Double cohomology of moment-angle complexes and bigraded persistence barcodes

Joint with Tony Bahri, Ivan Limonchenko, Jongbaek Song and Donald Stanley.

Taras Panov

Moscow State University \& NRU HSE
Beijing Institute of Mathematical Sciences and Applications (BIMSA) Topology Seminar, 13 November 2023

1. Preliminaries

\mathcal{K} a simplicial complex on $[m]=\{1,2, \ldots, m\}, \quad \varnothing \in \mathcal{K}$. $I=\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{K}$ a face (or a simplex).
Assume $\varnothing \in \mathcal{K}$ and $\{i\} \in \mathcal{K}$ for each $i=1, \ldots, m$ (no ghost vertices).
$\operatorname{CAT}(\mathcal{K})$ the face category of \mathcal{K}, with objects $I \in \mathcal{K}$ and morphisms $I \subset J$. For $I \in \mathcal{K}$, consider

$$
\left(D^{2}, S^{1}\right)^{\prime}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in\left(D^{2}\right)^{m}:\left|z_{j}\right|=1 \text { if } j \notin I\right\} \subset\left(D^{2}\right)^{m} .
$$

Note that $\left(D^{2}, S^{1}\right)^{I} \subset\left(D^{2}, S^{1}\right)^{J}$ whenever $I \subset J$. Have a diagram

$$
\mathscr{D}_{\mathcal{K}}: \operatorname{CAT}(\mathcal{K}) \rightarrow \text { TOP }
$$

mapping $I \in \mathcal{K}$ to $\left(D^{2}, S^{1}\right)^{\prime}$.

The moment-angle complex corresponding to \mathcal{K} is

$$
\mathcal{Z}_{\mathcal{K}}:=\operatorname{colim} \mathscr{D}_{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(D^{2}, S^{1}\right)^{\prime} \subset\left(D^{2}\right)^{m}
$$

The face ring of \mathcal{K} is

$$
\mathbb{Z}[\mathcal{K}]:=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] / \mathcal{I}_{\mathcal{K}},
$$

where $\mathcal{I}_{\mathcal{K}}$ is generated by $\prod_{i \in I} v_{i}$ for which $I \subset[m]$ is not a simplex of \mathcal{K}.
Theorem
There are isomorphisms of bigraded commutative algebras

$$
\begin{aligned}
H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) & \cong \operatorname{Tor}_{\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]}(\mathbb{Z}[\mathcal{K}], \mathbb{Z}) \\
& \cong H\left(\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d\right) \\
& \cong \bigoplus_{I \subset[m]} \widetilde{H}^{*}\left(\mathcal{K}_{l}\right)
\end{aligned}
$$

Here $\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d\right)$ is the Koszul complex with bideg $u_{i}=(-1,2)$, bideg $v_{i}=(0,2)$ and $d u_{i}=v_{i}, d v_{i}=0$.
$\widetilde{H}^{*}\left(\mathcal{K}_{1}\right)$ denotes the reduced simplicial cohomology of the full subcomplex $\mathcal{K}_{I} \subset \mathcal{K}$ (the restriction of \mathcal{K} to $I \subset[m]$).

The bigraded components of the cohomology of $\mathcal{Z}_{\mathcal{K}}$ are given by

$$
H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \bigoplus_{\backslash \subset[m]:|I|=\ell} \tilde{H}^{\ell-k-1}\left(\mathcal{K}_{I}\right), \quad H^{p}\left(\mathcal{Z}_{\mathcal{K}}\right)=\bigoplus_{-k+2 \ell=p} H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

Consider the following quotient of the Koszul ring $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}]$:

$$
R^{*}(\mathcal{K})=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}] /\left(v_{i}^{2}=u_{i} v_{i}=0,1 \leqslant i \leqslant m\right) .
$$

Then $R^{*}(\mathcal{K})$ has finite rank as an abelian group, with a basis of monomials $u_{J} v_{I}$ where $J \subset[m], I \in \mathcal{K}$ and $J \cap I=\varnothing$.

