Double cohomology of moment-angle complexes and bigraded persistence barcodes

Joint with Tony Bahri, Ivan Limonchenko, Jongbaek Song and Donald Stanley.

Taras Panov

Moscow State University & NRU HSE

Beijing Institute of Mathematical Sciences and Applications (BIMSA) Topology Seminar, 13 November 2023

1. Preliminaries

 \mathcal{K} a simplicial complex on $[m] = \{1, 2, \dots, m\}, \quad \emptyset \in \mathcal{K}.$ $I = \{i_1, \dots, i_k\} \in \mathcal{K}$ a face (or a simplex). Assume $\emptyset \in \mathcal{K}$ and $\{i\} \in \mathcal{K}$ for each $i = 1, \dots, m$ (no ghost vertices).

CAT(\mathcal{K}) the face category of \mathcal{K} , with objects $I \in \mathcal{K}$ and morphisms $I \subset J$. For $I \in \mathcal{K}$, consider

 $(D^2, S^1)^I = \{(z_1, \dots, z_m) \in (D^2)^m : |z_j| = 1 \text{ if } j \notin I\} \subset (D^2)^m.$ Note that $(D^2, S^1)^I \subset (D^2, S^1)^J$ whenever $I \subset J$. Have a diagram $\mathscr{D}_{\mathcal{K}} : \operatorname{CAT}(\mathcal{K}) \to \operatorname{TOP}$ mapping $I \in \mathcal{K}$ to $(D^2, S^1)^I$.

The moment-angle complex corresponding to $\mathcal K$ is

$$\mathcal{Z}_{\mathcal{K}} := \operatorname{colim} \mathscr{D}_{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (D^2, S^1)^I \subset (D^2)^m.$$

$$\mathbb{Z}[\mathcal{K}] := \mathbb{Z}[\mathbf{v}_1, \ldots, \mathbf{v}_m]/\mathcal{I}_{\mathcal{K}},$$

where $\mathcal{I}_{\mathcal{K}}$ is generated by $\prod_{i \in I} v_i$ for which $I \subset [m]$ is not a simplex of \mathcal{K} .

Theorem

There are isomorphisms of bigraded commutative algebras

$$\begin{aligned} H^*(\mathcal{Z}_{\mathcal{K}}) &\cong \operatorname{Tor}_{\mathbb{Z}[v_1, \dots, v_m]}(\mathbb{Z}[\mathcal{K}], \mathbb{Z}) \\ &\cong H(\Lambda[u_1, \dots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d) \\ &\cong \bigoplus_{I \subset [m]} \widetilde{H}^*(\mathcal{K}_I). \end{aligned}$$

Here $(\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d)$ is the Koszul complex with bideg $u_i = (-1, 2)$, bideg $v_i = (0, 2)$ and $du_i = v_i$, $dv_i = 0$. $\widetilde{H}^*(\mathcal{K}_I)$ denotes the reduced simplicial cohomology of the full subcomplex $\mathcal{K}_I \subset \mathcal{K}$ (the restriction of \mathcal{K} to $I \subset [m]$). The bigraded components of the cohomology of $\mathcal{Z}_\mathcal{K}$ are given by

$$H^{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{I \subset [m]: |I| = \ell} \widetilde{H}^{\ell-k-1}(\mathcal{K}_{I}), \quad H^{p}(\mathcal{Z}_{\mathcal{K}}) = \bigoplus_{-k+2\ell = p} H^{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}).$$

Consider the following quotient of the Koszul ring $\Lambda[u_1,\ldots,u_m]\otimes\mathbb{Z}[\mathcal{K}]$:

$$R^*(\mathcal{K}) = \Lambda[u_1,\ldots,u_m] \otimes \mathbb{Z}[\mathcal{K}]/(v_i^2 = u_i v_i = 0, \ 1 \leq i \leq m).$$

Then $R^*(\mathcal{K})$ has finite rank as an abelian group, with a basis of monomials $u_J v_I$ where $J \subset [m]$, $I \in \mathcal{K}$ and $J \cap I = \emptyset$.

