Permutohedral complex and complements of diagonal subspace arrangements

joint with Vsevolod Tril

Taras Panov

Moscow State University

Workshop on Homotopy Theory Fields Institute, Toronto, July 7–11, 2025

Coordinate and diagonal arrangements

An arrangement is a finite set $A = \{L_1, \dots, L_r\}$ of affine subspaces in some affine space (either real or complex).

An arrangement $A = \{L_1, \ldots, L_r\}$ is coordinate, if every L_i , $i = 1, \ldots, r$, is a coordinate subspace

$$C_{I} = \{(x_{1}, \ldots, x_{m}) \in \mathbb{R}^{m} : x_{i_{1}} = \cdots = x_{i_{k}} = 0\},\$$

where $I = \{i_1, \dots, i_k\}$ is a subset in $[m] = \{1, 2, \dots, m\}$.

Given a simplicial complex $\mathcal K$ on [m], define the real coordinate arrangement

$$CA(K) = \{C_I : I \notin K\}$$

and its complement

$$U_{\mathbb{R}}(\mathcal{K}) = \mathbb{R}^m \setminus \bigcup_{I \notin \mathcal{K}} C_I.$$

Given $I = \{i_1, \dots, i_k\} \subset [m]$, the corresponding diagonal subspace is

$$D_I = \{(x_1, \ldots, x_m) \in \mathbb{R}^m : x_{i_1} = \cdots = x_{i_k}\}.$$

Every simplicial complex ${\cal K}$ on [m] defines a real diagonal arrangement and its complement

$$\mathcal{DA}(\mathcal{K}) = \{D_I \colon I \notin \mathcal{K}\}, \qquad D_{\mathbb{R}}(\mathcal{K}) = \mathbb{R}^m \backslash \bigcup_{I \notin \mathcal{K}} D_I.$$

Proposition

 $\mathcal{K}\mapsto U_{\mathbb{R}}(\mathcal{K})$ (respectively, $\mathcal{K}\mapsto D_{\mathbb{R}}(\mathcal{K})$) is a one-to-one order preserving correspondence between simplicial complexes on [m] and coordinate (respectively, diagonal) arrangement complements in \mathbb{R}^m .

Complex diagonal subspaces $D_I^{\mathbb{C}} \subset \mathbb{C}^m$, diagonal arrangements $\mathcal{DA}_{\mathbb{C}}(\mathcal{K})$, and their complements $D_{\mathbb{C}}(\mathcal{K})$ are defined similarly.

Real moment-angle complexes and the Cai diagonal

The real moment-angle complex corresponding to \mathcal{K} is a subcomplex in the cube $I^m = [-1, 1]^m$:

$$\mathcal{R}_{\mathcal{K}} = \bigcup_{\sigma \in \mathcal{K}} (D^1, S^0)^{\sigma} = \bigcup_{\sigma \in \mathcal{K}} \left(\prod_{i \in \sigma} D^1 \times \prod_{i \notin \sigma} S^0 \right),$$

where $(D^1,S^0)=([-1,1],\{-1,1\}).$

Theorem

There is a deformation retraction $U_{\mathbb{R}}(\mathcal{K}) \stackrel{\simeq}{\to} \mathcal{R}_{\mathcal{K}}$.

Each factor $[-1,1]_i \subset I^m$ is a simplicial complex with vertices $\underline{t}_i = \{-1\}_i$, $t_i = \{1\}_i$ and 1-simplex $u_i = [-1,1]_i$. A cell in I^m is given by

$$u_{\sigma}t_{\tau}\underline{t}_{[m]\setminus(\sigma\cup\tau)}:=\prod_{i\in\sigma}u_{i}\times\prod_{i\in\tau}t_{i}\times\prod_{i\notin(\sigma\cup\tau)}\underline{t}_{i},$$

where σ, τ are non-intersecting subsets in [m]. Cells of $\mathcal{R}_{\mathcal{K}} \subset I^m$ are specified by the condition $\sigma \in \mathcal{K}$.

We dentify cells with the corresponding cellular chains.

Let $\varepsilon_i := \partial u_i = t_i - \underline{t}_i$.

Then the cellular chains $u_{\sigma}\varepsilon_{\tau} := u_{\sigma}\varepsilon_{\tau}\underline{t}_{[m]\setminus(\sigma\cup\tau)}$ form a basis in $C_*(I^m) = \bigotimes_{i=1}^m C_*(I)$.