Furthermore, $R^{*}(\mathcal{K})$ can be identified with the cellular cochains $C^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ of $\mathcal{Z}_{\mathcal{K}}$ with the standard cell decomposition, the quotient ideal $\left(v_{i}^{2}=u_{i} v_{i}=0,1 \leqslant i \leqslant m\right)$ is d-invariant and acyclic, and there is a ring isomorphism

$$
H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong H\left(R^{*}(\mathcal{K}), d\right)
$$

2. Double (co)homology

We have

$$
H_{p}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \bigoplus_{I \subset[m]} \widetilde{H}_{p-|I|-1}\left(\mathcal{K}_{I}\right)
$$

Given $j \in[m] \backslash I$, consider the homomorphism

$$
\phi_{p ; I, j}: \widetilde{H}_{p}\left(\mathcal{K}_{I}\right) \rightarrow \widetilde{H}_{p}\left(\mathcal{K}_{I \cup\{j\}}\right)
$$

induced by the inclusion $\mathcal{K}_{I} \hookrightarrow \mathcal{K}_{I \cup\{j\}}$. Then, we define

$$
\partial_{p}^{\prime}=(-1)^{p+1} \bigoplus_{I \subset[m], j \in[m] \backslash I} \varepsilon(j, I) \phi_{p ; I, j},
$$

where

$$
\varepsilon(j, I)=(-1)^{\#\{i \in I: i<j\}} .
$$

Lemma

$\partial_{p}^{\prime}: \bigoplus_{I \subset[m]} \widetilde{H}_{p}\left(\mathcal{K}_{l}\right) \rightarrow \bigoplus_{I \subset[m]} \widetilde{H}_{p}\left(\mathcal{K}_{l}\right)$ satisfies $\left(\partial_{p}^{\prime}\right)^{2}=0$.

We therefore have a chain complex

$$
C H_{*}\left(\mathcal{Z}_{\mathcal{K}}\right):=\left(H_{*}\left(\mathcal{Z}_{\mathcal{K}}\right), \partial^{\prime}\right)
$$

where

$$
\partial^{\prime}: \widetilde{H}_{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right) \rightarrow \widetilde{H}_{-k-1,2 \ell+2}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

with respect to the following bigraded decomposition of $H_{p}\left(\mathcal{Z}_{\mathcal{K}}\right)$

$$
H_{p}\left(\mathcal{Z}_{\mathcal{K}}\right)=\bigoplus_{-k+2 \ell=p} H_{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right), \quad H_{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \bigoplus_{I \subset[m]:|| |=\ell} \widetilde{H}_{\ell-k-1}\left(\mathcal{K}_{I}\right)
$$

We define the bigraded double homology of $\mathcal{Z}_{\mathcal{K}}$ by

$$
H H_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)=H\left(H_{*}\left(\mathcal{Z}_{\mathcal{K}}\right), \partial^{\prime}\right)
$$

For the cohomological version, given $i \in I$, consider the homomorphism

$$
\psi_{p ; i, l}: \widetilde{H}^{p}\left(\mathcal{K}_{l}\right) \rightarrow \widetilde{H}^{p}\left(\mathcal{K}_{\Lambda \backslash\{i\}}\right)
$$

induced by the inclusion $\mathcal{K}_{\backslash \backslash i\}} \hookrightarrow \mathcal{K}_{1}$, and

$$
d_{p}^{\prime}=(-1)^{p+1} \sum_{i \in I} \varepsilon(i, I) \psi_{p ; i, I}
$$

We define $d^{\prime}: H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) \rightarrow H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ using $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)=\bigoplus_{I \subset[m]} \widetilde{H}^{*}\left(\mathcal{K}_{\imath}\right)$:

$$
d^{\prime}: H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right) \rightarrow H^{-k+1,2 \ell-2}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

Similarly, have $\left(d^{\prime}\right)^{2}=0$, which turns $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ into a cochain complex

$$
C H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right):=\left(H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right), d^{\prime}\right)
$$

We define the bigraded double cohomology of $\mathcal{Z}_{\mathcal{K}}$ by

$$
H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)=H\left(H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right), d^{\prime}\right)
$$

3. The bicomplexes

Given $I \subset[m]$, let $C^{p}\left(\mathcal{K}_{I}\right)$ be the p th simplicial cochain group of \mathcal{K}_{I}.
Denote by $\alpha_{L, I} \in C^{q-1}\left(\mathcal{K}_{I}\right)$ the basis cochain corresponding to an oriented simplex $L=\left(\ell_{1}, \ldots, \ell_{q}\right) \in \mathcal{K}_{1}$; it takes value 1 on L and vanishes on all other simplices.