Furthermore, $R^*(\mathcal{K})$ can be identified with the cellular cochains $C^*(\mathcal{Z}_{\mathcal{K}})$ of $\mathcal{Z}_{\mathcal{K}}$ with the standard cell decomposition, the quotient ideal $(v_i^2 = u_i v_i = 0, \ 1 \leq i \leq m)$ is *d*-invariant and acyclic, and there is a ring isomorphism

$$H^*(\mathcal{Z}_{\mathcal{K}})\cong H(R^*(\mathcal{K}),d).$$

2. Double (co)homology

We have

$$H_{\rho}(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{I \subset [m]} \widetilde{H}_{\rho-|I|-1}(\mathcal{K}_I),$$

Given $j \in [m] \setminus I$, consider the homomorphism

$$\phi_{p;I,j} \colon \widetilde{H}_p(\mathcal{K}_I) \to \widetilde{H}_p(\mathcal{K}_{I\cup\{j\}})$$

induced by the inclusion $\mathcal{K}_I \hookrightarrow \mathcal{K}_{I \cup \{j\}}$. Then, we define

$$\partial'_{p} = (-1)^{p+1} \bigoplus_{I \subset [m], j \in [m] \setminus I} \varepsilon(j, I) \phi_{p;I,j},$$

where

$$\varepsilon(j,I) = (-1)^{\#\{i \in I : i < j\}}.$$

Lemma

$$\partial'_{\rho} \colon \bigoplus_{I \subset [m]} \widetilde{H}_{\rho}(\mathcal{K}_{I}) \to \bigoplus_{I \subset [m]} \widetilde{H}_{\rho}(\mathcal{K}_{I}) \text{ satisfies } (\partial'_{\rho})^{2} = 0.$$

We therefore have a chain complex

$$CH_*(\mathcal{Z}_{\mathcal{K}}) := (H_*(\mathcal{Z}_{\mathcal{K}}), \partial'),$$

where

$$\partial' \colon \widetilde{H}_{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) \to \widetilde{H}_{-k-1,2\ell+2}(\mathcal{Z}_{\mathcal{K}})$$

with respect to the following bigraded decomposition of $H_p(\mathcal{Z}_{\mathcal{K}})$

$$H_p(\mathcal{Z}_{\mathcal{K}}) = \bigoplus_{-k+2\ell=p} H_{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}), \quad H_{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{I \subset [m]: |I|=\ell} \widetilde{H}_{\ell-k-1}(\mathcal{K}_I).$$

We define the bigraded double homology of $\mathcal{Z}_{\mathcal{K}}$ by

$$HH_*(\mathcal{Z}_{\mathcal{K}}) = H(H_*(\mathcal{Z}_{\mathcal{K}}), \partial').$$

For the cohomological version, given $i \in I$, consider the homomorphism

$$\psi_{p;i,I} \colon \widetilde{H}^{p}(\mathcal{K}_{I}) \to \widetilde{H}^{p}(\mathcal{K}_{I\setminus\{i\}})$$

induced by the inclusion $\mathcal{K}_{I\setminus\{i\}} \hookrightarrow \mathcal{K}_{I}$, and

$$d'_{p} = (-1)^{p+1} \sum_{i \in I} \varepsilon(i, I) \psi_{p;i,I}.$$

We define $d' \colon H^*(\mathcal{Z}_{\mathcal{K}}) \to H^*(\mathcal{Z}_{\mathcal{K}})$ using $H^*(\mathcal{Z}_{\mathcal{K}}) = \bigoplus_{I \subset [m]} \widetilde{H}^*(\mathcal{K}_I)$: $d' \colon H^{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) \to H^{-k+1,2\ell-2}(\mathcal{Z}_{\mathcal{K}}).$

Similarly, have $(d')^2 = 0$, which turns $H^*(\mathcal{Z}_{\mathcal{K}})$ into a cochain complex

$$CH^*(\mathcal{Z}_{\mathcal{K}}) := (H^*(\mathcal{Z}_{\mathcal{K}}), d').$$

We define the bigraded double cohomology of $\mathcal{Z}_{\mathcal{K}}$ by

$$HH^*(\mathcal{Z}_{\mathcal{K}}) = H(H^*(\mathcal{Z}_{\mathcal{K}}), d').$$

Taras Panov (Moscow)

3. The bicomplexes

Given $I \subset [m]$, let $C^{p}(\mathcal{K}_{I})$ be the *p*th simplicial cochain group of \mathcal{K}_{I} . Denote by $\alpha_{L,I} \in C^{q-1}(\mathcal{K}_{I})$ the basis cochain corresponding to an oriented simplex $L = (\ell_{1}, \ldots, \ell_{q}) \in \mathcal{K}_{I}$; it takes value 1 on *L* and vanishes on all other simplices.

