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This work  or iginated f r o m  the solution of a p r o b l e m  s ta ted by S. P. Novikov [1]. Namely ,  he noticed 
that  in c lass i f i ca t ion  of smooth manifolds  and a lso  in other  p r o b l e m s  of smooth topology of not s imp ly  
connected manifolds ,  an a lgebra ic  p r o b l e m  about c lass i f i ca t ion  of quadrat ic  fo rms  with coeff icients  in group 
r ings a r i s e s .  This p r o b l e m  is cons idered  in the second sect ion of this work for  the commuta t ive  case .  It 
is v e r y  in te res t ing  that the invar ian ts  obtained can be eas i ly  descr ibed  in t e r m s  of the K-functor .  I t  is 
be t t e r  to cons ider  the given p r o b l e m  as  a p a r t i c u l a r  case  of  a m o r e  genera l  p rob l em,  namely  the equiva-  
lence p r o b l e m  of quadra t ic  f o r m s ,  the coeff ic ients  of which depend on a point of the manifold.  

We cons ide r ,  for  example ,  the s i m p l e s t  set t ing up of the p rob l em.  We cons ider  a commuta t ive  d i s -  
c r e t e  group G, fo r  example ,  a f r e e  abel ian  group with a finite number  of gene ra to r s .  Le t  ~aik(g)~1 = A be 
a ma t r ix  the e l emen t s  of which a r e  complex  valued (for example ,  finite) functions over  the group (elements  
of  the group r ing) .  We a s s u m e  that  A is an Hermi t i an  ma t r i x ,  i .e . ,  that  A* = A, where  A* = |Eki(g  -1) ~. 
We say  that  A and B a r e  equivalent  i f  an inver t ib le  ma t r i x  X = I~Xik(g} ~1 exis ts  such that B = X*AX. The 
p r o b l e m  is to de t e rmine  conditions of equivalence of m a t A c e s ,  among other  conditions for  a ma t r ix  to be 
equivalent  to 

where  Ep and Eq a r e  identi ty m a t r i c e s  of  o r d e r s  p and q, r e spec t ive ly .  

We d iscuss  in b r i e f  the ini t ia l  cons idera t ions  in solution of this p roblem.  Pass ing  f r o m  the group G 
to the c h a r a c t e r  group G*, we obtain that  a quadrat ic  f o r m  aik(X), depending on the point X E G* is given; 
h e r e  aki(x) = aik(X). T h e r e  a r i s e s  then the equivalence p rob l em of quadrat ic  f o rms  A(X) = ~aik(X)II, where  
X runs  through the c h a r a c t e r  group.  The idea of desc r ip t ion  of  the invar iants  of the quadra t ic  fo rm A(X) 
is to cons ide r  a s t r a t i f i ca t ion ,  the l aye r  of which at  e v e r y  point X cons i s t s  of  al l  methods of reduct ion of 
the quadra t ic  f o r m  at  the s a m e  point X to a canonical  fo rm.  

It  turns  out that  the ans wer  is  fo rmula ted  in t e r m s  of a K-functor  of the c h a r a c t e r  group of the f r ee  
abel ian  group G. The ma jo r i ty  of these  e l e m e n t a r y  cons idera t ions  do not depend on the fact  that  G is  a 
c h a r a c t e r  group.  Thus ,  the c lass i f i ca t ion  of quadra t ic  f o r m s  ove r  group r ings is reduced  to the p rob lem 
of c lass i f i ca t ion  of quadra t ic  f o r m s  depending continuously on the point of  a complex .  

Analogous r e su l t s  hold for  r ea l  s y m m e t r i c  and a n t i s y m m e t r i c  f o r m s .  They lead to a KR-functor  
and to a new functor ,  which we denote by SK. 