The simplicial coboundary map (differential) $d: C^{p}\left(\mathcal{K}_{1}\right) \rightarrow C^{p+1}\left(\mathcal{K}_{1}\right)$ is

$$
d \alpha_{L, I}=\sum_{j \in \backslash \backslash L, L \cup\{j\} \in \mathcal{K}} \varepsilon(j, L) \alpha_{L \cup\{j\}, I} .
$$

Consider $\psi_{p ; i, l}: C^{p}\left(\mathcal{K}_{l}\right) \rightarrow C^{p}\left(\mathcal{K}_{\backslash\{i\}}\right)$ induced by the inclusion $\mathcal{K}_{l \backslash\{i\}} \hookrightarrow \mathcal{K}_{l}$, and define

$$
d_{p}^{\prime}=(-1)^{p+1} \sum_{i \in I} \varepsilon(i, I) \psi_{p ; i, I}
$$

Recall that the differential d on the Koszul complex $\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}]$ has bidegree $(1,0)$ and satisfies

$$
d u_{j}=v_{j}, \quad d v_{j}=0, \quad \text { for } j=1, \ldots, m .
$$

We introduce the second differential d^{\prime} of bidegree $(1,-2)$ on
$\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}]$ by setting

$$
d^{\prime} u_{j}=1, \quad d^{\prime} v_{j}=0, \quad \text { for } j=1, \ldots, m
$$

and extending by the Leibniz rule. Explicitly, the differential d^{\prime} is defined on square-free monomials $u_{J} v_{l}$ by

$$
d^{\prime}\left(u_{J} v_{l}\right)=\sum_{j \in J} \varepsilon(j, J) u_{J \backslash\{j\}} v_{l}, \quad d^{\prime}\left(v_{l}\right)=0 .
$$

The differential d^{\prime} is also defined by the same formula on the submodule $R^{*}(\mathcal{K}) \subset \Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}]$ generated by the monomials $u_{J} v_{I}$ with $J \cap I=\varnothing$. However, the ideal $\left(v_{i}^{2}=u_{i} v_{i}=0,1 \leqslant i \leqslant m\right)$ is not d^{\prime}-invariant, so $\left(R^{*}(\mathcal{K}), d^{\prime}\right)$ is not a differential graded algebra.

Lemma

With d and d^{\prime} defined above, $\left(\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{I}\right), d, d^{\prime}\right)$, $\left(\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d, d^{\prime}\right)$ and $\left(R^{*}(\mathcal{K}), d, d^{\prime}\right)$ are bicomplexes, that is, d and d^{\prime} satisfy $d d^{\prime}=-d^{\prime} d$.

By construction, $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is the first double cohomology of the bicomplex $\left(\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{I}\right), d, d^{\prime}\right):$

$$
H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)=H\left(H\left(\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{I}\right), d\right), d^{\prime}\right)
$$

Theorem

The bicomplexes $\left(\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{l}\right), d, d^{\prime}\right)$ and $\left(R^{*}(\mathcal{K}), d, d^{\prime}\right)$ are isomorphic. Therefore, $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is isomorphic to the first double cohomology of the bicomplex $\left(\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d, d^{\prime}\right)$:

$$
H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong H\left(H\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d\right), d^{\prime}\right) .
$$

Proof (sketch).
Define a homomorphism

$$
\begin{aligned}
f: C^{q-1}\left(\mathcal{K}_{I}\right) & \longrightarrow R^{q-|I|, 2| | \mid}(\mathcal{K}), \\
\alpha_{L, I} & \longmapsto \varepsilon(L, I) u_{I \backslash L} v_{L},
\end{aligned}
$$

where $\varepsilon(L, I)=\prod_{i \in L} \varepsilon(i, I)=(-1)^{\sum_{\ell \in L} \#\{i \in I: i<\ell\}}$.
Then f is an isomorphism of free abelian groups commuting with d and d^{\prime}. That is, have an isomorphism of bicomplexes

$$
f:\left(\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{l}\right), d, d^{\prime}\right) \longrightarrow\left(R^{*}(\mathcal{K}), d, d^{\prime}\right) .
$$

Corollary

The double cohomology $\mathrm{HH}^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is a graded commutative algebra, with the product induced from the cohomology product on $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$.