The simplicial coboundary map (differential) $d: C^p(\mathcal{K}_I) \to C^{p+1}(\mathcal{K}_I)$ is

$$d\alpha_{L,I} = \sum_{j \in I \setminus L, \, L \cup \{j\} \in \mathcal{K}} \varepsilon(j, L) \alpha_{L \cup \{j\}, I}.$$

Consider $\psi_{p;i,I}: C^p(\mathcal{K}_I) \to C^p(\mathcal{K}_{I \setminus \{i\}})$ induced by the inclusion $\mathcal{K}_{I \setminus \{i\}} \hookrightarrow \mathcal{K}_I$, and define

$$d'_{p} = (-1)^{p+1} \sum_{i \in I} \varepsilon(i, I) \psi_{p;i,I}.$$

Recall that the differential d on the Koszul complex $\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}]$ has bidegree (1, 0) and satisfies

$$du_j = v_j, \quad dv_j = 0, \quad \text{ for } j = 1, \ldots, m.$$

We introduce the second differential d' of bidegree (1, -2) on $\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}]$ by setting

$$d'u_j=1, \quad d'v_j=0, \quad ext{ for } j=1,\ldots,m,$$

and extending by the Leibniz rule. Explicitly, the differential d' is defined on square-free monomials $u_J v_I$ by

$$d'(u_J v_I) = \sum_{j \in J} \varepsilon(j, J) u_{J \setminus \{j\}} v_I, \quad d'(v_I) = 0.$$

The differential d' is also defined by the same formula on the submodule $R^*(\mathcal{K}) \subset \Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}]$ generated by the monomials $u_J v_I$ with $J \cap I = \emptyset$. However, the ideal $(v_i^2 = u_i v_i = 0, 1 \leq i \leq m)$ is not d'-invariant, so $(R^*(\mathcal{K}), d')$ is not a differential graded algebra.

Lemma

With d and d' defined above, $(\bigoplus_{I \subset [m]} C^*(\mathcal{K}_I), d, d')$, $(\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d, d')$ and $(R^*(\mathcal{K}), d, d')$ are bicomplexes, that is, d and d' satisfy dd' = -d'd.

By construction, $HH^*(\mathcal{Z}_{\mathcal{K}})$ is the first double cohomology of the bicomplex $(\bigoplus_{I \subseteq [m]} C^*(\mathcal{K}_I), d, d')$:

$$HH^*(\mathcal{Z}_{\mathcal{K}}) = H(H(\bigoplus_{I \subset [m]} C^*(\mathcal{K}_I), d), d').$$

Theorem

The bicomplexes $(\bigoplus_{I \subset [m]} C^*(\mathcal{K}_I), d, d')$ and $(R^*(\mathcal{K}), d, d')$ are isomorphic. Therefore, $HH^*(\mathcal{Z}_{\mathcal{K}})$ is isomorphic to the first double cohomology of the bicomplex $(\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d, d')$:

 $HH^*(\mathcal{Z}_{\mathcal{K}}) \cong H(H(\Lambda[u_1,\ldots,u_m]\otimes \mathbb{Z}[\mathcal{K}],d),d').$

Proof (sketch).

Define a homomorphism

$$f: C^{q-1}(\mathcal{K}_I) \longrightarrow R^{q-|I|,2|I|}(\mathcal{K}),$$
$$\alpha_{L,I} \longmapsto \varepsilon(L,I) \, u_{I \setminus L} v_L,$$

where $\varepsilon(L, I) = \prod_{i \in L} \varepsilon(i, I) = (-1)^{\sum_{\ell \in L} \#\{i \in I: i < \ell\}}$. Then f is an isomorphism of free abelian groups commuting with d and d'. That is, have an isomorphism of bicomplexes

$$f: \left(\bigoplus_{I\subset [m]} C^*(\mathcal{K}_I), d, d'\right) \longrightarrow \left(R^*(\mathcal{K}), d, d'\right).$$

Corollary

The double cohomology $HH^*(\mathcal{Z}_{\mathcal{K}})$ is a graded commutative algebra, with the product induced from the cohomology product on $H^*(\mathcal{Z}_{\mathcal{K}})$.