The dual basis consists of cochains of the form

$$u^{\sigma}t^{\tau}:=u^{\sigma}t^{\tau}\delta^{[m]\setminus(\sigma\cup\tau)}=\bigotimes_{i\in\sigma}u_i^*\otimes\bigotimes_{i\in\tau}t_i^*\otimes\bigotimes_{i\notin\sigma\cup\tau}\delta_i^*\in C^{|\sigma|}(I^m),$$

where u_i^* , t_i^* , \underline{t}_i^* are dual to u_i , t_i , \underline{t}_i respectively, and $\delta_i^* = t_i^* + \underline{t}_i^*$.

The cellular differential is given by

$$du_i^* = 0$$
, $dt_i^* = u_i^*$, $d\delta_i^* = 0$.

The standard \smile -product in $C^*(I)=\mathbb{Z}\langle t_i^*,\delta_i^*,u_i^*
angle$ is given by the relations

$$\begin{aligned} t_i^* \smile t_i^* &= t_i^*, & t_i^* \smile u_i^* &= 0, & u_i^* \smile t_i^* &= u_i^*, & u_i^* \smile u_i^* &= 0, \\ \delta_i^* \smile t_i^* &= t_i^* \smile \delta_i^* &= t_i^*, & \delta_i^* \smile u_i^* &= u_i^* \smile \delta_i^* &= u_i^*, & \delta_i^* \smile \delta_i^* &= \delta_i^*. \end{aligned}$$

This extends to a product in cellular cochains $C^*(I^m)$ and $C^*(\mathcal{R}_{\mathcal{K}})$:

$$u^{\sigma}t^{\tau} \smile u^{\sigma'}t^{\tau'} = (-1)^{(\sigma,\sigma')}u^{\sigma\cup\sigma'}t^{\tau\cup(\tau'\setminus\sigma)}$$

if $\sigma \cap \sigma' = \varnothing$ and $\tau \cap \sigma' = \varnothing$, otherwise the product is zero, and

$$(\sigma,\sigma')=|\{(i,j)\colon i\in\sigma,\ j\in\sigma',\ i>j\}|.$$

Theorem (Li Cai)

The dga above is a model for $\mathcal{R}_{\mathcal{K}}$. In particular, there is a ring isomorphism

$$H(C^*(\mathcal{R}_{\mathcal{K}}), d) \cong H^*(\mathcal{R}_{\mathcal{K}}).$$

The dual diagonal of the cellular chain coalgebra $C_*(I^m)$ is given on the basis chains $u_{\sigma}t_{\tau}\underline{t}_{[m]\setminus(\sigma\cup\tau)}$ by

$$\Delta_{C}(u_{\sigma}t_{\tau}\underline{t}_{[m]\setminus(\sigma\cup\tau)}) = \sum_{\sigma'\subset\sigma} (-1)^{(\sigma',\sigma\setminus\sigma')}u_{\sigma'}t_{\tau}\underline{t}_{[m]\setminus(\sigma'\cup\tau)}\otimes u_{\sigma\setminus\sigma'}t_{\sigma'\cup\tau}\underline{t}_{[m]\setminus(\sigma\cup\tau)}$$

For example, on the top-dimensional cell it is given by

$$\Delta_{C}(u_{[m]}t_{\varnothing}\underline{t}_{\varnothing}) = \sum_{\sigma \subset [m]} (-1)^{(\sigma,[m]\setminus \sigma)} u_{\sigma}t_{\varnothing}\underline{t}_{[m]\setminus \sigma} \otimes u_{[m]\setminus \sigma}t_{\sigma}\underline{t}_{\varnothing}.$$

Permutohedral complex $Perm(\mathcal{K})$

The permutohedron is the polytope in \mathbb{R}^m given by

$$\mathsf{Perm}^{m-1} = \mathsf{conv}\{(\sigma(1), \ldots, \sigma(m)) \in \mathbb{R}^m \colon \sigma \in \mathcal{S}_m\}.$$

Theorem

Faces of $Perm^{m-1}$ of dimension p are in one-to-one correspondence with ordered partitions of the set [m] into m-p non-empty parts. An inclusion of faces $G \subset F$ occurs whenever the ordered partition corresponding to G can be obtained by refining the ordered partition corresponding to F.

Let $F(U_1|\cdots|U_p)$ be the face $Perm^{m-1}$ corresponding to the ordered $(U_1|\cdots|U_p)$ of [m] into non-empty parts U_1,\ldots,U_p .

Assume that elements in every part are increasingly ordered.

