SU-bordism: geometric representatives, operations, multiplications and projections

Taras Panov
joint works with Georgy Chernykh, Ivan Limonchenko, Zhi Lu

Moscow State University
Sino-Russian Interdisciplinary Mathematical Conference 6-10 November 2023

1. Unitary bordism

The unitary bordism ring Ω^{U} consists of complex bordism classes of stably complex manifolds.
A stably complex manifold is a pair $\left(M, c_{\mathcal{T}}\right)$ consisting of a smooth manifold M and a stably complex structure $c_{\mathcal{T}}$, determined by a choice of an isomorphism

$$
c_{\mathcal{T}}: \mathcal{T} M \oplus \underline{\mathbb{R}}^{N} \xrightarrow{\cong} \xi
$$

between the stable tangent bundle of M and a complex vector bundle ξ.

Theorem (Milnor-Novikov)

- Two stably complex manifolds M and N represent the same bordism classes in Ω^{U} iff their sets of Chern characteristic numbers coincide.
- Ω^{U} is a polynomial ring on generators in every even degree:

$$
\Omega^{U} \cong \mathbb{Z}\left[a_{1}, a_{2}, \ldots, a_{i}, \ldots\right], \quad \operatorname{deg} a_{i}=2 i
$$

Polynomial generators of Ω^{U} are detected using a special characteristic class s_{n}. It is the polynomial in the universal Chern classes c_{1}, \ldots, c_{n} obtained by expressing the symmetric polynomial $x_{1}^{n}+\cdots+x_{n}^{n}$ via the elementary symmetric functions $\sigma_{i}\left(x_{1}, \ldots, x_{n}\right)$ and replacing each σ_{i} by c_{i}. $s_{n}[M]=s_{n}(\mathcal{T} M)\langle M\rangle$: the corresponding characteristic number.

Theorem

The bordism class of a stably complex manifold $M^{2 i}$ may be taken to be the polynomial generator $a_{i} \in \Omega_{2 i}^{U}$ iff

$$
s_{i}\left[M^{2 i}\right]=\left\{\begin{array}{lll}
\pm 1 & \text { if } \quad i+1 \neq p^{s} & \text { for any prime } p \\
\pm p & \text { if } \quad i+1=p^{s} & \text { for some prime } p \text { and integer } s>0
\end{array}\right.
$$

Problem

Find geometric representatives in (unitary) bordism classes; e.g., smooth algebraic varieties or manifolds with large symmetry.

2. Special unitary bordism

A stably complex manifold ($M, c_{\mathcal{T}}$) is special unitary (an SU-manifold) if $c_{1}(M)=0$. Bordism classes of $S U$-manifolds form the special unitary bordism ring $\Omega^{S U}$.

The ring structure of $\Omega^{S U}$ is more subtle than that of Ω^{U}. Novikov described $\Omega^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ (it is a polynomial ring). The 2-torsion was described by Conner and Floyd. We shall need the following facts.

Theorem

- The kernel of the forgetful map $\Omega^{S U} \rightarrow \Omega^{U}$ consists of torsion.
- Every torsion element in $\Omega^{S U}$ has order 2.
- $\Omega^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ is a polynomial algebra on generators in every even degree >2 :

$$
\Omega^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right] \cong \mathbb{Z}\left[\frac{1}{2}\right]\left[y_{i}: i>1\right], \quad \operatorname{deg} y_{i}=2 i
$$

3. U- and SU-theory
$\Omega^{U}=U_{*}(p t)=\pi_{*}(M U)$ is the coefficient ring of the complex bordism theory, defined by the Thom spectrum $M U=\{M U(n)\}$, where $M U(n)$ is the Thom space of the universal $U(n)$-bundle $E U(n) \rightarrow B U(n)$:

$$
\begin{aligned}
& U_{n}(X, A)=\lim _{k \rightarrow \infty} \pi_{2 k+n}((X / A) \wedge M U(k)), \\
& U^{n}(X, A)=\lim _{k \rightarrow \infty}\left[\Sigma^{2 k-n}(X / A), M U(k)\right]
\end{aligned}
$$

for a CW-pair (X, A).