Proposition

(a) For any \mathcal{K} , the d'-cohomology of $\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}]$ is zero:

$$H(\Lambda[u_1,\ldots,u_m]\otimes\mathbb{Z}[\mathcal{K}],d')=0.$$

(b) If $\mathcal{K} \neq \Delta^{m-1}$ (the full simplex on [m]), then the d'-cohomology of the bicomplexes $\bigoplus_{I \subseteq [m]} C^*(\mathcal{K}_I)$ and $R^*(\mathcal{K})$ is zero:

$$H\big(\bigoplus_{I\subset [m]} C^*(\mathcal{K}_I), d'\big) = H\big(R^*(\mathcal{K}), d'\big) = 0.$$

Therefore, the second double cohomology and the total cohomology of the bicomplexes $(\bigoplus_{I \subset [m]} C^*(\mathcal{K}_I), d, d')$ and $(R^*(\mathcal{K}), d, d')$ is zero unless $\mathcal{K} = \Delta^{m-1}$.

(c) If $\mathcal{K} = \Delta^{m-1}$, then the only nonzero d'-cohomology group of $\bigoplus_{I \subset [m]} C^*(\mathcal{K}_I)$ and $R^*(\mathcal{K})$ is $H^{2m} \cong \mathbb{Z}$, represented by $\alpha_{[m],[m]}$ and $v_1 \cdots v_m$, respectively.

4. Relation to the torus action

Given a circle action $S^1 \times X \to X$ on a space X, the induced map in cohomology has the form

 $H^*(X) \to H^*(S^1 \times X) = \Lambda[u] \otimes H^*(X), \quad \alpha \mapsto 1 \otimes \alpha + u \otimes \iota(\alpha),$

where $u \in H^1(S^1)$ is a generator and $\iota \colon H^*(X) \to H^{*-1}(X)$ is a derivation.

Proposition

The derivation corresponding to the *i*th coordinate circle action $S_i^1 \times \mathcal{Z}_{\mathcal{K}} \to \mathcal{Z}_{\mathcal{K}}$ is induced by the derivation ι_i of the Koszul complex $(\Lambda[u_1, \ldots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d)$ given on the generators by

$$\iota_i(u_j) = \delta_{ij}, \quad \iota_i(v_j) = 0, \quad \text{ for } j = 1, \dots, m,$$

where δ_{ij} is the Kronecker delta.

The derivation corresponding to the diagonal circle action $S_d^1 \times \mathcal{Z}_{\mathcal{K}} \to \mathcal{Z}_{\mathcal{K}}$ coincides with the differential d'.

Summary of 3 definitions of $HH^*(\mathcal{Z}_{\mathcal{K}})$

The bigraded double cohomology $HH^*(\mathcal{Z}_{\mathcal{K}})$ can be defined as

• the cohomology of the cochain complex

$$CH^*(\mathcal{Z}_{\mathcal{K}}) := (H^*(\mathcal{Z}_{\mathcal{K}}), d'),$$

where d' is defined on $H^*(\mathcal{Z}_{\mathcal{K}}) = \bigoplus_{I \subset [m]} \widetilde{H}^*(\mathcal{K}_I)$ via alternating the homomorphisms $H^p(\mathcal{K}_I) \to \widetilde{H}^p(\mathcal{K}_{I \setminus \{i\}})$ induced by $\mathcal{K}_{I \setminus \{i\}} \hookrightarrow \mathcal{K}_I$;

• the first double cohomology of the bicomplex

$$\left(\Lambda[u_1,\ldots,u_m]\otimes\mathbb{Z}[\mathcal{K}],d,d'\right)$$

with $du_j = v_j$, $dv_j = 0$, $d'u_j = 1$, $d'v_j = 0$.

• the cohomology of $H^*(\mathcal{Z}_{\mathcal{K}})$ with respect to the derivation defined by the diagonal circle action $S^1_d \times \mathcal{Z}_{\mathcal{K}} \to \mathcal{Z}_{\mathcal{K}}$.

