Equivariant cohomology of moment-angle complexes with respect to coordinate subtori joint work with Indira Zeinikesheva

Taras Panov

Moscow State University

Algebraic Groups: the White Nights Season II 4–8 July 2022

The polyhedral product functor

 $(\mathbf{X}, \mathbf{A}) = \{(X_1, A_1), \dots, (X_m, A_m)\}$ a sequence of pairs of spaces, $A_i \subset X_i$. \mathcal{K} a simplicial complex on $[m] = \{1, 2, \dots, m\}, \quad \emptyset \in \mathcal{K}.$

Given
$$I = \{i_1, \dots, i_k\} \subset [m]$$
, set
 $(\mathbf{X}, \mathbf{A})^I = Y_1 \times \dots \times Y_m$ where $Y_i = \begin{cases} X_i & \text{if } i \in I, \\ A_i & \text{if } i \notin I. \end{cases}$

The \mathcal{K} -polyhedral product of (\mathbf{X}, \mathbf{A}) is

$$(\mathbf{X}, \mathbf{A})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbf{X}, \mathbf{A})^{I} = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} X_{i} \times \prod_{i \notin I} A_{i} \right) \subset \prod_{i=1}^{m} X_{i}.$$

Notation:
$$(X, A)^{\mathcal{K}} = (\mathbf{X}, \mathbf{A})^{\mathcal{K}}$$
 when all $(X_i, A_i) = (X, A)$;
 $\mathbf{X}^{\mathcal{K}} = (\mathbf{X}, pt)^{\mathcal{K}}, X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}.$

Categorical approach

Category of faces $CAT(\mathcal{K})$. Objects: simplices $I \in \mathcal{K}$. Morphisms: inclusions $I \subset J$.

TOP the category of topological spaces. Define the $CAT(\mathcal{K})$ -diagram

$$\mathcal{D}_{\mathcal{K}}(\mathbf{X}, \mathbf{A}) \colon \operatorname{Cat}(\mathcal{K}) \longrightarrow \operatorname{Top},$$

 $I \longmapsto (\mathbf{X}, \mathbf{A})^{I}$

which maps the morphism $I \subset J$ of $CAT(\mathcal{K})$ to the inclusion of spaces $(\mathbf{X}, \mathbf{A})^{I} \subset (\mathbf{X}, \mathbf{A})^{J}$.

Then we have

$$(\mathbf{X}, \mathbf{A})^{\mathcal{K}} = \operatorname{colim} \mathcal{D}_{\mathcal{K}}(\mathbf{X}, \mathbf{A}) = \operatorname{colim}_{l \in \mathcal{K}} (\mathbf{X}, \mathbf{A})^{l}.$$

The moment-angle complex $Z_{\mathcal{K}}$ is the polyhedral product $(D^2, S^1)^{\mathcal{K}}$ $Z_{\mathcal{K}} := \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} D^2 \times \prod_{i \notin I} S^1 \right) \subset (D^2)^m.$

 $\mathcal{Z}_{\mathcal{K}}$ has a natural action of the torus T^m . When \mathcal{K} is a simplicial subdivision of sphere (e.g., the boundary of a simplicial polytope), $\mathcal{Z}_{\mathcal{K}}$ is a topological manifold, called the moment-angle manifold. Also, consider the polyhedral product

$$U(\mathcal{K}) := (\mathbb{C}, \mathbb{C}^{ imes})^{\mathcal{K}} = igcup_{I \in \mathcal{K}} \Big(\prod_{i \in I} \mathbb{C} imes \prod_{i \notin I} \mathbb{C}^{ imes} \Big), \qquad \mathbb{C}^{ imes} = \mathbb{C} \setminus \{0\}.$$

 $U(\mathcal{K})$ is a toric variety with the corresponding fan given by

$$\Sigma_{\mathcal{K}} = \{ \mathbb{R}_{\geq} \langle \mathbf{e}_i \colon i \in I \rangle \colon I \in \mathcal{K} \},\$$

where \mathbf{e}_i denotes the *i*-th standard basis vector of \mathbb{R}^m .

