SU-bordism: geometric representatives, operations, multiplications and projections

Taras Panov joint works with Georgy Chernykh, Ivan Limonchenko, Zhi Lu

Moscow State University

Sino-Russian Interdisciplinary Mathematical Conference 6–10 November 2023

1. Unitary bordism

The unitary bordism ring Ω^U consists of complex bordism classes of stably complex manifolds.

A stably complex manifold is a pair (M, c_T) consisting of a smooth manifold M and a stably complex structure c_T , determined by a choice of an isomorphism

$$c_{\mathcal{T}}\colon \mathcal{T}M\oplus\underline{\mathbb{R}}^{N}\overset{\cong}{\longrightarrow}\xi$$

between the stable tangent bundle of M and a complex vector bundle ξ .

Theorem (Milnor-Novikov)

- Two stably complex manifolds M and N represent the same bordism classes in Ω^U iff their sets of Chern characteristic numbers coincide.
- Ω^U is a polynomial ring on generators in every even degree:

$$\Omega^U \cong \mathbb{Z}[a_1, a_2, \ldots, a_i, \ldots], \quad \deg a_i = 2i.$$

Polynomial generators of Ω^U are detected using a special characteristic class s_n . It is the polynomial in the universal Chern classes c_1, \ldots, c_n obtained by expressing the symmetric polynomial $x_1^n + \cdots + x_n^n$ via the elementary symmetric functions $\sigma_i(x_1, \ldots, x_n)$ and replacing each σ_i by c_i .

 $s_n[M] = s_n(\mathcal{T}M)\langle M \rangle$: the corresponding characteristic number.

Theorem

The bordism class of a stably complex manifold M^{2i} may be taken to be the polynomial generator $a_i \in \Omega_{2i}^U$ iff

$$s_i[M^{2i}] = \begin{cases} \pm 1 & \text{if } i+1 \neq p^s & \text{for any prime } p, \\ \pm p & \text{if } i+1 = p^s & \text{for some prime } p \text{ and integer } s > 0. \end{cases}$$

Problem

Find geometric representatives in (unitary) bordism classes; e.g., smooth algebraic varieties or manifolds with large symmetry.

2. Special unitary bordism

A stably complex manifold (M, c_T) is special unitary (an *SU*-manifold) if $c_1(M) = 0$. Bordism classes of *SU*-manifolds form the special unitary bordism ring Ω^{SU} .

The ring structure of Ω^{SU} is more subtle than that of Ω^U . Novikov described $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ (it is a polynomial ring). The 2-torsion was described by Conner and Floyd. We shall need the following facts.

Theorem

- The kernel of the forgetful map $\Omega^{SU} \to \Omega^U$ consists of torsion.
- Every torsion element in Ω^{SU} has order 2.
- $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ is a polynomial algebra on generators in every even degree > 2:

$$\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}] \cong \mathbb{Z}[\frac{1}{2}][y_i : i > 1], \quad \deg y_i = 2i.$$

3. U- and SU-theory

 $\Omega^U = U_*(pt) = \pi_*(MU)$ is the coefficient ring of the complex bordism theory, defined by the Thom spectrum $MU = \{MU(n)\}$, where MU(n) is the Thom space of the universal U(n)-bundle $EU(n) \rightarrow BU(n)$:

$$U_n(X,A) = \lim_{k \to \infty} \pi_{2k+n} ((X/A) \wedge MU(k)),$$

$$U^n(X,A) = \lim_{k \to \infty} [\Sigma^{2k-n}(X/A), MU(k)]$$

for a CW-pair (X, A).

Similarly, $\Omega^{SU} = SU_*(pt) = \pi_*(MSU)$ is the coefficient ring of the *SU*-theory, defined by the Thom spectrum $MSU = \{MSU(n)\}$:

$$SU_n(X,A) = \lim_{k \to \infty} \pi_{2k+n} ((X/A) \land MSU(k)),$$

$$SU^n(X,A) = \lim_{k \to \infty} [\Sigma^{2k-n}(X/A), MSU(k)].$$

4. Operations in U-theory

A (stable) operation θ of degree n in complex cobordism is a family of additive maps

$$\theta \colon U^k(X,A) \to U^{k+n}(X,A),$$

which are functorial in (X, A) and commute with the suspension isomorphisms. The set of all operations is a Ω_U -algebra, denoted by A^U ; it was described in the works of Landweber and Novikov in 1967.