Proposition

(a) For any \mathcal{K}, the d^{\prime}-cohomology of $\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}]$ is zero:

$$
H\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d^{\prime}\right)=0
$$

(b) If $\mathcal{K} \neq \Delta^{m-1}$ (the full simplex on $[m]$), then the d^{\prime}-cohomology of the bicomplexes $\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{I}\right)$ and $R^{*}(\mathcal{K})$ is zero:

$$
H\left(\bigoplus_{l \subset[m]} C^{*}\left(\mathcal{K}_{l}\right), d^{\prime}\right)=H\left(R^{*}(\mathcal{K}), d^{\prime}\right)=0
$$

Therefore, the second double cohomology and the total cohomology of the bicomplexes $\left(\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{l}\right), d, d^{\prime}\right)$ and $\left(R^{*}(\mathcal{K}), d, d^{\prime}\right)$ is zero unless $\mathcal{K}=\Delta^{m-1}$.
(c) If $\mathcal{K}=\Delta^{m-1}$, then the only nonzero d^{\prime}-cohomology group of $\bigoplus_{I \subset[m]} C^{*}\left(\mathcal{K}_{l}\right)$ and $R^{*}(\mathcal{K})$ is $H^{2 m} \cong \mathbb{Z}$, represented by $\alpha_{[m],[m]}$ and $v_{1} \cdots v_{m}$, respectively.

4. Relation to the torus action

Given a circle action $S^{1} \times X \rightarrow X$ on a space X, the induced map in cohomology has the form

$$
H^{*}(X) \rightarrow H^{*}\left(S^{1} \times X\right)=\Lambda[u] \otimes H^{*}(X), \quad \alpha \mapsto 1 \otimes \alpha+u \otimes \iota(\alpha),
$$

where $u \in H^{1}\left(S^{1}\right)$ is a generator and $\iota: H^{*}(X) \rightarrow H^{*-1}(X)$ is a derivation.

Proposition

The derivation corresponding to the $i^{\text {th }}$ coordinate circle action $S_{i}^{1} \times \mathcal{Z}_{\mathcal{K}} \rightarrow \mathcal{Z}_{\mathcal{K}}$ is induced by the derivation ι_{i} of the Koszul complex $\left(\wedge\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d\right)$ given on the generators by

$$
\iota_{i}\left(u_{j}\right)=\delta_{i j}, \quad \iota_{i}\left(v_{j}\right)=0, \quad \text { for } j=1, \ldots, m
$$

where $\delta_{i j}$ is the Kronecker delta.
The derivation corresponding to the diagonal circle action $S_{d}^{1} \times \mathcal{Z}_{\mathcal{K}} \rightarrow \mathcal{Z}_{\mathcal{K}}$ coincides with the differential d^{\prime}.

Summary of 3 definitions of $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$

The bigraded double cohomology $\mathrm{HH}^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ can be defined as

- the cohomology of the cochain complex

$$
C H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right):=\left(H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right), d^{\prime}\right)
$$

where d^{\prime} is defined on $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)=\bigoplus_{\iota \subset[m]} \widetilde{H}^{*}\left(\mathcal{K}_{l}\right)$ via alternating the homomorphisms $H^{p}\left(\mathcal{K}_{I}\right) \rightarrow \widetilde{H}^{p}\left(\mathcal{K}_{\backslash \backslash\{i\}}\right)$ induced by $\mathcal{K}_{I \backslash\{i\}} \hookrightarrow \mathcal{K}_{I}$;

- the first double cohomology of the bicomplex

$$
\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}], d, d^{\prime}\right)
$$

with $d u_{j}=v_{j}, d v_{j}=0, d^{\prime} u_{j}=1, d^{\prime} v_{j}=0$.

- the cohomology of $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ with respect to the derivation defined by the diagonal circle action $S_{d}^{1} \times \mathcal{Z}_{\mathcal{K}} \rightarrow \mathcal{Z}_{\mathcal{K}}$.

