Моделирование 3-атомов и грубых молекул интегрируемыми биллиардами

Научный руководитель – Фоменко Анатолий Тимофеевич

Харчева Ирина Сергеевна

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра дифференциальной геометрии и приложений, Москва, Россия $E\text{-}mail: irina \ harcheva@mail.ru$

Определение 1. *Биллиардной книжкой* называется динамическая система, описывающая движение материальной точки в двумерном клеточном комплексе, таком, что:

- 1) клетки размерности 2 являются областями из \mathbb{R}^2 , ограниченными софокусными квадриками;
- 2) к клеткам размерности 1 приписаны перестановки, описывающие переход материальной точки с одной двумерной клетки на другую;
- 3) если граница двух клеток e_1^1, e_2^1 размерности 1 содержит общую клетку e_3^0 размерности 0, то перестановки, приписанные e_1^1 и e_2^1 коммутируют.

Материальная точка движется по прямой внутри двумерных клеток (листов) и, отражаясь о границы двумерных клеток по закону: «угол падения равен углу отражения», переходит по перестановкам на другие листы.

Оказывается, в таком биллиарде вектор скорости материальной точки на протяжении всей траектории будет направлен по касательной к фиксированной квадрике, софокусной с семейством. Поэтому эта система имеет два независимых первых интеграла: квадрат модуля вектора скорости и параметр квадрики Λ , которой траектория (или ее продолжение) касается. Это влечет за собой интегрируемость по Лиувиллю описанной выше динамической системы. В частном случае, когда n=2, такие биллиарды называются топологическими. Топологические биллиарды были полностью классифицированы в работе В.В. Фокичевой [1]. Классификации в общем случае на нынешний момент нет. В классификации В.В. Фокичевой [1] было обнаружено, что многие известные и важные интегрируемые системы с двумя степенями свободы моделируются топологическими биллиардами, то есть их инварианты Фоменко-Цишанга (см. [2]) совпадают. В связи с этим А.Т. Фоменко предложил следующую гипотезу:

Гипотеза. (Фоменко) Биллиардными книжками можно моделировать:

 Γ ипотеза A. все 3-атомы;

Гипотеза В. все грубые молекулы (инварианты Фоменко);

Гипотеза С. все меченые молекулы (инварианты Фоменко-Цишанга) .

Теорема 1 (Ведюшкина-Харчева). Гипотеза Фоменко A верна, а именно, для любого 3-атома (со звездочками или без) алгоритмически строится биллиардная книжка, такая что в её изоэнергетической поверхности Q^3 слоение Лиувилля прообраза окрестности особого значения интеграла Λ , отвечающего траекториям, направленным к или от одного из фокусов, послойно гомеоморфно данному атому.

Теорема 2 (Ведюшкина-Харчева). Гипотеза Фоменко В верна, а именно, для любой грубой молекулы алгоритмически строится биллиардная книжка, такая что в её изо-энергетической поверхности Q^3 слоение Лиувилля послойно гомеоморфно данной грубой молекуле.

Исследование выполнено за счет гранта Российского научного фонда (проект №17-11-01303).

Источники и литература

- 1) Фокичева В. В. Топологическая классификация биллиардов в локально-плоских областях, ограниченных дугами софокусных квадрик. Математический сборник. 2015. Т. 206, № 10. С. 127–176.
- 2) *Болсинов А.В., Фоменко А.Т.* Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, том 1. Ижевск НИЦ "Регулярная и хаотическая динамика 1999.