Similarly, $\Omega^{S U}=S U_{*}(p t)=\pi_{*}(M S U)$ is the coefficient ring of the SU-theory, defined by the Thom spectrum $M S U=\{M S U(n)\}$:

$$
\begin{aligned}
& S U_{n}(X, A)=\lim _{k \rightarrow \infty} \pi_{2 k+n}((X / A) \wedge M S U(k)) \\
& S U^{n}(X, A)=\lim _{k \rightarrow \infty}\left[\Sigma^{2 k-n}(X / A), M S U(k)\right]
\end{aligned}
$$

4. Operations in U-theory

A (stable) operation θ of degree n in complex cobordism is a family of additive maps

$$
\theta: U^{k}(X, A) \rightarrow U^{k+n}(X, A)
$$

which are functorial in (X, A) and commute with the suspension isomorphisms. The set of all operations is a Ω_{U}-algebra, denoted by A^{U}; it was described in the works of Landweber and Novikov in 1967.

There is an isomorphism of Ω_{U}-modules

$$
A^{U} \cong[M U, M U]=U^{*}(M U)=\lim _{\longleftarrow} U^{*+2 N}(M U(N))
$$

There is also an isomorphism of left Ω_{U}-modules

$$
A^{U}=U^{*}(M U) \cong \Omega_{U} \widehat{\otimes} S
$$

where S is the Landweber-Novikov algebra, generated by the operations $S_{\omega}=\varphi^{*}\left(s_{\omega}^{U}\right)$ corresponding to universal characteristic classes $s_{\omega}^{U} \in U^{*}(B U)$ defined by symmetrising monomials $t_{1}^{i_{1}} \cdots t_{k}^{i_{k}}, \omega=\left(i_{1}, \ldots, i_{k}\right)$.

5. SU-linear operations

Lemma (Novikov)

The representations of A^{U} on $\Omega_{U}=U^{*}(p t)$ and $\Omega^{U}=U_{*}(p t)$ are faithful.

Remark

More generally, given spectra E, F of finite type, the natural homomorphism $F^{*}(E) \rightarrow \operatorname{Hom}^{*}\left(\pi_{*}(E), \pi_{*}(F)\right)$ is injective when $\pi_{*}(F)$ and $H_{*}(E)$ do not have torsion; see Rudyak1998.

An operation $\theta \in A^{U}=[M U, M U]$ is $S U$-linear if it is an $M S U$-module map $M U \rightarrow M U$.
By the lemma above, it is equivalent to requiring that the induced map $\theta: \Omega^{U} \rightarrow \Omega^{U}$ is $\Omega^{S U}$-linear, i. e. $\theta(a b)=a \theta(b)$ for $a \in \Omega^{S U}, b \in \Omega^{U}$.

Construction (Conner-Floyd and Novikov's geometric operations)

Let $\partial: \Omega_{2 n}^{U} \rightarrow \Omega_{2 n-2}^{U}$ be the homomorphism sending a bordism class [$M^{2 n}$] to the bordism class [$V^{2 n-2}$] of a submanifold $V^{2 n-2} \subset M$ dual to $c_{1}(M)=c_{1}(\operatorname{det} \mathcal{T} M)$.

Similarly, given positive integers k_{1}, k_{2}, let

$$
\Delta_{\left(k_{1}, k_{2}\right)}: \Omega_{2 n}^{U} \rightarrow \Omega_{2 n-2 k_{1}-2 k_{2}}^{U}
$$

be the homorphism sending $[M$] to the submanifold dual to $(\operatorname{det} \mathcal{T} M)^{\oplus k_{1}} \oplus(\overline{\operatorname{det} \mathcal{T} M})^{\oplus k_{2}}$.

We denote

$$
\Delta=\Delta_{(1,1)}, \quad \partial_{k}=\Delta_{(k, 0)}, \quad \partial=\partial_{1}, \quad \bar{\partial}_{k}=\Delta_{(0, k)}
$$

Each $\Delta_{\left(k_{1}, k_{2}\right)}$ extends to an operation in $U^{2 k_{1}+2 k_{2}}(M U)=[M U, M U]_{2 k_{1}+2 k_{2}}$, which is $S U$-linear by inspection.