For each simplicial complex $\mathcal K$ on the vertex set [m] define the permutohedral complex

$$\operatorname{Perm}(\mathcal{K}) = \bigcup_{\substack{U_1, \dots, U_p \in \mathcal{K}, \\ U_1 \sqcup \dots \sqcup U_p = [m]}} F(U_1 | \dots | U_p).$$

Theorem

There is a deformation retraction $D_{\mathbb{R}}(\mathcal{K}) \stackrel{\simeq}{\to} \mathsf{Perm}(\mathcal{K})$ from the complement of a diagonal subspace arrangement to $\mathsf{Perm}(\mathcal{K})$.

Example

Let K be the complete graph on m vertices. Then Perm(K) is the complex of all cubic faces of the permutohedron.

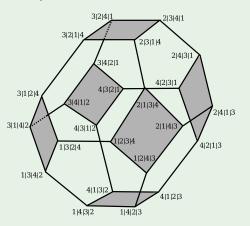


Figure: Complex Perm(K) for the complete graph on 4 vertices

There is also a cellular model for complex diagonal arrangement complements.

Namely, let $Perm^{2m-1}$ be the standard permutohedron in $\mathbb{C}^m \cong \mathbb{R}^{2m}$. Denote the indices $(m+1,\ldots,2m)$ by $(1',\ldots,m')$, the faces of Perm^{2m-1} correspond to ordered partitions of the set

$$[m] \cup [m'] = \{1, 2, \ldots, m, 1', 2', \ldots, m'\}.$$

Now consider the complex

$$\mathsf{Perm}_{\mathbb{C}}(\mathcal{K}) := \mathsf{Perm}^{2m-1} \setminus \bigcup_{\substack{I \notin \mathcal{K} \\ \exists j, k: I \subset U_j, I' \subset U_k}} \mathsf{relint}\, F(U_1|\cdots|U_p),$$

where each set $I' = \{i'_1, \dots, i'_s\}$ of primed indices corresponds to the set $I = \{i_1, \dots, i_s\}$ of same indices without primes.

Theorem

There is a homotopy equivalence $D_{\mathbb{C}}(\mathcal{K}) \simeq \operatorname{Perm}_{\mathbb{C}}(\mathcal{K})$.

Algebraic model for cellular cochains

Let k a commutative ring with unit, and A a graded k-algebra with unit.

Let $(\overline{B}(A), \overline{d})$ be the reduced bar construction of the ring k as a left A-module. We have

$$\operatorname{Tor}_{A}^{-n}(k,k) = H^{-n}[\overline{B}(A), \overline{d}].$$

Now let A be the exterior Stanley-Reisner algebra

$$\Lambda[\mathcal{K}] = \Lambda[x_1, \dots, x_m]/\mathcal{I}_{SR},$$

where $\mathcal{I}_{SR}=(x_{i_1}\cdots x_{i_k}\colon \{i_1,\ldots,i_k\}\notin \mathcal{K})$, with the standard $\mathbb{Z}^m_{\geq 0}$ -grading.

The basis of $\overline{B}^{-n}(\Lambda[\mathcal{K}])$ consists of the elements $[X_1|\cdots|X_n]$, where each X_i is a monomial in $\Lambda[\mathcal{K}]$, $i=1,\ldots,n$, with the multigrading $\mathrm{mdeg}([X_1|\cdots|X_n])=\mathrm{mdeg}(X_1)+\cdots+\mathrm{mdeg}(X_n)$.

Theorem

The cellular cochain complex of Perm(K) is isomorphic to the (1, ..., 1)-component of the reduced bar construction of $\Lambda[K]$:

$$(C^p(\mathsf{Perm}(\mathcal{K});\mathsf{k}),d)\cong (\overline{B}^{p-m}(\Lambda[\mathcal{K}]),\overline{d})_{(1,\ldots,1)}.$$

Proof.

Consider the k-module homomorphism

$$\varphi \colon \mathit{C}^*(\mathsf{Perm}(\mathcal{K})) \to \overline{\mathcal{B}}(\Lambda[\mathcal{K}])_{(1,\dots,1)},$$

defined on the generators by

$$\varphi(F(U_1|\cdots|U_{m-p})^*)=[X_1|\cdots|X_{m-p}],$$

where $X_j = \prod_{i \in U_j} x_i$. The map φ is an isomorphism of k-modules, since it is bijective on generators.