5. Techniques for computing $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$

Proposition

Let $\mathcal{K}=\partial \Delta^{m-1}$, the boundary of an $(m-1)$-simplex. Then,

$$
H H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right)= \begin{cases}\mathbb{Z} & \text { for }(-k, 2 \ell)=(0,0),(-1,2 m) \\ 0 & \text { otherwise }\end{cases}
$$

Theorem

For two simplicial complexes \mathcal{K} and \mathcal{L}, if either $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ or $H^{*}\left(\mathcal{Z}_{\mathcal{L}}\right)$ is free, then there is an isomorphism of chain complexes

$$
C H^{*}\left(\mathcal{Z}_{\mathcal{K} * \mathcal{L}}\right) \cong C H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) \otimes C H^{*}\left(\mathcal{Z}_{\mathcal{L}}\right)
$$

In particular, we have $H H^{*}\left(\mathcal{Z}_{\mathcal{K} * \mathcal{L}} ; k\right) \cong H H^{*}\left(\mathcal{Z}_{\mathcal{K}} ; k\right) \otimes H H^{*}\left(\mathcal{Z}_{\mathcal{L}} ; k\right)$ with field coefficients.

In the previous examples $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ behaved like $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$. Here is an example of a major difference.

Theorem

Let $\mathcal{K}=\mathcal{K}^{\prime} \sqcup$ pt be the disjoint union of a nonempty simplicial complex \mathcal{K}^{\prime} and a point. Then,

$$
H H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right)= \begin{cases}\mathbb{Z} & \text { for }(-k, 2 \ell)=(0,0),(-1,4) \\ 0 & \text { otherwise }\end{cases}
$$

More generally,

Theorem

Let $\mathcal{K}=\mathcal{K}^{\prime} \cup_{\sigma} \Delta^{n}$ be a simplicial complex obtained from a nonempty simplicial complex \mathcal{K}^{\prime} by gluing an n-simplex along a proper, possibly empty, face $\sigma \in \mathcal{K}$. Then either \mathcal{K} is a simplex, or

$$
H H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right)= \begin{cases}\mathbb{Z} & \text { for }(-k, 2 \ell)=(0,0),(-1,4) \\ 0 & \text { otherwise }\end{cases}
$$

6. m-cycles and Poincaré duality

Let $\mathcal{Z}_{\mathcal{L}}$ be the moment-angle complex corresponding to an m-cycle \mathcal{L}. By a result of McGavran, $\mathcal{Z}_{\mathcal{L}}$ is homeomorphic to connected sum of sphere products:

$$
\mathcal{Z}_{\mathcal{L}} \cong \underset{k=3}{m-1}\left(S^{k} \times S^{m+2-k}\right)^{\#(k-2)\binom{m-2}{k-1}}
$$

Theorem

Let \mathcal{L} be an m-cycle for $m \geq 5$. Then $H H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{L}}\right)$ is \mathbb{Z} in bidegrees $(-k, 2 \ell)=(0,0),(-1,4),(-m+3,2(m-2)),(-m+2,2 m)$, and is 0 otherwise.

Example

For $m=5$, the (singly graded) Betti vector of $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is (10055001), while for $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ it is (10011001).

Theorem

Suppose \mathcal{K} is a Gorenstein* complex of dimension $n-1$ (in particular, a triangulated sphere). Then the double cohomology $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is a Poincaré duality algebra. In particular,

$$
\operatorname{rank} H H^{-k, 2 \ell}\left(\mathcal{Z}_{\mathcal{K}}\right)=\operatorname{rank} H H^{-(m-n)+k, 2(m-\ell)}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

The converse does not hold, unlike the situation with the ordinary cohomology $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$. For example, if \mathcal{K} is m disjoint points, then $H H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is a Poincaré algebra, but \mathcal{K} is not Gorenstein if $m>2$.

Question

Characterise simplicial complexes \mathcal{K} for which $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is a Poincaré algebra.