Theorem (Chernykh-P.)

Any SU-linear operation $f \in[M U, M U]_{M S U, *}$ can be written uniquely as a power series $f=\sum_{i \geqslant 0} \mu_{i} \partial_{i}$, where $\mu_{i} \in \Omega_{U}^{-2 i+*}$.

Proof (sketch).

Use Conner and Floyd's equivalence of MSU-modules

$$
M U \simeq M S U \wedge \Sigma^{-2} \mathbb{C} P^{\infty}
$$

It implies that the abelian group $[M U, M U]_{M S U, k}$ of $S U$-linear operations is isomorphic to $\widetilde{U}^{k+2}\left(\mathbb{C} P^{\infty}\right)$. More precisely, if $u \in \widetilde{U}^{2}\left(\mathbb{C} P^{\infty}\right)$ is the canonical orientation, then

$$
[M U, M U]_{*} \rightarrow \widetilde{U}^{*+2}\left(\mathbb{C} P^{\infty}\right), \quad f \mapsto f(u)
$$

becomes an isomorphism when restricted to $[M U, M U]_{M S U, *}$.
Under this isomorphism, a power series $\sum_{i \geqslant 0} \lambda_{i} u^{i+1} \in \widetilde{U}^{2 k+2}\left(\mathbb{C} P^{\infty}\right)$ corresponds to the operation $\sum_{i \geqslant 0} \lambda_{i} \bar{\partial}_{i}$, because $\bar{\partial}_{i}(u)=u^{i+1}$.
6. c_{1}-spherical bordism W

Consider closed manifolds M with a c_{1}-spherical structure, which consists of

- a stably complex structure on the tangent bundle $\mathcal{T} M$;
- a $\mathbb{C} P^{1}$-reduction of the determinant bundle, that is, a map $f: M \rightarrow \mathbb{C} P^{1}$ and an equivalence $f^{*}(\eta) \cong \operatorname{det} \mathcal{T} M$, where η is the tautological bundle over $\mathbb{C} P^{1}$.
This is a natural generalisation of an SU-structure, which can be thought of as a " $\mathbb{C} P^{0}$-reduction", that is, a trivialisation of the determinant bundle.

The corresponding bordism theory is called c_{1}-spherical bordism and is denoted W_{*}. It is instrumental in describing the $S U$-bordism ring and other calculations in the $S U$-theory.

As in the case of stable complex structures, a c_{1}-spherical complex structure on the stable tangent bundle is equivalent to such a structure on the stable normal bundle. There are forgetful transformations $M S U_{*} \rightarrow W_{*} \rightarrow M U_{*}$.

Homotopically, a c_{1}-spherical structure on a stable complex bundle $\xi: M \rightarrow B U$ is defined by a choice of lifting to a map $M \rightarrow X$, where X is the (homotopy) pullback:

The Thom spectrum corresponding to the map $X \rightarrow B U$ defines the bordism theory of manifolds with a $\mathbb{C} P^{1}$-reduction of the stable normal bundle, that is, the theory W_{*}. We denote this spectrum by W.

Proposition (Conner-Floyd)

There is an equivalence of MSU-modules

$$
W \simeq M S U \wedge \Sigma^{-2} \mathbb{C} P^{2}
$$

Under this equivalence, the forgetful map $W \rightarrow M U$ is identified with the free MSU-module map MSU $\wedge \Sigma^{-2} \mathbb{C} P^{2} \rightarrow M S U \wedge \Sigma^{-2} \mathbb{C} P^{\infty}$.

Theorem (Conner-Floyd, Stong)

(a) The image of the forgetful homomorphism $\pi_{*}(W) \rightarrow \pi_{*}(M U)$ coincides with ker Δ.
(b) The spectrum W is the fibre of $M U \xrightarrow{\Delta} \Sigma^{4} M U$.

7. Multiplications and projections

$\Omega_{2 n}^{W}=\pi_{2 n}(W)$ can be identified with the subgroup of $\Omega_{2 n}^{U}$ consisting of bordism classes $\left[M^{2 n}\right]$ such that every Chern number of $M^{2 n}$ of which c_{1}^{2} is a factor vanishes.