We br ing  an example  of a t h e o r e m .  A s s u m e  that  we have  a ma t r i x  ]laij(t) II, where  t = (t 1, . . . .  tn) 
runs  through a n -d imens iona l  t o ru s .  Two f o r m s  A(t) : ~laij(t)~1 and B(t) = ~lbij(t)H a re  cal led equivalent  if 
a ma t r i x  X(t) = IlXik(t) II (Det X(t) ~ 0 f o r a n y t )  ex is t s  such that  B(t) = X*(t)A(t)X(t). A s s u m e  that DetA(t) ~ 0. 
The invar ian ts  of A(t) will  then be,  f i r s t  of all ,  the s igna ture  p -q  of the m a t r i x  A(t) a t  each point t .  This  
s igna tu re  is constant  as  a r e su l t  of continuity.  It  tu rns  out that  in addition to the s ignature  we have 2 n - l - 1  
in tegra l  invar ian t s  of  the f o r m  ~laik(t) | (if p and q a r e  not s imul taneous ly  s m a l l e r  than n). For  example ,  
on the c i r c l e  (n = 1) the s igna tu re  is the unique invar ian t .  
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This work allows us also to compute simply the rank of the group of quadratic forms over group 
rings, obtained ea r l i e r  by Shaneson from considerations of smooth topology. 

1.  A U s e f u l  C o n s t r u c t i o n  o f  a C l a s s i f y i n g  S p a c e  o f  t h e  G r o u p  U(n)  

Let X be a finite cell complex, and let A(x) be a function on the complex X assuming values in the 
spaces Sn of Hermitian non-degenerate matrices of order  n. We put in correspondence to each such func- 
tion A(x) an element of the group K(X). 

1.1. Equivalence of Hermittan forms Depending on a Point of the Space. Let S(p, q), p + q = n be a 
subspace of the Sn, consisting of all matr ices with signature equal p-q.  Every matrix A E S(p, q), hence, it 
can be brought by transformations of the form A -~ C *AC to the canonical form 

where Ep, Eq are  identity matrices of orders  p, q respect ively.  It i s  tbereforb possible to construct 
a mapping ~r: GL{n, C) ~ S(p, q), which puts in correspondence to each non-degenerate matrix C 6 L(n, C) 
the matrix ~(C) = C*Ip,qC E S(p, q). Let U{p, q) be the subgroup of the group GL(n, C), which leaves fixed 
the matr ix Ip,q, i .e . ,  C*Ip,qC = Ip,q for  all C EU(p, q). It is easy to see that the mapping is a principal 
stratification with the layer  U(p, q). Insofar as the group U(p, q) contracts  to the group U(p) x U(q), and 
the group L(n, C) to the group U(rd, it follows that the space S(p, q) is homotopically equivalent to the space 
U(r~/U(p) x U(q). Introducing the stabilization of the matr ices  S(p, q)--~S(p+l, q÷l)  according to the form-  ( 0o) 
ula A ~ 1 , we obtain that the space S = ltm Sn is homotoptcally equivalent to  the classifying space 

0 --~ 

Z x BU of an infinite dimensional unitary group U (U is understood to be li_m U(n)). Thus, the space S of 
Hermitian non-degenerate matr ices  is a classifying space of a unitary K-theory.  An element of the group 
K(X) determined by the function A(x) will be denoted by [A]. 

If two functions A(x) and B(x) a r e  homotopic, then they define the same element of the group K(Y0. 
We shall, however, be intsrested in what follows in another equivalence relation of functions. We say that 
two functions A(x), B(x): X - -Sn  are  equivalent if there  exists a function C(x): X --  L(n, C), such that 
C*(x)A(x)C(x) = B(x), x e X. 

PROPOSITION 1.1. Two functions A(x), B(x): X --- S(p, q) are  equivalent if and only i f  they are  
homotopic. 

Proof.  To every function A(x): X --~ S(p, q) there  corresponds a principal U(p) x U(q)-stratification 
~A, induced by the stratification T: L(n, C) - -  S(p, q). If the functions A(x) and B(x) are  equivalent then the 
principal U(p) x U(q)-strat~fica~ions corresponding to them are  also equivalent. Indeed, let C(x): X --  
L(n, C) be a function such that C*(x)A(x)C(x) = B(x). Let a: ~A "~ L(n, C), b: ~B --  L(n, C) be mappings of 
the principal stratifications induced by the functions A, B, respectively.  We construct a mapping f :  ~A --" 
~B. If y 6 ~A is a point covering the point x 6 X, thenf(y)  6 ~B is determined as a unique point covering 
the point x for which b0f(y)) = a(y)C(x). 

