattice of an Euclidean space). The obtained ring
€ is isomorphic to a ring of functions of the class C* on the character group G* (G* is a torus in this
case). We denote the corresponding group of scalar products by Lc(G). We consider the subring R(G) of
the ring ¢, consisting from series with real coefficients. We denote the group of scalar products cor-
responding to the ring R(G) by LR,o(G) in the symmetric case and by LR,;(G) in the antisymmetric case.

We are now in the position to formulate the basic theorem on homotopic description of invariants of
a group of scalar products over a commutative group ring. Let an involution 7(y) = ¥ "1 be defined on the
character group G*.

THEOREM. There exist the isomorphisms:
Lo(@=K(G), Lro(@)=KR(G) Lai(G)=SK(G").
This theorem is a particular case of the assertions of §1, in points 1.1, 1.2, and 1.3, respectively.

Remark. If one is interested only in the ranks of the groups Lq(G), LR,(Q), LR,1(G)- then the group
L¢(G) decomposes into a direct sum of groups LR ,(G) and LR,4(G): LC(G) @ Q = LR,(G) ® Q + LR,1(G) ® Q.
Groups of scalar products over the integer ring Z(G) are computed up to elements of finite order in [2].

Not complicated computations show that the groups LR,(G) ® Q and LR,((G) ® Q are isomorphic to the
corresponding groups of scalar products over the ring Z(G). This shows that the method described in the
present article does not lead to an essential loss of information on groups of scalar products over group rings.
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