However, $\Omega^{W}=\bigoplus_{i \geqslant 0} \Omega_{2 i}^{W}$ is not a subring of Ω^{U} : one has $\left[\mathbb{C} P^{1}\right] \in \Omega_{2}^{W}$, but $c_{1}^{2}\left[\mathbb{C} P^{1} \times \mathbb{C} P^{1}\right]=8 \neq 0$, so $\left[\mathbb{C} P^{1}\right] \times\left[\mathbb{C} P^{1}\right] \notin \Omega_{4}^{W}$.

Let $\pi: M U \rightarrow W$ be an SU-linear projection (an idempotent operation with image W). It defines an SU-bilinear multiplication on W by the formula

$$
W \wedge W \rightarrow M U \wedge M U \xrightarrow{m_{M U}} M U \xrightarrow{\pi} W .
$$

This multiplication has a unit, obtained from the unit of MSU by the forgetful morphism.

Example

1. Define a homomorphism $p_{0}: \Omega^{U} \rightarrow \Omega^{W}$ sending a bordism class [M] to the class of the submanifold $N \subset \mathbb{C} P^{1} \times M$ dual to $\bar{\eta} \otimes \operatorname{det} \mathcal{T} M$. We have $\operatorname{det} \mathcal{T} N \cong i^{*} \bar{\eta}$, where i is the embedding $N \hookrightarrow \mathbb{C} P^{1} \times M$, so N has a natural c_{1}-spherical stably complex structure.
The homomorphism p_{0} extends to an idempotent SU-linear operation $p_{0}: M U \rightarrow M U$, called the Stong projection.
2. Conner and Floyd defined geometrically a right inverse to the operation $\Delta: \Omega_{*}^{U} \rightarrow \Omega_{*-4}^{U}$. Novikov extended it to a cohomological operation $\Psi \in\left[\Sigma^{4} M U, M U\right], \Delta \Psi=1$.
Then $1-\Psi \Delta: M U \rightarrow M U$ is an idempotent $S U$-linear operation with image $\operatorname{ker} \Delta$, called the Conner-Floyd projection.

The two projections are different, although they define the same multiplication on W. This reflects the fact that both projections have the same coefficient of ∂_{2} in their expansions $1+\sum_{i \geqslant 2} \lambda_{i} \partial_{i}$.

Theorem (Chernykh-P)
Any SU-linear multiplication on W with the standard unit has the form

$$
a * b=a b+(2[V]-w) \partial a \partial b
$$

where $[V]=\left[\mathbb{C} P^{1}\right]^{2}-\left[\mathbb{C} P^{2}\right]$ and $w \in \Omega_{4}^{W}$. Any such multiplication is associative and commutative. Furthermore, the multiplications obtained from SU-linear projections are those with $w=2 \widetilde{w}, \widetilde{w} \in \Omega_{4}^{W}$.

In this way, W becomes a complex oriented multiplicative cohomology theory.

Let $\quad m_{i}=\operatorname{gcd}\left\{\binom{i+1}{k}, 1 \leqslant k \leqslant i\right\}$

$$
=\left\{\begin{array}{lll}
1 & \text { if } \quad i+1 \neq p^{\ell} \quad \text { for any prime } p \\
p & \text { if } \quad i+1=p^{\ell} & \text { for some prime } p \text { and integer } \ell>0 .
\end{array}\right.
$$

Then $\left[M^{2 i}\right] \in \Omega_{2 i}^{U}$ represents a polynomial generator iff $s_{i}\left[M^{2 i}\right]= \pm m_{i}$.