It follows from here  that the principal U(p)-stratifications which a re  projections,  say, on the f i rs t  
factor  of the group U(p) x U(c~ are  also equivalent. Insofar as the space S is a classifying space for U(p)- 
stratif ications,  the mappings A(x) and B(x) are  homotopic. 

Conversely,  if the mappings A(x) and B(x) are  homotopic, then there  exists a principal U(p) x U(q)- 
stratification ~ on the complex X × I, and q[X × {0} = ~A, ~ X  x {1} = ~B. Hence, the stratifications ~A 
and ~B are  equivalent. Let,  as before,  ~A ~ ~B be a mapping of the principal strat if ications.  Let the 
point y E ~A cover  the point x E X. We set  C(x) = a(y)-lb(f(y)).  The value of C(x) does not depend on the 
choice of the point y covering the point x, and, as it is easy to see,  the relation B(x) = C*(x)A(x)C(x) holds. 
The functions A(x) aml B(x) are  consequently equivalent. 

Thus, if we form the Grothendieck group, generated by all c lasses of equivalent functions A(x), the 
addition in which is defined as a d i rec t  sum of matr ices ,  then this group is isomorphic to the group K(}0. 
We notice the following proper ty  of the functions A(x). 
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PROPOSITION 1.2. Let  ~ ,  ~ be project ions  of the principal  U(p) x U(q)-strat i f icat ion ~A on the 
f i r s t  and second fac tors  of  the group U(p) x U(q). Then [ ~ ]  ---- [ ~ ] ,  where [ ~ ]  is an e lement  of the group 
K(X), corresponding to the pr inc ipa l  U(p) x U(q)-strat i f icat ion.  

P roof .  We can a s sume ,  without loss  of general i ty ,  that the signature of the quadrat ic  fo rm A(x) 
equals z e ro .  Let  ~: U(2n) -*U(2n)/U(n) ×U(n) be the principal  U(n) x U(n)-strat if icat ion.  We want to 
p rove  that it is t r iv ia l  over  the group U(2n). We associa te  with the s trat i f icat ion lr the s t ra t i f icat ion with 
the group U (2n) over  the basis  X = U(2n)/U(n) xU(n).  The space of this s t ra t i f icat ion E can be constructed 
as a f ac to r - space  of the space U(2n) x U(2n) with r e spec t  to the equivalence relat ion 

(ag, b) = (a, gb), g ~ U (n) x U (n) C U (2n). 

We cons t ruc t  a sect ion in this s t ra t i f ica t ion:  f :  X -* E. Le t  x E X, 7r (a) = x.  Thenf (x )  = (a, a- i ) .  The 
definition of  the f u n c t i o n f  is c o r r e c t ,  s ince if  f (a ' )  = x,  then a t = ag; hence (a t, a v-l) = (a, a-X). 

COROLLARY 1~3. If  C(x) =A(x) ® B(x), then we have in the group K(X) the equality ICI = 2 [A]~] .  

1.2. Real ~ a d r a t i c  F o r m  s. An analog of a rea l  K- theory  for complexes with involutions has been 
cons idered  in [3]. We cons ider  for  e v e r y  complex X with involution a complex vector  s t ra t i f ica t ion ~, with 
an ant icomplex involution r ,  i .e . ,  i f  x E ~, then T(~tx)= ~ r ( x ) .  Orothendieck 's  group genera ted  by the above 
s t ra t i f ica t ions  is denoted by KR(X). For  the theory  of cohomologies constructed over  the functor KR(X) 
cohomologies of a point  a r e  computed,  which allows us to compute the groups KR(X) for  various spaces .  