Use Milgram's description of the boundary in the cellular chain complex of permutohedron to show that φ is an isomorphism of chain complexes.

Corollary

For any commutative ring k with unit we have and isomorphism of k-modules

$$H^p(D_{\mathbb{R}}(\mathcal{K});\mathsf{k})\cong \mathsf{Tor}_{\Lambda[\mathcal{K}]}^{p-m}(\mathsf{k},\mathsf{k})_{(1,\ldots,1)}.$$

Since $\Lambda[\mathcal{K}]$ is a graded commutative algebra, there is a natural graded commutative product in the k-module $\operatorname{Tor}_{\Lambda[\mathcal{K}]}^*(k,k)$ that arises from the bar construction. However, this product does not preserve the grading $(1,\ldots,1)$, so it cannot be used for description of the product in the cohomology ring $H^*(\operatorname{Perm}(\mathcal{K});k)$, which is additively isomorphic to $\operatorname{Tor}_{\Lambda[\mathcal{K}]}^*(k,k)_{(1,\ldots,1)}$.

A product of cellular cochains $C^*(\operatorname{Perm}(\mathcal{K}))$ can be defined using a cellular diagonal approximation $\widetilde{\Delta}\colon\operatorname{Perm}^{m-1}\to\operatorname{Perm}^{m-1}\times\operatorname{Perm}^{m-1}$ of the standard diagonal in permutohedron.

Saneblidze-Umble diagonal

A $q \times p$ matrix $O = (o_{i,j})$ is ordered, if:

- 1) $\{o_{i,j}\}=\{0,1,\ldots,q+p-1\};$
- 2) each row and column of O is non-zero;
- 3) non-zero entries in O are distinct and increase in each row and column.

The set of ordered $q \times p$ matrices is denoted by $\mathcal{O}^{q \times p}$.

Given an ordered matrix O, we consider two partitions of [q+p-1]: $c(O)=(O_1|\cdots|O_q)$, where O_j is the j-th column of O; $r(O)=(O^p|\cdots|O^1)$, where O^i is the i-th row of O (note the reversed order of rows).

Here we assume that all zero entries of O_i and O^i are removed.

An ordered matrix $E = (e_{i,j})$ is a step matrix if:

- 1) non-zero entries in each row of E appear in consecutive columns;
- 2) non-zero entries in each column of E appear in consecutive rows;
- 3) the sub, main and super diagonals of E contain a single non-zero entry (i. e., there is a single non-zero entry among $e_{i,j}$ with fixed j-i).

The set of $q \times p$ step matrices is denoted by $\mathcal{E}^{q \times p}$.

Example

The matrix
$$E = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 5 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$
 is a step matrix. The corresponding partitions of $\{1,2,3,4,5\}$ are $c(E) = (14|25|3)$, $r(E) = (4|15|23)$.

For any $(i,j) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ define the down-shift operators $D_{i,j} : \mathcal{O} \to \mathcal{O}$ and the right-shift operators $R_{i,j} \colon \mathcal{O} \to \mathcal{O}$ on $O \in \mathcal{O}^{q \times p}$ by:

- 1) If $o_{i,j} > 0$, $o_{i+1,j} = 0$, $o_{i+1,j} < o_{i,j}$ whenever l < j, $o_{i+1,j} > o_{i,j}$ whenever l > j and $o_{i+1,l} \neq 0$, and there is $o_{i,k} \neq 0$ for some $k \neq i$, then $D_{i,j}O$ is obtained from O by transposing $o_{i,j}$ and $o_{i+1,j}$. Otherwise $D_{i,j}O = O$.
- 2) If $o_{i,j} > 0$, $o_{i,j+1} = 0$, $o_{l,j+1} < o_{i,j}$ whenever l < i, $o_{l,j+1} > o_{i,j}$ whenever l > i and $o_{l,i+1} \neq 0$, and there is $o_{k,i} \neq 0$ for some $k \neq j$, then $R_{i,j}O$ is obtained from O by transposing $o_{i,j}$ and $o_{i,j+1}$. Otherwise $R_{i,i}O = O$.