Theorem (Stong)

Ω^{W} is a polynomial ring on generators in every even degree except 4:

$$
\Omega^{W} \cong \mathbb{Z}\left[x_{1}, x_{i}: i \geqslant 3\right], \quad x_{1}=\left[\mathbb{C} P^{1}\right], \quad x_{i} \in \pi_{2 i}(W)
$$

The polynomial generators x_{i} are specified by the condition $s_{i}\left(x_{i}\right)= \pm m_{i} m_{i-1}$ for $i \geqslant 3$. The boundary operator $\partial: \Omega^{W} \rightarrow \Omega^{W}$, $\partial^{2}=0$, is given by $\partial x_{1}=2, \partial x_{2 i}=x_{2 i-1}$, and satisfies the identity

$$
\partial(a * b)=a * \partial b+\partial a * b-x_{1} * \partial a * \partial b
$$

We have

$$
\Omega^{W} \otimes \mathbb{Z}\left[\frac{1}{2}\right] \cong \mathbb{Z}\left[\frac{1}{2}\right]\left[x_{1}, x_{2 k-1}, 2 x_{2 k}-x_{1} x_{2 k-1}: k>1\right]
$$

where $x_{1}^{2}=x_{1} * x_{1}$ is a ∂-cycle, and each $x_{2 k-1}, 2 x_{2 k}-x_{1} x_{2 k-1}$ is a ∂-cycle.

Theorem

There exist elements $y_{i} \in \Omega_{2 i}^{S U}, i>1$, such that $s_{2}\left(y_{2}\right)=-48$ and

$$
s_{i}\left(y_{i}\right)= \begin{cases}m_{i} m_{i-1} & \text { if } i \text { is odd } \\ 2 m_{i} m_{i-1} & \text { if } i \text { is even and } i>2\end{cases}
$$

These elements are mapped as follows under the forgetful homomorphism $\Omega^{S U} \rightarrow \Omega^{W}$:

$$
y_{2} \mapsto 2 x_{1}^{2}, \quad y_{2 k-1} \mapsto x_{2 k-1}, \quad y_{2 k} \mapsto 2 x_{2 k}-x_{1} x_{2 k-1}, \quad k>1 .
$$

In particular, $\Omega^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ embeds in $\Omega^{W} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ as the polynomial subring generated by $x_{1}^{2}, x_{2 k-1}$ and $2 x_{2 k}-x_{1} x_{2 k-1}$.
8. (Quasi)toric representatives in bordism classes

A toric variety is a normal complex algebraic variety V containing an algebraic torus $\left(\mathbb{C}^{\times}\right)^{n}$ as a Zariski open subset in such a way that the natural action of $\left(\mathbb{C}^{\times}\right)^{n}$ on itself extends to an action on V.

Toric varieties are classified by convex-geometrical objects called rational fans, and projective toric varieties correspond to convex lattice polytopes P.

A toric manifold is a complete (compact) nonsingular toric variety.

A quasitoric manifold is a smooth $2 n$-dimensional closed manifold M with a locally standard action of a (compact) torus T^{n} whose quotient M / T^{n} is a simple polytope P. An omniorientation of a quasitoric manifold provides it with an intrinsic stably complex structure.

Theorem (Danilov-Jurkiewicz, Davis-Januszkiewicz)

Let V be a (quasi)toric manifold of real dimension $2 n$. The cohomology ring $H^{*}(V ; \mathbb{Z})$ is generated by the degree-two classes v_{i} dual to the torus-invariant codimension-two submanifolds V_{i}, and is given by

$$
H^{*}(V ; \mathbb{Z}) \cong \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] / \mathcal{I}, \quad \operatorname{deg} v_{i}=2
$$

where \mathcal{I} is the ideal generated by elements of the following two types:

- $v_{i_{1}} \cdots v_{i_{k}}$ such that the facets i_{1}, \ldots, i_{k} do not intersect in P;
- $\sum_{i=1}^{m}\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle v_{i}$, for any vector $\boldsymbol{x} \in \operatorname{Hom}\left(T^{n}, S^{1}\right) \cong \mathbb{Z}^{n}$.

Here $\boldsymbol{a}_{i} \in \operatorname{Hom}\left(S^{1}, T^{n}\right) \cong \mathbb{Z}^{n}$ is the primitive vector defining the one-parameter subgroup fixing V_{i}.

It is convenient to consider the integer $n \times m$ characteristic matrix

$$
\Lambda=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n m}
\end{array}\right)
$$

whose columns are the vectors \boldsymbol{a}_{i} written in the standard basis of \mathbb{Z}^{n}.
Then the n linear forms $a_{j 1} v_{1}+\cdots+a_{j m} v_{m}$ corresponding to the rows of Λ vanish in $H^{*}(V ; \mathbb{Z})$.