5. Techniques for computing $HH^*(\mathcal{Z}_{\mathcal{K}})$

Proposition

Let $\mathcal{K} = \partial \Delta^{m-1}$, the boundary of an (m-1)-simplex. Then,

$$HH^{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) = \begin{cases} \mathbb{Z} & \text{for } (-k,2\ell) = (0,0), \ (-1,2m); \\ 0 & \text{otherwise.} \end{cases}$$

Theorem

For two simplicial complexes \mathcal{K} and \mathcal{L} , if either $H^*(\mathcal{Z}_{\mathcal{K}})$ or $H^*(\mathcal{Z}_{\mathcal{L}})$ is free, then there is an isomorphism of chain complexes

$$CH^*(\mathcal{Z}_{\mathcal{K}*\mathcal{L}})\cong CH^*(\mathcal{Z}_{\mathcal{K}})\otimes CH^*(\mathcal{Z}_{\mathcal{L}}).$$

In particular, we have $HH^*(\mathcal{Z}_{\mathcal{K}*\mathcal{L}}; k) \cong HH^*(\mathcal{Z}_{\mathcal{K}}; k) \otimes HH^*(\mathcal{Z}_{\mathcal{L}}; k)$ with field coefficients.

In the previous examples $HH^*(\mathcal{Z}_{\mathcal{K}})$ behaved like $H^*(\mathcal{Z}_{\mathcal{K}})$. Here is an example of a major difference.

Theorem

Let $\mathcal{K} = \mathcal{K}' \sqcup pt$ be the disjoint union of a nonempty simplicial complex \mathcal{K}' and a point. Then,

$$extsf{HH}^{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) = egin{cases} \mathbb{Z} & extsf{for}\;(-k,2\ell) = (0,0),\;(-1,4); \ 0 & extsf{otherwise}. \end{cases}$$

More generally,

Theorem

Let $\mathcal{K} = \mathcal{K}' \cup_{\sigma} \Delta^n$ be a simplicial complex obtained from a nonempty simplicial complex \mathcal{K}' by gluing an n-simplex along a proper, possibly empty, face $\sigma \in \mathcal{K}$. Then either \mathcal{K} is a simplex, or

$$\mathcal{H} \mathcal{H}^{-k,2\ell}(\mathcal{Z}_{\mathcal{K}}) = egin{cases} \mathbb{Z} & \textit{for } (-k,2\ell) = (0,0), \ (-1,4); \ 0 & \textit{otherwise}. \end{cases}$$

6. *m*-cycles and Poincaré duality

Let $\mathcal{Z}_{\mathcal{L}}$ be the moment-angle complex corresponding to an *m*-cycle \mathcal{L} . By a result of McGavran, $\mathcal{Z}_{\mathcal{L}}$ is homeomorphic to connected sum of sphere products:

$$\mathcal{Z}_{\mathcal{L}} \cong \overset{m-1}{\underset{k=3}{\#}} \left(S^k \times S^{m+2-k} \right)^{\#(k-2)\binom{m-2}{k-1}}.$$

Theorem

Let \mathcal{L} be an m-cycle for $m \geq 5$. Then $HH^{-k,2\ell}(\mathcal{Z}_{\mathcal{L}})$ is \mathbb{Z} in bidegrees $(-k,2\ell) = (0,0), (-1,4), (-m+3,2(m-2)), (-m+2,2m)$, and is 0 otherwise.

Example

For m = 5, the (singly graded) Betti vector of $H^*(\mathcal{Z}_{\mathcal{K}})$ is (10055001), while for $HH^*(\mathcal{Z}_{\mathcal{K}})$ it is (10011001).

Theorem

Suppose \mathcal{K} is a Gorenstein^{*} complex of dimension n-1 (in particular, a triangulated sphere). Then the double cohomology $HH^*(\mathcal{Z}_{\mathcal{K}})$ is a Poincaré duality algebra. In particular,

$$\mathsf{rank}\,HH^{-k,2\ell}(\mathcal{Z}_\mathcal{K})=\mathsf{rank}\,HH^{-(m-n)+k,2(m-\ell)}(\mathcal{Z}_\mathcal{K}).$$

The converse does not hold, unlike the situation with the ordinary cohomology $H^*(\mathcal{Z}_{\mathcal{K}})$. For example, if \mathcal{K} is *m* disjoint points, then $HH^*(\mathcal{Z}_{\mathcal{K}})$ is a Poincaré algebra, but \mathcal{K} is not Gorenstein if m > 2.