The const ruct ion done in point 1.1 can be extended also to the case of the functor  KR(X). We con-  
s ide r  the functions A(x): X --* S(p, q), sat isfying the condition A(x) =A(r (x) ) .  Two functions A(x) and B(x) 
a r e  called equivalent  if a function C(x) : X ~ L(n, C) exis ts  such that ~(x) = C(r(x)), and C*(x)A(x)C(x) =B(x). 
It  turns out that  the c lasses  of  equivalent  functions obtained in this way genera te  a group isomorphic  to 
the group KR(X). Indeed, we have 

PROPOSITION 1.4. A rep resen t ing  object  for  the functor  KR(X) is the space U(n)/U(p) x U(q), p +q =n, 
on which the involution 1" ac ts  according to the formula  

~(c) = c,  ceu(n). 

Proof .  According to the resu l t s  of [4], if  7r: E -~ X is a pr incipal  G-s t ra t i f ica t ion  in the ca tegory  of 
spaces  with involution, where  G is a group with involution and the functor of the homotopic groups ~ q ( E )  
is t r iv ia l ,  0 -< q --< N, N suff ic ient ly  l a rge ,  then the space  X is a represent ing  object  of t h e c a t e g o r y  of 
pr incipal  G-s t ra t i f i ca t ions  ove r  an a r b i t r a r y  complex with involution Y. We ver i fy  f i r s t  that the mapping 
~r: U(n) -* U(n)/U(p) x U(q) is a pr inc ipa l  s t ra t i f ica t ion in the category of spaces  with involution. Let  O(n) 
be the space  of fixed points of  the space U(v0; let  X0 be the space of fixed points of  the space X. Then 
r(O(n)) = X0. Indeed,  a point  x E X can be r ep re sen t ed  as  a p-dimensional  complex subspace L of the space 
C n. If r(x) = x,  then the subspace L is invar iant  with r e spec t  to the involution of complex conjugacy, i .e . ,  
i t  is de te rmined  by equations with r ea l  coeff ic ients .  Hence,  there  exis ts  a y E O(n) t such that lr(y) = x. 
Fu r the r ,  i f  y | ,  Y2 E O(n) and T(y I) = T(y 2) E X0, then yiy~ i E O(p) x O(q). Thus ,  the fixed points fo rm a p r i nc -  
ipal O(p) x O(q)-s trat i f icat ion:  

=' : O (n)-*  O (n)/O (p) x O (q). 

Simi lar ly ,  the fixed points f o rm ,  in the space U(n)/U(p),a se t  isomorphic to O(n)/O(p). The mapping 
U(n)/U(p) ~ U(n)/U(p) x U(q) i s ,  t h e r e fo r e ,  a pr incipal  U(q)-strat i f icat ion in the ca tegory  of  spaces  with 
involution, and the functor  of  homotopic groups Wq(U(n)/U(p)) is t r ivial  up to dimension p,  which was what 
we were  requi red  to prove.  

PROI~SITION 1.5. Two functions A(x) and B(x) a r e  equivalent i f  and onl~ if they a re  homotopic in 
the ca tegory  of spaces  with involution. 

The p roof  is analogous to the p roo f  of Proposi t ion 1.1. 

1 .3 .  Real An t i symmet r i c  Forms :  A second analog of  K-theory_for  spaces  with involution is the 
group,  genera ted  by all functions A(x): X ~ S n, for  which equality A(x) = --A(I"X), X E X holds.  Two func- 
tions A(x) and B(x) a r e  said to be equivalent  if  a function C(x): X --* L(n, C)exists such that C(x) = C(v(x)) 
and C*(x)A(x)C(x) = B(x). We denote Grothendieckts  group genera ted  by the above functions by SK(X). 
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PROPOSITION 1.6. There exist natural homomorphisms a and 

u: K (X) - .  SK (X), ~: SK (X)-~ K (X) 

such that ~°a(x) = x - ~  a o/3(x) = 2x. ~" denotes here a complex-conjugate stratification. 