Theorem

There an isomorphism of complex vector bundles:

$$
\mathcal{T} V \oplus \underline{\mathbb{C}}^{m-n} \cong \rho_{1} \oplus \cdots \oplus \rho_{m}
$$

where $\mathcal{T} V$ is the tangent bundle, \mathbb{C}^{m-n} is the trivial $(m-n)$-plane bundle, and ρ_{i} is the line bundle corresponding to V_{i}, with $c_{1}\left(\rho_{i}\right)=v_{i}$. In particular, the total Chern class of V is given by

$$
c(V)=\left(1+v_{1}\right) \cdots\left(1+v_{m}\right)
$$

Proposition

An omnioriented quasitoric manifold M has $c_{1}(M)=0$ if and only if there exists a linear function $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ such that $\varphi\left(\mathbf{a}_{i}\right)=1$ for $i=1, \ldots, m$. Here the \boldsymbol{a}_{i} are the columns of characteristic matrix. In particular, if some n vectors of $a_{1}, \ldots, \boldsymbol{a}_{m}$ form the standard basis $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}$, then M is $S U$ iff the column sums of Λ are all equal to 1 .

Corollary

A toric manifold V cannot be $S U$.

Proof. If $\varphi\left(\boldsymbol{a}_{\boldsymbol{i}}\right)=1$ for all i, then the vectors $\boldsymbol{a}_{\boldsymbol{i}}$ lie in the positive halfspace of φ, so they cannot span a complete fan.

Theorem (Buchstaber-P.-Ray)

A quasitoric SU-manifold $M^{2 n}$ represents 0 in $\Omega_{2 n}^{U}$ whenever $n<5$.

Theorem (Lu-P.)
There exist quasitoric SU-manifolds $M^{2 i}, i \geqslant 5$, with $s_{i}\left(M^{2 i}\right)=m_{i} m_{i-1}$ if i is odd and $s_{i}\left(M^{2 i}\right)=2 m_{i} m_{i-1}$ if i is even. These quasitoric manifolds represent polynomial generators of $\Omega^{S U} \otimes \mathbb{Z}\left[\frac{1}{2}\right]$.

9. Calabi-Yau hypersurfaces and SU-bordism

A Calabi-Yau manifold is a compact Kähler manifold M with $c_{1}(M)=0$. By definition, a Calabi-Yau manifold is an SU-manifold.

A toric manifold V is Fano if its anticanonical class $V_{1}+\cdots+V_{m}$ (representing $c_{1}(V)$) is ample. In geometric terms, the projective embedding $V \hookrightarrow \mathbb{C} P^{s}$ corresponding to $V_{1}+\cdots+V_{m}$ comes from a lattice polytope P in which the lattice distance from 0 to each hyperplane containing a facet is 1 . Such a lattice polytope P is called reflexive; its polar polytope P^{*} is also a lattice polytope.

The submanifold N dual to $c_{1}(V)$ is given by the hyperplane section of the embedding $V \hookrightarrow \mathbb{C} P^{s}$ defined by $V_{1}+\cdots+V_{m}$. Therefore, $N \subset V$ is a smooth algebraic hypersurface in V, so N is a Calabi-Yau manifold of complex dimension $n-1$.

Lemma

The s-number of the Calabi-Yau manifold N is given by

$$
s_{n-1}(N)=\left\langle\left(v_{1}^{n-1}+\cdots+v_{m}^{n-1}\right)\left(v_{1}+\cdots+v_{m}\right)-\left(v_{1}+\cdots+v_{m}\right)^{n},[V]\right\rangle .
$$

