INTRODUCTION TO TOPOLOGY / TOPOLOGY-1 PROGRAMME

LECTURER: TARAS PANOV

- 1. Topological spaces, continuous maps, homeomorphisms.
- 2. Connectivity, compactness, Hausdorffness. A continuous bijective map from a compact space to a Hausdorff space is a homeomorphism.
- 3. Quotient topology, quotient spaces, examples.
- 4. Product topology, the universal property.
- 5. Pushouts and pullbacks (Cartesian and coCartesian squares), the universal properties, examples.
- 6. Topologies on the function spaces, the compact-open topology, relation to the product topology. The exponential law (without proof).
- 7. Cylinder, cone, suspension, join.
- 8. Pointed spaces, their product, wedge and smashed product.
- 9. Path and loop spaces. The adjunction homeomorphism between maps from a suspension and maps to a loop space.
- 10. Homotopy, two definitions and their relationship via the exponential law. Homotopy equivalence, contractibility, examples.
- 11. Cell complexes (CW complexes), axiomatic definition. The operation of attaching a cell. Cell decomposition of a product of cell complexes.
- 12. Examples of cell complexes: spheres, finite and infinite projective spaces, classical surfaces.
- 13. Homotopy extension property, connection with retractions.
- 14. Homotopy extension property for cellular pairs. Quotients by contractible subspaces.
- 15. Cellular approximation theorem. Homotopical triviality of maps $S^k \to S^n$ with k < n.
- 16. Homotopy of loops. Product of loops, its properties.
- 17. The fundamental group of a pointed space. Its functorial properties. Connection with homotopy and homotopy equivalences.
- 18. Fundamental group: change of basepoint.
- 19. The fundamental group of the circle.
- 20. Consequences of the calculation of $\pi_1(S^1)$: the nonexistence of a retraction $D^2 \to S^1$, Brouwer's fixed-point theorem, the fundamental theorem of algebra.
- 21. Free product of groups. Reduced words. Associativity of product of reduced words. A free group. Presentation of a group by generators and relations. Abelianisation.
- 22. The Seifert-van Kampen theorem.

- 23. A path-connected cell complex is homotopy equivalent to a cell complex with a single zero-cell.
- 24. Presentation of the fundamental group of a cell complex by generators and relations
- 25. Covering spaces. Examples. Path lifting property.
- 26. Covering homotopy property. The existence and uniqueness of a covering homotopy for covering spaces.
- 27. Homomorphism of the fundamental groups induced by a covering map. The cardinality of the preimage of point under a covering map and the index of a subgroup.
- 28. Lifting properies for maps with respect to coverings (for maps from locally path-connected spaces).
- 29. The existence and uniqueness of a simply-connected covering of a path-connected, locally path-connected and semilocally simply-connected space. The universal covering.
- 30. The classification of covering spaces by subgroups in the fundamental group.
- 31. Graphs. The existence of a maximal tree. The fundamental group of a graph.
- 32. Coverings of graphs. The Nielsen–Schreier theorem on subgroups of a free group.
- 33. Locally trivial fibrations. Covering homotopy property.
- 34. Hurewicz and Serre fibrations.
- 35. Fibrations and cofibrations. Factorisation theorems.
- 36. Homotopy groups. Their commutativity.
- 37. Relative homotopy groups. Homotopy exact sequence of a pair.
- 38. Homotopy exact sequence of a fibre bundle.
- 39. The Whitehead theorem.

RECOMMENDED LITERATURE

- [1] Fomenko, A.; Fuchs, D. *Homotopical topology*. Second edition. Graduate Texts in Mathematics, 273. Springer, [Cham], 2016. xi+627 pp.
- [2] Hatcher, A. Algebraic topology. Cambridge University Press, Cambridge, 2002. xii+544 pp.
- [3] Panov, T.E. Introduction to Topology / Topology-1. Lecture Course. (In Russian.) http://higeom.math.msu.su/people/taras/#teaching
- [4] Vassiliev, V. A. *Introduction to topology*. Translated from the 1997 Russian original by A. Sossinski. Student Mathematical Library, 14. American Mathematical Society, Providence, RI, 2001. xiv+149 pp.
- [5] Viro, O. Ya.; Ivanov, O. A.; Netsvetaev, N. Yu.; Kharlamov, V. M. Elementary topology. Problem textbook. American Mathematical Society, Providence, RI, 2008. xx+400 pp.