! ( - - i  --1 ) The following relations: Proof.  We consider the matrix J = ~-~ 1 i 

j .  _~ j-l, 

:C(x) = j.(A(x) 0 tJ- ~(A(x)--A(~x) i(A(x)+'(,x)) I 
- A (~x)] - 2 \ i  (A (x) +-A (~x)) A (x) - -  7~ (~x) / 

hold for this matrix.  It is c lear  that C ( ~  = -C(x) .  The mapping a puts in correspondence to the func- 
tion A(x) the function C(x). To equivalent matrices correspond equivalent ones. The mapping fl reduces,  
in fact, to "forgetting" of the involution on the complex X. 

COROLLARY 1.7. SK(S 4k+~) ® Q = Q, SK(S 4k) ® Q = 0. Q is here  the field of rational numbers.  

2 .  Q u a d r a t i c  F o r m s  O v e r  C o m m u t a t i v e  G r o u p  R i n g s  

The results of the previous section allow us to determine the invariants of quadratic forms,the coef- 
ficients of which belong to a commutative group ring, in homotopic t e rms .  Let G be an abelian finitely 
generated group, and Z(G) its group ring. We consider a nondegenerate symmetr ic  or  ant isymmetric  
scalar  product in a finitely generated free Z(G)-module M. The scalar  product will be assumed trivial  if 

( it can be represented in some basis by the matrix _ E where E is the identity matrix. All such 

Z(G)-modules with a scalar product generate a Grothendieck group L(G). The problem consists of describ- 
ing the group L(G) for various groups G. We fix in the module M an arbitrary Z(G)-basis and obtain by the 
scalar product a matrix A = ]~aik|, the elements of which belong to the ring Z(G) and satisfy the condition 
a~ = •aki, where the involution * is generated by the correspondence g -~ g-i g E G. 

In order to pass to homotopie terms of description of invariants of the group L(G) we replace the 
algebraic problem by an analytic one. First we replace the ring of integers Z by the field of resl or com- 
plex numbers. Secondly, we replace the group ring of the abelian group G by a ring consisting of continu- 
ous functions on the character group G* of the group G. Distinct completions of the group ring lead to dis = 
tinct subrings of the ring of continuous functions on the character group G ~, however, this probably influ- 
ences only slightly the homotopic invariants determined by those subrings. 

We shall concentrate in the case of a free abelian group G, for example, on the ring of series 

~a(g)g, the coefficients a(g) of which are such that P(g) • a(g) tends to zero for any polynomial P(g) (the 
ge~ 
elements g are considered as elements of an integral lattice of an Euclidean space). The obtained ring 
~(G) is isomorphic to a ring of functions of the class C z on the character group G* (G* is a toms in this 
case). We denote the corresponding group of scalar products by Lc(G). We consider the subring I~(G) of 
the ring (~(G), consisting from series with real coefficients. We denote the group of scalar products cor- 
responding to the ring R{G) by LR,0(G) in the symmetric case and by LR,I(G) in the antlsymmetric case. 

We are now in the position to formulate the basic theorem on homotopie description of invariants of 
a group of scalar products over a commutative group ring. Let an involution v(~ = ~-i be defined on the 
character group G*. 

THEOREM. There exist the isomorphisms: 

Lc ( G) = K ( O'), LR.o ( a ) = K R ( a*), LR., ( G) ~. S K ( G*). 

This theorem is a part icular  case of the assert ions of § 1, in points 1.1, 1.2, and 1.3, respectively.  

Remark. If one is interested only in the ranks of the groups Lc(G), LR,0(G), LR,t(G), then the group 
Lc(G) decomposes into a direct sum of groups LR,0(G) and LR,I(G): Lc{G) ® Q ~ LR,0(G) ® Q + LR,I(G) ® Q. 
Groups of scalar  products over the integer ring Z(G) a re  computed up to elements of finite order  in [2]. 
Not complicated computations show that the groups LR,0(G) @ Q and LR,t(G) ® Q are  isomorphic to the 
corresponding groups of scalar  products over the ring Z(G). This shows that the method described in the 
present  art icle does not lead to an essential loss of information on groups of scalar  products overgroup rings. 
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