Example

Consider the Calabi-Yau hypersurface N_{3} in $V=\mathbb{C} P^{3}$.
We have $c_{1}\left(\mathcal{T} \mathbb{C} P^{3}\right)=4 u$, where $u \in H^{2}\left(\mathbb{C} P^{3} ; \mathbb{Z}\right)$ is the canonical generator dual to a hyperplane section.
Therefore, N_{3} can be given by a generic quartic equation in homogeneous coordinates on $\mathbb{C} P^{3}$.
The standard example is the quartic given by $z_{0}^{4}+z_{1}^{4}+z_{2}^{4}+z_{3}^{4}=0$, which is a K3-surface. Lemma above gives

$$
s_{3}\left(N_{3}\right)=\left\langle 4 u^{2} \cdot 4 u-(4 u)^{3},\left[\mathbb{C} P^{3}\right]\right\rangle=-48
$$

so N_{3} represents the generator $-y_{2} \in \Omega_{4}^{S U}$.
$\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ an unordered partition of $n, \quad \sigma_{1}+\cdots+\sigma_{k}=n$ $\Delta^{\sigma_{i}}$ the standard reflexive simplex of dimension σ_{i}.
$P_{\sigma}=\Delta^{\sigma_{1}} \times \cdots \times \Delta^{\sigma_{k}}$ is a reflexive polytope with the corresponding toric Fano manifold $V_{\sigma}=\mathbb{C} P^{\sigma_{1}} \times \cdots \times \mathbb{C} P^{\sigma_{k}}$.
N_{σ} the canonical Calabi-Yau hypersurface in V_{σ}.

Theorem (Limonchenko-Lu-P.)

The SU-bordism classes of the canonical Calabi-Yau hypersurfaces N_{σ} in $\mathbb{C} P^{\sigma_{1}} \times \cdots \times \mathbb{C} P^{\sigma_{k}}$ multiplicatively generate the SU-bordism ring $\Omega^{S U}\left[\frac{1}{2}\right]$.

Idea of proof.

Denote by $\widehat{P}(n)$ the set of all partitions σ with parts of size at most $n-2$:

$$
\widehat{P}(n):=\left\{\sigma=\left(\sigma_{1}, \ldots, \sigma_{k}\right): \sigma_{1}+\cdots+\sigma_{k}=n, \quad \sigma \neq(n),(1, n-1) .\right\}
$$

For each σ we have the multinomial coefficient $\binom{n}{\sigma}=\frac{n!}{\sigma_{1}!\cdots \sigma_{k}!}$ and define

$$
\alpha(\sigma):=\binom{n}{\sigma}\left(\sigma_{1}+1\right)^{\sigma_{1}} \cdots\left(\sigma_{k}+1\right)^{\sigma_{k}}
$$

Then for for any $\sigma \in \widehat{P}(n)$ we have

$$
s_{n-1}\left(N_{\sigma}\right)=-\alpha(\sigma)
$$

Then we prove that

$$
\underset{\sigma \in \widehat{P}(n)}{\operatorname{gcd}} \alpha(\sigma)= \begin{cases}2 m_{n-1} m_{n-2} & \text { if } n>3 \text { is odd; } \\ m_{n-1} m_{n-2} & \text { if } n>3 \text { is even; } \\ 48 & \text { if } n=3\end{cases}
$$

Therefore, there is a linear combination of the bordism classes $\left[N_{\sigma}\right] \in \Omega_{2 n-2}^{S U}$ whose s-number satisfies the condition for a polynomial generator y_{n-1} of $\Omega^{S U}\left[\frac{1}{2}\right]$.

References

- Victor Buchstaber, Taras Panov and Nigel Ray. Toric genera. Internat. Math. Research Notices 16 (2010), 3207-3262.
- Victor Buchstaber and Taras Panov. Toric Topology. Mathematical Surveys and Monographs, vol. 204, American Mathematical Society, Providence, RI, 2015, 516 pages.
- Zhi Lü and Taras Panov. On toric generators in the unitary and special unitary bordism rings. Algebraic \& Geometric Topology 16 (2016), no. 5, 2865-2893.
- Georgy Chernykh, Ivan Limonchenko and Taras Panov. SU-bordism: structure results and geometric representatives. Russian Math. Surveys 74 (2019), no. 3, 461-524.
- Georgy Chernykh and Taras Panov. SU-linear operations in complex cobordism and the c_{1}-spherical bordism theory. Izvestiya: Mathematics 87 (2023), no. 4, 768-797.