There is an isomorphism of Ω_U -modules

$$A^U \cong [MU, MU] = U^*(MU) = \lim U^{*+2N}(MU(N)).$$

There is also an isomorphism of left Ω_U -modules

$$A^U = U^*(MU) \cong \Omega_U \widehat{\otimes} S,$$

where S is the Landweber–Novikov algebra, generated by the operations $S_{\omega} = \varphi^*(s_{\omega}^{U})$ corresponding to universal characteristic classes $s_{\omega}^{U} \in U^*(BU)$ defined by symmetrising monomials $t_1^{i_1} \cdots t_k^{i_k}$, $\omega = (i_1, \ldots, i_k)$.

5. SU-linear operations

Lemma (Novikov)

The representations of A^U on $\Omega_U = U^*(pt)$ and $\Omega^U = U_*(pt)$ are faithful.

Remark

More generally, given spectra E, F of finite type, the natural homomorphism $F^*(E) \to \operatorname{Hom}^*(\pi_*(E), \pi_*(F))$ is injective when $\pi_*(F)$ and $H_*(E)$ do not have torsion; see Rudyak1998.

An operation $\theta \in A^U = [MU, MU]$ is *SU*-linear if it is an *MSU*-module map $MU \rightarrow MU$.

By the lemma above, it is equivalent to requiring that the induced map $\theta: \Omega^U \to \Omega^U$ is Ω^{SU} -linear, i.e. $\theta(ab) = a\theta(b)$ for $a \in \Omega^{SU}$, $b \in \Omega^U$.

Construction (Conner-Floyd and Novikov's geometric operations) Let $\partial: \Omega_{2n}^U \to \Omega_{2n-2}^U$ be the homomorphism sending a bordism class $[M^{2n}]$ to the bordism class $[V^{2n-2}]$ of a submanifold $V^{2n-2} \subset M$ dual to $c_1(M) = c_1(\det TM)$.

Similarly, given positive integers k_1, k_2 , let

$$\Delta_{(k_1,k_2)}\colon \Omega_{2n}^U \to \Omega_{2n-2k_1-2k_2}^U$$

be the homorphism sending [M] to the submanifold dual to $(\det \mathcal{T}M)^{\oplus k_1} \oplus (\overline{\det \mathcal{T}M})^{\oplus k_2}$.

We denote

$$\Delta = \Delta_{(1,1)}, \quad \partial_k = \Delta_{(k,0)}, \quad \partial = \partial_1, \quad \overline{\partial}_k = \Delta_{(0,k)}.$$

Each $\Delta_{(k_1,k_2)}$ extends to an operation in $U^{2k_1+2k_2}(MU) = [MU, MU]_{2k_1+2k_2}$, which is *SU*-linear by inspection.

Theorem (Chernykh-P.)

Any SU-linear operation $f \in [MU, MU]_{MSU,*}$ can be written uniquely as a power series $f = \sum_{i \ge 0} \mu_i \partial_i$, where $\mu_i \in \Omega_U^{-2i+*}$.

Proof (sketch).

Use Conner and Floyd's equivalence of MSU-modules

 $MU \simeq MSU \wedge \Sigma^{-2} \mathbb{C}P^{\infty}.$

It implies that the abelian group $[MU, MU]_{MSU, k}$ of SU-linear operations is isomorphic to $\widetilde{U}^{k+2}(\mathbb{C}P^{\infty})$. More precisely, if $u \in \widetilde{U}^2(\mathbb{C}P^{\infty})$ is the canonical orientation, then

$$[MU, MU]_* \to \widetilde{U}^{*+2}(\mathbb{C}P^{\infty}), \quad f \mapsto f(u),$$

becomes an isomorphism when restricted to $[MU, MU]_{MSU,*}$.

Under this isomorphism, a power series $\sum_{i \ge 0} \lambda_i u^{i+1} \in \widetilde{U}^{2k+2}(\mathbb{C}P^{\infty})$ corresponds to the operation $\sum_{i \ge 0} \lambda_i \overline{\partial}_i$, because $\overline{\partial}_i(u) = u^{i+1}$.