7. Bigraded persistence and barcodes

$\mathbb{R}_{\geq 0}$ nonnegative real numbers, a poset category with respect \leq. A persistence module is a (covariant) functor

$$
\mathcal{M}: \mathbb{R}_{\geq 0} \rightarrow k-\mathrm{MOD}
$$

to the category of modules over a principal ideal domain k .
That is, a family of k-modules $\left\{M_{s}\right\}_{s \in \mathbb{R}_{\geq 0}}$ together with morphisms $\left\{\phi_{s_{1}, s_{2}}: M_{s_{1}} \rightarrow M_{s_{2}}\right\}_{s_{1} \leq s_{2}}$ such that $\phi_{s, s}$ is the identity on M_{s} and $\phi_{s_{2}, s_{3}} \circ \phi_{s_{1}, s_{2}}=\phi_{s_{1}, s_{3}}$ whenever $s_{1} \leq s_{2} \leq s_{3}$ in $\mathbb{R}_{\geq 0}$.

Example

Given an interval $I \subset \mathbb{R}_{\geq 0}$, define the interval module

$$
k(I): \mathbb{R}_{\geq 0} \rightarrow k-\operatorname{MOD}, \quad s \mapsto k_{s}^{\prime}:= \begin{cases}k & \text { if } s \in I \\ 0 & \text { otherwise }\end{cases}
$$

Theorem (interval decomposition)
Let $\mathcal{M}=\left\{M_{s}\right\}_{s \in \mathbb{R}_{\geq 0}}$ be a persistence module. If k is a field and all M_{s} are finite dimensional k-vector spaces, then

$$
\mathcal{M}=\bigoplus_{I \in B(\mathcal{M})} k(I)
$$

for some multiset $B(\mathcal{M})$ of intervals in $\mathbb{R}_{\geq 0}$.

The multiset of intervals $B(\mathcal{M})$ is called the barcode of \mathcal{M}.
$\left(X, d_{X}\right)$ a finite pseudo-metric space (a point cloud).
The Vietoris-Rips filtration $\{R(X, t)\}_{t \geq 0}$ associated with $\left(X, d_{X}\right)$ consists of the Vietoris-Rips simplicial complexes $R(X, t)$.
$R(X, t)$ is the clique complex of the graph whose vertex set is X and two vertices x and y are connected by an edge if $d_{X}(x, y) \leq t$. Have a simplicial inclusion $R\left(X, t_{1}\right) \hookrightarrow R\left(X, t_{2}\right)$ whenever $t_{1} \leq t_{2}$.

Figure: A point cloud and the corresponding Vietoris-Rips filtration.

The n-dimensional persistent homology module

$$
\begin{aligned}
& \mathcal{P} \mathcal{H}_{n}(X): \mathbb{R}_{\geq 0} \rightarrow \mathrm{k}-\mathrm{MOD}, \quad t \mapsto \widetilde{H}_{n}(R(X, t)) . \\
& B(X)=B(\mathcal{P H}(X)) \text { the barcode of } \mathcal{P} \mathcal{H}(X)=\bigoplus_{n \geqslant 0} \mathcal{P} \mathcal{H}_{n}(X) .
\end{aligned}
$$

A homology class $\alpha \in \widetilde{H}_{n}(R(X, t))$ is said to
(1) be born at r if
(i) $\alpha \in \operatorname{im}\left(\widetilde{H}_{n}(R(X, r)) \rightarrow \widetilde{H}_{n}(R(X, t))\right)$;
(ii) $\alpha \notin \operatorname{im}\left(\widetilde{H}_{n}(R(X, p)) \rightarrow \widetilde{H}_{n}(R(X, t))\right)$ for $p<r$,
(2) die at s if

$$
\begin{aligned}
& \text { (i) } \alpha \in \operatorname{ker}\left(\widetilde{H}_{n}(R(X, t)) \rightarrow \widetilde{H}_{n}(R(X, s))\right) ; \\
& \text { (ii) } \alpha \notin \operatorname{ker}\left(\widetilde{H}_{n}(R(X, t)) \rightarrow \widetilde{H}_{n}(R(X, q))\right) \text { for } q<s .
\end{aligned}
$$

If $\alpha \in \widetilde{H}_{n}(R(X, t))$ is born at r and dies at s, then $[r, s)$ is the persistence interval of α. For $t \in \mathbb{R}_{\geq 0}$, the dimension of $\widetilde{H}_{n}(R(X, t))$ is the number of n-dimensional persistence intervals containing t.