Question

Characterise simplicial complexes \mathcal{K} for which $HH^*(\mathcal{Z}_{\mathcal{K}})$ is a Poincaré algebra.

7. Bigraded persistence and barcodes

 $\mathbb{R}_{\geq 0}$ nonnegative real numbers, a poset category with respect \leq . A persistence module is a (covariant) functor

 $\mathcal{M}\colon \mathbb{R}_{\geq 0} \to k\text{-mod}$

to the category of modules over a principal ideal domain k.

That is, a family of k-modules $\{M_s\}_{s\in\mathbb{R}_{\geq 0}}$ together with morphisms $\{\phi_{s_1,s_2}\colon M_{s_1}\to M_{s_2}\}_{s_1\leq s_2}$ such that $\phi_{s,s}$ is the identity on M_s and $\phi_{s_2,s_3}\circ\phi_{s_1,s_2}=\phi_{s_1,s_3}$ whenever $s_1\leq s_2\leq s_3$ in $\mathbb{R}_{\geq 0}$.

Example

Given an interval $I \subset \mathbb{R}_{\geq 0}$, define the interval module

$$\mathsf{k}(I) \colon \mathbb{R}_{\geq 0} \to \mathsf{k}\text{-MOD}, \quad s \mapsto \mathsf{k}'_s := \begin{cases} \mathsf{k} & \text{if } s \in I; \\ 0 & \text{otherwise.} \end{cases}$$

Theorem (interval decomposition)

Let $\mathcal{M} = \{M_s\}_{s \in \mathbb{R}_{\geq 0}}$ be a persistence module. If k is a field and all M_s are finite dimensional k-vector spaces, then

$$\mathcal{M} = \bigoplus_{I \in B(\mathcal{M})} \mathsf{k}(I)$$

for some multiset $B(\mathcal{M})$ of intervals in $\mathbb{R}_{>0}$.

The multiset of intervals $B(\mathcal{M})$ is called the barcode of \mathcal{M} .

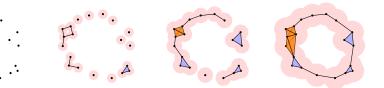
Taras Panov (Moscow)

Double cohomology of m-a complexes

(X, d_X) a finite pseudo-metric space (a point cloud).

The Vietoris-Rips filtration $\{R(X, t)\}_{t\geq 0}$ associated with (X, d_X) consists of the Vietoris-Rips simplicial complexes R(X, t).

R(X, t) is the clique complex of the graph whose vertex set is X and two vertices x and y are connected by an edge if $d_X(x, y) \leq t$. Have a simplicial inclusion $R(X, t_1) \hookrightarrow R(X, t_2)$ whenever $t_1 \leq t_2$.



 $X = R(X, 0) \hookrightarrow \cdots \hookrightarrow R(X, t_1) \hookrightarrow \cdots \hookrightarrow R(X, t_2) \hookrightarrow \cdots \hookrightarrow R(X, t_3) \hookrightarrow \cdots$

Figure: A point cloud and the corresponding Vietoris-Rips filtration.

The *n*-dimensional persistent homology module

$$\mathcal{PH}_n(X) \colon \mathbb{R}_{\geq 0} \to k\text{-MOD}, \quad t \mapsto \widetilde{H}_n(R(X,t)).$$

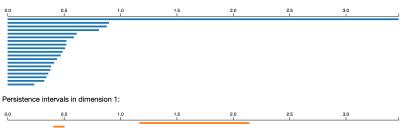
 $B(X) = B(\mathcal{PH}(X))$ the barcode of $\mathcal{PH}(X) = \bigoplus_{n \ge 0} \mathcal{PH}_n(X)$.