6. c_1 -spherical bordism W

Consider closed manifolds M with a c_1 -spherical structure, which consists of

- a stably complex structure on the tangent bundle $\mathcal{T}M$;
- a $\mathbb{C}P^1$ -reduction of the determinant bundle, that is, a map $f: M \to \mathbb{C}P^1$ and an equivalence $f^*(\eta) \cong \det \mathcal{T}M$, where η is the tautological bundle over $\mathbb{C}P^1$.

This is a natural generalisation of an SU-structure, which can be thought of as a " $\mathbb{C}P^0$ -reduction", that is, a trivialisation of the determinant bundle.

The corresponding bordism theory is called c_1 -spherical bordism and is denoted W_* . It is instrumental in describing the *SU*-bordism ring and other calculations in the *SU*-theory.

As in the case of stable complex structures, a c_1 -spherical complex structure on the stable tangent bundle is equivalent to such a structure on the stable normal bundle. There are forgetful transformations $MSU_* \rightarrow W_* \rightarrow MU_*$. Homotopically, a c_1 -spherical structure on a stable complex bundle $\xi: M \to BU$ is defined by a choice of lifting to a map $M \to X$, where X is the (homotopy) pullback:

$$X \longrightarrow \mathbb{C}P^{1}$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{i}$$

$$M \xrightarrow{\xi} BU \xrightarrow{\det} \mathbb{C}P^{\infty}$$

The Thom spectrum corresponding to the map $X \to BU$ defines the bordism theory of manifolds with a $\mathbb{C}P^1$ -reduction of the stable normal bundle, that is, the theory W_* . We denote this spectrum by W.

11/27

Proposition (Conner-Floyd)

There is an equivalence of MSU-modules

$$W \simeq MSU \wedge \Sigma^{-2} \mathbb{C}P^2.$$

Under this equivalence, the forgetful map $W \to MU$ is identified with the free MSU-module map $MSU \wedge \Sigma^{-2} \mathbb{C}P^2 \to MSU \wedge \Sigma^{-2} \mathbb{C}P^{\infty}$.

Theorem (Conner-Floyd, Stong)

- (a) The image of the forgetful homomorphism $\pi_*(W) \to \pi_*(MU)$ coincides with ker Δ .
- (b) The spectrum W is the fibre of $MU \xrightarrow{\Delta} \Sigma^4 MU$.

7. Multiplications and projections

 $\Omega_{2n}^W = \pi_{2n}(W)$ can be identified with the subgroup of Ω_{2n}^U consisting of bordism classes $[M^{2n}]$ such that every Chern number of M^{2n} of which c_1^2 is a factor vanishes.

However, $\Omega^W = \bigoplus_{i \ge 0} \Omega_{2i}^W$ is not a subring of Ω^U : one has $[\mathbb{C}P^1] \in \Omega_2^W$, but $c_1^2[\mathbb{C}P^1 \times \mathbb{C}P^1] = 8 \neq 0$, so $[\mathbb{C}P^1] \times [\mathbb{C}P^1] \notin \Omega_4^W$.

Let $\pi: MU \to W$ be an *SU*-linear projection (an idempotent operation with image *W*). It defines an *SU*-bilinear multiplication on *W* by the formula

$$W \wedge W \rightarrow MU \wedge MU \xrightarrow{m_{MU}} MU \xrightarrow{\pi} W.$$

This multiplication has a unit, obtained from the unit of MSU by the forgetful morphism.

Example

1. Define a homomorphism $p_0: \Omega^U \to \Omega^W$ sending a bordism class [M] to the class of the submanifold $N \subset \mathbb{C}P^1 \times M$ dual to $\overline{\eta} \otimes \det \mathcal{T}M$. We have det $\mathcal{T}N \cong i^*\overline{\eta}$, where *i* is the embedding $N \hookrightarrow \mathbb{C}P^1 \times M$, so *N* has a natural c_1 -spherical stably complex structure.

The homomorphism p_0 extends to an idempotent *SU*-linear operation $p_0: MU \rightarrow MU$, called the Stong projection.

2. Conner and Floyd defined geometrically a right inverse to the operation $\Delta: \Omega^U_* \to \Omega^U_{*-4}$. Novikov extended it to a cohomological operation $\Psi \in [\Sigma^4 MU, MU], \ \Delta \Psi = 1$. Then $1 - \Psi \Delta: MU \to MU$ is an idempotent *SU*-linear operation with

image ker Δ , called the Conner–Floyd projection.