Persistence intervals in dimension 0 :

Persistence intervals in dimension 1:

Figure: The barcode corresponding to the Vietoris-Rips complex.

Recall $\mathcal{Z}_{\mathcal{K}}=\bigcup_{I \in K}\left(D^{2}, S^{1}\right)^{\prime} \subset\left(D^{2}\right)^{m}$ the moment-angle complex.

$$
H_{p}\left(\mathcal{Z}_{K}\right)=\bigoplus_{-i+2 j=p} H_{-i, 2 j}\left(\mathcal{Z}_{K}\right) \cong \bigoplus_{J \subset[m]} \widetilde{H}_{p-|J|-1}\left(K_{J}\right) .
$$

Bigraded Betti numbers of K (with coefficients in k):

$$
\beta_{-i, 2 j}(K):=\operatorname{dim} H_{-i, 2 j}\left(\mathcal{Z}_{K}\right)=\sum_{J \subset[m]:|J|=j} \operatorname{dim} \tilde{H}_{j-i-1}\left(K_{J}\right) .
$$

For $j=m$, we get $\beta_{-i, 2 m}(K)=\operatorname{dim} \widetilde{H}_{m-i-1}(K)$.

Figure: Bigraded Betti numbers of ($n-1$)-dimensional K with m vertices.
$\left(X, d_{X}\right)$ a finite pseudo-metric space $\{R(X, t)\}_{t \geq 0}$ its associated Vietoris-Rips filtration.

The bigraded persistent homology module of bidegree $(-i, 2 j)$ as

$$
\mathcal{P H} \mathcal{Z}_{-i, 2 j}(X): \mathbb{R}_{\geq 0} \rightarrow \mathrm{k}-\mathrm{MOD}, \quad t \mapsto H_{-i, 2 j}\left(\mathcal{Z}_{R(X, t)}\right)
$$

The bigraded barcode $B B(X)$ is the collection of persistence intervals of generators of the bigraded homology groups $H_{-i, 2 j}\left(\mathcal{Z}_{R(X, t)}\right)$. For each $t \in \mathbb{R}_{\geq 0}$, the dimension of $H_{-i, 2 j}\left(\mathcal{Z}_{R(X, t)}\right)$ is equal to the number of persistence intervals of bidegree $(-i, 2 j)$ containing t.

The bigraded barcode of X is a diagram in 3-dimensional space. It contains the original barcode of X in its top level.

Figure: A bigraded barcode.

The bigraded persistent double homology module of bidegree $(-i, 2 j)$ is

$$
\mathcal{P H H} \mathcal{Z}_{-i, 2 j}(X): \mathbb{R}_{\geq 0} \rightarrow \mathrm{k}-\mathrm{MOD}, \quad t \mapsto H H_{-i, 2 j}\left(\mathcal{Z}_{R(X, t)}\right) .
$$

One can view the bigraded persistent homology module as a functor to differential bigraded k-modules,

$$
\mathcal{P H Z}(X): \mathbb{R}_{\geq 0} \rightarrow \mathrm{DG}(\mathrm{k}-\mathrm{MOD}), \quad t \mapsto\left(H_{*, *}\left(\mathcal{Z}_{R(X, t)}\right), \partial^{\prime}\right)
$$

Then

$$
\mathcal{P H H \mathcal { Z }}(X)=\mathcal{H} \circ \mathcal{P H Z}(X)
$$

where $\mathcal{H}: \mathrm{DG}(\mathrm{k}-\mathrm{MOD}) \rightarrow \mathrm{k}-\mathrm{MOD}$ is the homology functor. This is convenient for comparing the interleaving distances.
$\mathbb{B B}(X)$: the double barcode corresponding to the bigraded persistence module $\mathcal{P H H Z}(X)$.
8. Isometry and stability

The stability theorem asserts that the persistent homology barcodes are stable under perturbations of the data sets in the Gromov-Hausdorff metric. It is a key result justifying the use of persistent homology in data science.