Example

Consider
$$E = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 5 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$
. Then

$$R_{2,2}E = \begin{pmatrix} 4 & 0 & 0 \end{pmatrix}, \quad D_{2,2}E = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & 5 \\ 4 & 0 & 0 \end{pmatrix}, \quad D_{2,2}E = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & 0 \\ 4 & 5 & 0 \end{pmatrix}, \quad D_{2,3}R_{2,2}E = \begin{pmatrix} 0 & 2 & 3 \\ 1 & 0 & 0 \\ 4 & 0 & 5 \end{pmatrix}.$$

A matrix $A \in \mathcal{O}$ is a configuration matrix, if there is a step matrix E and a sequence of shift operators G_1, \ldots, G_s such that

- 1) $A = G_s \cdots G_1 E$,
- 2) if $G_s \cdots G_1 = \cdots D_{i_2,j_2} \cdots D_{i_1,j_1} \cdots$, then $i_1 \leq i_2$,
- 3) if $G_s\cdots G_1=\cdots R_{i_2,j_2}\cdots R_{i_1,j_1}\cdots$, then $j_1\leq j_2$.

When this occurs, we say that A is derived from E.

The set of $q \times p$ configuration matrices is denoted by $C^{q \times p}$.

All matrices of the previous Example are configuration matrices.

For each m, define

$$\Delta_{SU}(F(1,2,\ldots,m)) = \sum_{q=1}^{m} \sum_{A \in \mathcal{C}^{q \times (m-q+1)}} csgn(A) \ F(c(A)) \otimes F(r(A)),$$

where csgn(A) is a certain sign.

Then extend Δ_{SU} to proper faces $F(U_1|\cdots|U_p)$ via the standard comultiplicative extension:

$$\Delta_{SU}\big(F(U_1|\cdots|U_p)\big)=F\big(\Delta_{SU}(F(U_1))\big|\cdots\big|\Delta_{SU}(F(U_p))\big).$$

Example

$$\Delta(F(12)) = F(12) \otimes F(2|1) + F(1|2) \otimes F(12),$$

$$\Delta(F(123)) = F(1|2|3) \otimes F(123) + F(123) \otimes F(3|2|1) -$$

$$-F(1|23) \otimes F(13|2) + F(2|13) \otimes F(23|1) - F(13|2) \otimes F(3|12) +$$

$$+F(12|3) \otimes F(2|13) - F(1|23) \otimes F(3|12) + F(12|3) \otimes F(23|1).$$

Connection between Cai and Saneblidze-Umble diagonals

The piecewise linear projection $ho\colon \mathsf{Perm}^{m-1} o I^{m-1}$ defined on vertices by

$$\rho(F(U_1|\cdots|U_m))=\prod_{i\in\tau}\{1\}\times\prod_{i\notin\tau}\{-1\},$$

where $\tau = \{i : U_j = \{i+1\}, \ U_k = \{i\} \text{ for some } j < k\}.$

The image of any face is given by

$$\rho\left(F(U_1|\cdots|U_p)\right) = \prod_{i\in\sigma} D^1 \times \prod_{i\in\tau} \{1\} \times \prod_{i\notin\sigma\cup\tau} \{-1\},\,$$

where $\sigma = \{i \mid \exists j : \{i, i+1\} \subset U_j\}, \ \tau = \{i \mid \exists j < k : i+1 \in U_j, \ i \subset U_k\}.$

Theorem

For any face $F(U_1|\cdots|U_p)$ of Perm^{m-1} we have

$$(\rho_* \otimes \rho_*) \Delta_{SU} F(U_1 | \cdots | U_p) = \Delta_C(\rho_* F(U_1 | \cdots | U_p)).$$

Theorem

Let $\mathcal K$ be a simplicial complex on the vertex set [m]. Then the image of $\operatorname{Perm}(\mathcal K)$ under the projection $\rho\colon\operatorname{Perm}^{m-1}\to I^{m-1}$ is the real moment-angle complex $\mathcal R_{\mathcal L}$, where $\mathcal L=\mathcal L(\mathcal K)$ is the simplicial complex on the set [m-1] defined below.

A set $J \subset [m-1]$ belongs to $\mathcal{L}(\mathcal{K})$ if and only if each subset formed by consecutive elements $\{j,j+1,\ldots,j+k\}$ of J together with the element $\{j+k+1\}$ forms a simplex of \mathcal{K} .

References

- [1] Li Cai. On products in a real moment-angle manifold. Journal of the Mathematical Society of Japan 69 (2017), no. 2, 503–528.
- [2] Samson Saneblidze and Ronald Umble. *Diagonals on the permutahedra, multiplihedra and associahedra*. Homology Homotopy Appl. 6 (2004), no. 1, 363–411.
- [3] Taras Panov and Vsevolod Tril. Permutohedral complex and complements of diagonal subspace arrangements. Preprint (2025), arXiv:2504.04183.