The two projections are different, although they define the same multiplication on W. This reflects the fact that both projections have the same coefficient of ∂_2 in their expansions $1 + \sum_{i \ge 2} \lambda_i \partial_i$.

Theorem (Chernykh-P)

Any SU-linear multiplication on W with the standard unit has the form

$$a * b = ab + (2[V] - w)\partial a\partial b,$$

where $[V] = [\mathbb{C}P^1]^2 - [\mathbb{C}P^2]$ and $w \in \Omega_4^W$. Any such multiplication is associative and commutative. Furthermore, the multiplications obtained from SU-linear projections are those with $w = 2\tilde{w}$, $\tilde{w} \in \Omega_4^W$.

In this way, W becomes a complex oriented multiplicative cohomology theory.

Let
$$m_i = \gcd\left\{ \begin{pmatrix} i+1\\ k \end{pmatrix}, 1 \leq k \leq i \right\}$$

= $\begin{cases} 1 & \text{if } i+1 \neq p^{\ell} & \text{for any prime } p, \\ p & \text{if } i+1 = p^{\ell} & \text{for some prime } p \text{ and integer } \ell > 0. \end{cases}$

Then $[M^{2i}] \in \Omega^U_{2i}$ represents a polynomial generator iff $s_i[M^{2i}] = \pm m_i$.

Theorem (Stong)

 Ω^W is a polynomial ring on generators in every even degree except 4:

$$\Omega^W \cong \mathbb{Z}[x_1, x_i : i \ge 3], \quad x_1 = [\mathbb{C}P^1], \quad x_i \in \pi_{2i}(W).$$

The polynomial generators x_i are specified by the condition $s_i(x_i) = \pm m_i m_{i-1}$ for $i \ge 3$. The boundary operator $\partial \colon \Omega^W \to \Omega^W$, $\partial^2 = 0$, is given by $\partial x_1 = 2$, $\partial x_{2i} = x_{2i-1}$, and satisfies the identity

$$\partial(a * b) = a * \partial b + \partial a * b - x_1 * \partial a * \partial b.$$

We have

$$\Omega^{W} \otimes \mathbb{Z}[\frac{1}{2}] \cong \mathbb{Z}[\frac{1}{2}][x_{1}, x_{2k-1}, 2x_{2k} - x_{1}x_{2k-1} \colon k > 1],$$

where $x_1^2 = x_1 * x_1$ is a ∂ -cycle, and each x_{2k-1} , $2x_{2k} - x_1x_{2k-1}$ is a ∂ -cycle.

Theorem

There exist elements $y_i \in \Omega_{2i}^{SU}$, i > 1, such that $s_2(y_2) = -48$ and

$$s_i(y_i) = egin{cases} m_i m_{i-1} & ext{if } i ext{ is odd}, \ 2m_i m_{i-1} & ext{if } i ext{ is even and } i > 2. \end{cases}$$

These elements are mapped as follows under the forgetful homomorphism $\Omega^{SU} \rightarrow \Omega^{W}$:

$$y_2 \mapsto 2x_1^2, \quad y_{2k-1} \mapsto x_{2k-1}, \quad y_{2k} \mapsto 2x_{2k} - x_1x_{2k-1}, \quad k > 1.$$

In particular, $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$ embeds in $\Omega^{W} \otimes \mathbb{Z}[\frac{1}{2}]$ as the polynomial subring generated by x_1^2 , x_{2k-1} and $2x_{2k} - x_1x_{2k-1}$.

8. (Quasi)toric representatives in bordism classes

A toric variety is a normal complex algebraic variety V containing an algebraic torus $(\mathbb{C}^{\times})^n$ as a Zariski open subset in such a way that the natural action of $(\mathbb{C}^{\times})^n$ on itself extends to an action on V.

Toric varieties are classified by convex-geometrical objects called rational fans, and projective toric varieties correspond to convex lattice polytopes *P*.

A toric manifold is a complete (compact) nonsingular toric variety.

A quasitoric manifold is a smooth 2n-dimensional closed manifold M with a locally standard action of a (compact) torus T^n whose quotient M/T^n is a simple polytope P. An omniorientation of a quasitoric manifold provides it with an intrinsic stably complex structure.