A homology class
$$\alpha \in \widetilde{H}_n(R(X, t))$$
 is said to
(1) be born at r if
(i) $\alpha \in \operatorname{im}(\widetilde{H}_n(R(X, r)) \to \widetilde{H}_n(R(X, t)));$
(ii) $\alpha \notin \operatorname{im}(\widetilde{H}_n(R(X, p)) \to \widetilde{H}_n(R(X, t)))$ for $p < r$,
(2) die at s if
(i) $\alpha \in \ker(\widetilde{H}_n(R(X, t)) \to \widetilde{H}_n(R(X, s)));$
(ii) $\alpha \notin \ker(\widetilde{H}_n(R(X, t)) \to \widetilde{H}_n(R(X, q)))$ for $q < s$.

If $\alpha \in \widetilde{H}_n(R(X, t))$ is born at r and dies at s, then [r, s) is the persistence interval of α . For $t \in \mathbb{R}_{\geq 0}$, the dimension of $\widetilde{H}_n(R(X, t))$ is the number of n-dimensional persistence intervals containing t.

Taras Panov (Moscow)

Double cohomology of m-a complexes



Persistence intervals in dimension 0:

Figure: The barcode corresponding to the Vietoris-Rips complex.

Recall $\mathcal{Z}_{\mathcal{K}} = igcup_{I \in \mathcal{K}} (D^2, S^1)^I \subset (D^2)^m$ the moment-angle complex.

$$H_p(\mathcal{Z}_K) = \bigoplus_{-i+2j=p} H_{-i,2j}(\mathcal{Z}_K) \cong \bigoplus_{J \subset [m]} \widetilde{H}_{p-|J|-1}(K_J).$$

Bigraded Betti numbers of K (with coefficients in k):

$$\beta_{-i,2j}(K) := \dim H_{-i,2j}(\mathcal{Z}_K) = \sum_{J \subset [m]: |J|=j} \dim \widetilde{H}_{j-i-1}(K_J).$$

For j = m, we get $\beta_{-i,2m}(K) = \dim \widetilde{H}_{m-i-1}(K)$.

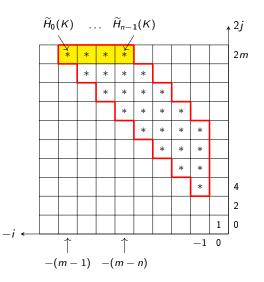


Figure: Bigraded Betti numbers of (n-1)-dimensional K with m vertices.

 (X, d_X) a finite pseudo-metric space $\{R(X, t)\}_{t \ge 0}$ its associated Vietoris-Rips filtration.

The bigraded persistent homology module of bidegree (-i, 2j) as

 $\mathcal{PHZ}_{-i,2j}(X) \colon \mathbb{R}_{\geq 0} \to k\text{-MOD}, \quad t \mapsto H_{-i,2j}(\mathcal{Z}_{R(X,t)}).$

The bigraded barcode BB(X) is the collection of persistence intervals of generators of the bigraded homology groups $H_{-i,2j}(\mathcal{Z}_{R(X,t)})$. For each $t \in \mathbb{R}_{\geq 0}$, the dimension of $H_{-i,2j}(\mathcal{Z}_{R(X,t)})$ is equal to the number of persistence intervals of bidegree (-i, 2j) containing t. The bigraded barcode of X is a diagram in 3-dimensional space. It contains the original barcode of X in its top level.

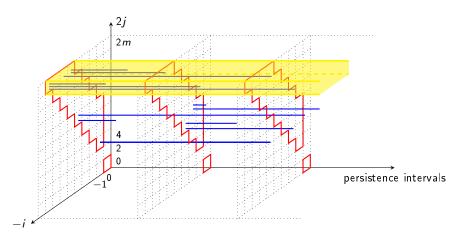


Figure: A bigraded barcode.

Double cohomology of m-a complexes

The bigraded persistent double homology module of bidegree (-i, 2j) is

 $\mathcal{PHHZ}_{-i,2j}(X) \colon \mathbb{R}_{\geq 0} \to k\text{-MOD}, \quad t \mapsto HH_{-i,2j}(\mathcal{Z}_{R(X,t)}).$

One can view the bigraded persistent homology module as a functor to differential bigraded k-modules,

$$\mathcal{PHZ}(X) \colon \mathbb{R}_{\geq 0} \to \mathrm{DG}(\mathsf{k}\operatorname{-MOD}), \quad t \mapsto (H_{*,*}(\mathcal{Z}_{R(X,t)}), \partial').$$

Then

$$\mathcal{PHHZ}(X) = \mathcal{H} \circ \mathcal{PHZ}(X),$$

where $\mathcal{H}: DG(k-MOD) \rightarrow k-MOD$ is the homology functor. This is convenient for comparing the interleaving distances.