Theorem (stability theorem)

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two finite pseudo-metric spaces, and let $B(X)$ and $B(Y)$ be the barcodes corresponding to the persistence modules $\mathcal{P H}(X)$ and $\mathcal{P H}(Y)$. Then,

$$
W_{\infty}(B(X), B(Y)) \leqslant 2 d_{G H}(X, Y)
$$

The Hausdorff distance between two nonempty subsets A and B in a finite pseudo-metric space (Z, d) is

$$
d_{H}(A, B):=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\} .
$$

The Gromov-Hausdorff distance between two finite pseudo-metric spaces $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ is

$$
d_{G H}(X, Y):=\inf _{Z, f, g} d_{H}(f(X), g(Y))
$$

where the infimum is taken over all isometric embeddings $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ into a pseudo-metric space Z. Equivalently,

$$
d_{G H}(X, Y)=\frac{1}{2} \min _{C} \max _{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in C}\left|d_{X}\left(x_{1}, x_{2}\right)-d_{Y}\left(y_{1}, y_{2}\right)\right|,
$$

where the minimum is taken over all correspondences between X and Y.

Let B and B^{\prime} be finite multisets of intervals of the form $[a, b)$.
Define the multiset $\bar{B}=B \cup \varnothing^{\left|B^{\prime}\right|}$, obtained by adding to B the multiset containing the empty interval \varnothing with cardinality $\left|B^{\prime}\right|$. Similarly, define $\overline{B^{\prime}}=B^{\prime} \cup \varnothing^{|B|}$. Now \bar{B} and $\overline{B^{\prime}}$ have the same cardinality

The distance function $\pi: \bar{B} \times \overline{B^{\prime}} \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ is given by

$$
\begin{aligned}
\pi\left([a, b),\left[a^{\prime}, b^{\prime}\right)\right) & =\max \left\{\left|a^{\prime}-a\right|,\left|b^{\prime}-b\right|\right\}, \quad \pi\left([a, \infty),\left[a^{\prime}, \infty\right)\right)=\left|a^{\prime}-a\right|, \\
\pi([a, b), \varnothing) & =\frac{b-a}{2}, \quad \pi\left(\varnothing,\left[a^{\prime}, b^{\prime}\right)\right)=\frac{b^{\prime}-a^{\prime}}{2}, \quad \pi(\varnothing, \varnothing)=0, \\
\pi\left([a, \infty),\left[a^{\prime}, b^{\prime}\right)\right) & =\pi\left([a, b),\left[a^{\prime}, \infty\right)\right)=\pi([a, \infty), \varnothing)=\pi\left(\varnothing,\left[a^{\prime}, \infty\right)\right)=\infty
\end{aligned}
$$

Denote by $\mathcal{D}\left(\bar{B}, \overline{B^{\prime}}\right)$ the set of all bijections $\theta: \bar{B} \rightarrow \overline{B^{\prime}}$. Then the ∞-Wasserstein distance, or the bottleneck distance, is

$$
W_{\infty}\left(B, B^{\prime}\right)=\min _{\theta \in \mathcal{D}\left(\bar{B}, \overline{B^{\prime}}\right)} \max _{I \in \bar{B}} \pi(I, \theta(I))
$$

Bigraded persistent homology does not satisfy the stability property, but bigraded persistent double homology does:

Theorem (Bahri-Limonchenko-P-Song-Stanley)

Let $\mathbb{B} B(X)$ and $\mathbb{B} \mathbb{B}(Y)$ be the bigraded barcodes corresponding to the persistence modules $\mathcal{P H H \mathcal { Z }}(X)$ and $\mathcal{P H H \mathcal { H }}(Y)$, respectively. Then, we have

$$
W_{\infty}(\mathbb{B B}(X), \mathbb{B} \mathbb{B}(Y)) \leq 2 d_{G H}(X, Y)
$$

References

[1] Ivan Limonchenko, Taras Panov, Jongbaek Song and Donald Stanley. Double cohomology of moment-angle complexes. Advances in Math. 432 (2023), Paper no. 109274, 34 pp.
[2] Anthony Bahri, Ivan Limonchenko, Taras Panov, Jongbaek Song and Donald Stanley. A stability theorem for bigraded persistence barcodes. Preprint (2023); arXiv:2303.14694.