Theorem (Danilov–Jurkiewicz, Davis–Januszkiewicz)

Let V be a (quasi)toric manifold of real dimension 2n. The cohomology ring $H^*(V;\mathbb{Z})$ is generated by the degree-two classes v_i dual to the torus-invariant codimension-two submanifolds V_i , and is given by

$$H^*(V;\mathbb{Z})\cong\mathbb{Z}[v_1,\ldots,v_m]/\mathcal{I},\qquad \deg v_i=2,$$

where \mathcal{I} is the ideal generated by elements of the following two types:

v_{i1} ··· v_{ik} such that the facets i₁,..., i_k do not intersect in P;
∑^m_{i=1} ⟨a_i, x⟩v_i, for any vector x ∈ Hom(Tⁿ, S¹) ≅ Zⁿ.

Here $\mathbf{a}_i \in \operatorname{Hom}(S^1, T^n) \cong \mathbb{Z}^n$ is the primitive vector defining the one-parameter subgroup fixing V_i .

It is convenient to consider the integer $n \times m$ characteristic matrix

$$\Lambda = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{pmatrix}$$

whose columns are the vectors a_i written in the standard basis of \mathbb{Z}^n . Then the *n* linear forms $a_{j1}v_1 + \cdots + a_{jm}v_m$ corresponding to the rows of Λ vanish in $H^*(V; \mathbb{Z})$.

Theorem

There an isomorphism of complex vector bundles:

$$\mathcal{T}V\oplus\underline{\mathbb{C}}^{m-n}\cong\rho_1\oplus\cdots\oplus\rho_m,$$

where $\mathcal{T}V$ is the tangent bundle, $\underline{\mathbb{C}}^{m-n}$ is the trivial (m-n)-plane bundle, and ρ_i is the line bundle corresponding to V_i , with $c_1(\rho_i) = v_i$. In particular, the total Chern class of V is given by

$$c(V)=(1+v_1)\cdots(1+v_m).$$

Proposition

An omnioriented quasitoric manifold M has $c_1(M) = 0$ if and only if there exists a linear function $\varphi \colon \mathbb{Z}^n \to \mathbb{Z}$ such that $\varphi(\mathbf{a}_i) = 1$ for i = 1, ..., m. Here the \mathbf{a}_i are the columns of characteristic matrix. In particular, if some n vectors of $\mathbf{a}_1, ..., \mathbf{a}_m$ form the standard basis $\mathbf{e}_1, ..., \mathbf{e}_n$, then M is SU iff the column sums of Λ are all equal to 1.

Corollary

A toric manifold V cannot be SU.

Proof. If $\varphi(\mathbf{a}_i) = 1$ for all *i*, then the vectors \mathbf{a}_i lie in the positive halfspace of φ , so they cannot span a complete fan.

21 / 27

Theorem (Buchstaber-P.-Ray)

A quasitoric SU-manifold M^{2n} represents 0 in Ω_{2n}^U whenever n < 5.

Theorem (Lu-P.)

There exist quasitoric SU-manifolds M^{2i} , $i \ge 5$, with $s_i(M^{2i}) = m_i m_{i-1}$ if i is odd and $s_i(M^{2i}) = 2m_i m_{i-1}$ if i is even. These quasitoric manifolds represent polynomial generators of $\Omega^{SU} \otimes \mathbb{Z}[\frac{1}{2}]$.

9. Calabi-Yau hypersurfaces and SU-bordism

A Calabi-Yau manifold is a compact Kähler manifold M with $c_1(M) = 0$. By definition, a Calabi-Yau manifold is an *SU*-manifold.

A toric manifold V is Fano if its anticanonical class $V_1 + \cdots + V_m$ (representing $c_1(V)$) is ample. In geometric terms, the projective embedding $V \hookrightarrow \mathbb{C}P^s$ corresponding to $V_1 + \cdots + V_m$ comes from a lattice polytope P in which the lattice distance from 0 to each hyperplane containing a facet is 1. Such a lattice polytope P is called reflexive; its polar polytope P^* is also a lattice polytope.

The submanifold N dual to $c_1(V)$ is given by the hyperplane section of the embedding $V \hookrightarrow \mathbb{C}P^s$ defined by $V_1 + \cdots + V_m$. Therefore, $N \subset V$ is a smooth algebraic hypersurface in V, so N is a Calabi–Yau manifold of complex dimension n-1.