 $\mathbb{BB}(X)$: the double barcode corresponding to the bigraded persistence module $\mathcal{PHHZ}(X)$.

8. Isometry and stability

The stability theorem asserts that the persistent homology barcodes are stable under perturbations of the data sets in the Gromov-Hausdorff metric. It is a key result justifying the use of persistent homology in data science.

Theorem (stability theorem)

Let (X, d_X) and (Y, d_Y) be two finite pseudo-metric spaces, and let B(X)and B(Y) be the barcodes corresponding to the persistence modules $\mathcal{PH}(X)$ and $\mathcal{PH}(Y)$. Then,

 $W_{\infty}(B(X), B(Y)) \leq 2 d_{GH}(X, Y).$

The Hausdorff distance between two nonempty subsets A and B in a finite pseudo-metric space (Z, d) is

$$d_H(A,B): = \max\{\sup_{a\in A} d(a,B), \sup_{b\in B} d(A,b)\}.$$

The Gromov-Hausdorff distance between two finite pseudo-metric spaces (X, d_X) and (Y, d_Y) is

$$d_{GH}(X,Y): = \inf_{Z,f,g} d_H(f(X),g(Y)),$$

where the infimum is taken over all isometric embeddings $f: X \to Z$ and $g: Y \to Z$ into a pseudo-metric space Z. Equivalently,

$$d_{GH}(X,Y) = \frac{1}{2} \min_{C} \max_{(x_1,y_1),(x_2,y_2) \in C} |d_X(x_1,x_2) - d_Y(y_1,y_2)|,$$

where the minimum is taken over all correspondences between X and Y.

Let *B* and *B'* be finite multisets of intervals of the form [a, b). Define the multiset $\overline{B} = B \cup \varnothing^{|B'|}$, obtained by adding to *B* the multiset containing the empty interval \varnothing with cardinality |B'|. Similarly, define $\overline{B'} = B' \cup \varnothing^{|B|}$. Now \overline{B} and $\overline{B'}$ have the same cardinality

The distance function $\pi: \overline{B} \times \overline{B'} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$ is given by $\pi([a, b), [a', b')) = \max\{|a' - a|, |b' - b|\}, \quad \pi([a, \infty), [a', \infty)) = |a' - a|,$ $\pi([a, b), \varnothing) = \frac{b - a}{2}, \quad \pi(\varnothing, [a', b')) = \frac{b' - a'}{2}, \quad \pi(\varnothing, \varnothing) = 0,$ $\pi([a, \infty), [a', b')) = \pi([a, b), [a', \infty)) = \pi([a, \infty), \varnothing) = \pi(\varnothing, [a', \infty)) = \infty$

Denote by $\mathcal{D}(\overline{B}, \overline{B'})$ the set of all bijections $\theta \colon \overline{B} \to \overline{B'}$. Then the ∞ -Wasserstein distance, or the bottleneck distance, is

$$W_{\infty}(B,B') = \min_{\theta \in \mathcal{D}(\overline{B},\overline{B'})} \max_{I \in \overline{B}} \pi(I,\theta(I)).$$

Bigraded persistent homology does not satisfy the stability property, but bigraded persistent *double* homology does:

Theorem (Bahri–Limonchenko-P-Song-Stanley)

Let $\mathbb{BB}(X)$ and $\mathbb{BB}(Y)$ be the bigraded barcodes corresponding to the persistence modules $\mathcal{PHHZ}(X)$ and $\mathcal{PHHZ}(Y)$, respectively. Then, we have

 $W_{\infty}(\mathbb{BB}(X),\mathbb{BB}(Y)) \leq 2d_{GH}(X,Y).$

References

- Ivan Limonchenko, Taras Panov, Jongbaek Song and Donald Stanley. Double cohomology of moment-angle complexes. Advances in Math. 432 (2023), Paper no. 109274, 34 pp.
- [2] Anthony Bahri, Ivan Limonchenko, Taras Panov, Jongbaek Song and Donald Stanley. A stability theorem for bigraded persistence barcodes. Preprint (2023); arXiv:2303.14694.