Lemma

The s-number of the Calabi-Yau manifold N is given by

$$s_{n-1}(N) = \langle (v_1^{n-1} + \cdots + v_m^{n-1})(v_1 + \cdots + v_m) - (v_1 + \cdots + v_m)^n, [V] \rangle$$

Example

Consider the Calabi–Yau hypersurface N_3 in $V = \mathbb{C}P^3$.

We have $c_1(\mathcal{T}\mathbb{C}P^3) = 4u$, where $u \in H^2(\mathbb{C}P^3;\mathbb{Z})$ is the canonical generator dual to a hyperplane section.

Therefore, N_3 can be given by a generic quartic equation in homogeneous coordinates on $\mathbb{C}P^3$.

The standard example is the quartic given by $z_0^4 + z_1^4 + z_2^4 + z_3^4 = 0$, which is a K3-surface. Lemma above gives

$$s_3(N_3) = \langle 4u^2 \cdot 4u - (4u)^3, [\mathbb{C}P^3] \rangle = -48,$$

so N_3 represents the generator $-y_2 \in \Omega_4^{SU}$.

 $\sigma = (\sigma_1, \ldots, \sigma_k)$ an unordered partition of n, $\sigma_1 + \cdots + \sigma_k = n$ Δ^{σ_i} the standard reflexive simplex of dimension σ_i . $P_{\sigma} = \Delta^{\sigma_1} \times \cdots \times \Delta^{\sigma_k}$ is a reflexive polytope with the corresponding toric Fano manifold $V_{\sigma} = \mathbb{C}P^{\sigma_1} \times \cdots \times \mathbb{C}P^{\sigma_k}$. N_{σ} the canonical Calabi-Yau hypersurface in V_{σ} .

Theorem (Limonchenko-Lu-P.)

The SU-bordism classes of the canonical Calabi–Yau hypersurfaces N_{σ} in $\mathbb{C}P^{\sigma_1} \times \cdots \times \mathbb{C}P^{\sigma_k}$ multiplicatively generate the SU-bordism ring $\Omega^{SU}[\frac{1}{2}]$.

Idea of proof.

Denote by $\widehat{P}(n)$ the set of all partitions σ with parts of size at most n-2:

$$\widehat{P}(n) := \{ \sigma = (\sigma_1, \dots, \sigma_k) : \sigma_1 + \dots + \sigma_k = n, \quad \sigma \neq (n), (1, n - 1). \}$$

For each σ we have the multinomial coefficient $\binom{n}{\sigma} = \frac{n!}{\sigma_1! \cdots \sigma_k!}$ and define

$$\alpha(\sigma) := \binom{n}{\sigma} (\sigma_1 + 1)^{\sigma_1} \cdots (\sigma_k + 1)^{\sigma_k}.$$

Then for for any $\sigma \in \widehat{P}(n)$ we have

$$s_{n-1}(N_{\sigma}) = -\alpha(\sigma).$$

Then we prove that

$$\underset{\sigma \in \widehat{P}(n)}{\operatorname{gcd}} \alpha(\sigma) = \begin{cases} 2m_{n-1}m_{n-2} & \text{if } n > 3 \text{ is odd;} \\ m_{n-1}m_{n-2} & \text{if } n > 3 \text{ is even;} \\ 48 & \text{if } n = 3. \end{cases}$$

Therefore, there is a linear combination of the bordism classes $[N_{\sigma}] \in \Omega_{2n-2}^{SU}$ whose s-number satisfies the condition for a polynomial generator y_{n-1} of $\Omega^{SU}[\frac{1}{2}]$.

References

- Victor Buchstaber, Taras Panov and Nigel Ray. *Toric genera*. Internat. Math. Research Notices 16 (2010), 3207–3262.
- Victor Buchstaber and Taras Panov. *Toric Topology.* Mathematical Surveys and Monographs, vol. 204, American Mathematical Society, Providence, RI, 2015, 516 pages.
- Zhi Lü and Taras Panov. On toric generators in the unitary and special unitary bordism rings. Algebraic & Geometric Topology 16 (2016), no. 5, 2865–2893.
- Georgy Chernykh, Ivan Limonchenko and Taras Panov. *SU-bordism: structure results and geometric representatives.* Russian Math. Surveys 74 (2019), no. 3, 461–524.
- Georgy Chernykh and Taras Panov. SU-linear operations in complex cobordism and the c₁-spherical bordism theory. Izvestiya: Mathematics 87 (2023), no. 4, 768–797.