Theorem

E.g.,
$$\mathcal{K} = \bigwedge^{\simeq}$$
 Then $U(\mathcal{K}) = \mathbb{C}^3 \setminus \{z_1 = z_2 = z_3 = 0\} \xrightarrow{\simeq} S^5 = \mathcal{Z}_{\mathcal{K}}.$

Equivariant cohomology

G a topological group, X a G-space. The Borel construction is

$$\mathsf{EG} imes_{\mathsf{G}} X := \mathsf{EG} imes X / (e \cdot g^{-1}, g \cdot x) \sim (e, x)$$

where EG is the universal right G-space, $e \in EG$, $g \in G$, $x \in X$. There is the Borel fibration $EG \times_G X \to BG$ over the classifying space BG = EG/G with fibre X.

Equivariant cohomology of X is

$$H^*_G(X) := H^*(EG \times_G X).$$

The torus $T^m = (S^1)^m$ acts on $\mathcal{Z}_{\mathcal{K}} = (D^2, S^1)^{\mathcal{K}}$ coordinatewise. The universal bundle $ES^1 \to BS^1$ is the infinite-dimensional Hopf bundle $S^{\infty} \to \mathbb{C}P^{\infty}$.

It is well known that the T^m -equivariant cohomology ring of $\mathcal{Z}_{\mathcal{K}}$ (or $U(\mathcal{K})$) is isomorphic to the face ring of \mathcal{K} (the Stanley–Reisner ring):

$$H^*_{T^m}(\mathcal{Z}_{\mathcal{K}}) \cong \mathbb{Z}[\mathcal{K}] := \mathbb{Z}[v_1, \ldots, v_m]/\mathcal{I}_{\mathcal{K}},$$

where $\mathcal{I}_{\mathcal{K}}$ is the ideal generated by the square-free monomials $v_I = \prod_{i \in I} v_i$ for which $I \subset [m]$ is not a simplex of \mathcal{K} .

For the ordinary cohomology ring of $\mathcal{Z}_{\mathcal{K}},$ we have

Theorem

There are isomorphisms of graded rings

$$\begin{split} H^*(\mathcal{Z}_{\mathcal{K}}) &\cong \operatorname{Tor}_{\mathbb{Z}[v_1, \dots, v_m]} \big(\mathbb{Z}, \mathbb{Z}[\mathcal{K}] \big) \\ &\cong H^* \big(\Lambda[u_1, \dots, u_m] \otimes \mathbb{Z}[\mathcal{K}], d \big), \quad du_i = v_i, \ dv_i = 0, \end{split}$$

where $\Lambda[u_1, \ldots, u_m]$ is the exterior algebra, deg $u_i = 1$, deg $v_i = 2$.

We consider equivariant cohomology of $\mathcal{Z}_{\mathcal{K}}$ with respect to the action of coordinate subtori

$$T_I = \{(t_1, \ldots, t_m) \in T^m \colon t_j = 1 \text{ for } j \notin I\},\$$

where $I = \{i_1, \ldots, i_k\} \subset [m]$.

Remark

 $H^*_{T_I}(\mathcal{Z}_{\mathcal{K}})$ is also the equivariant cohomology ring of $U(\mathcal{K})$ with respect to the coordinate subtorus $(\mathbb{C}^{\times})_I \subset (\mathbb{C}^{\times})^m$. It is also the same as the equivariant cohomology of the quotient toric variety $V_{\Sigma} = U(\mathcal{K})/G_{\Sigma}$ under the action of the subtorus given by the composite $(\mathbb{C}^{\times})_I \to (\mathbb{C}^{\times})^m \to (\mathbb{C}^{\times})^m/G_{\Sigma}$.

We introduce two commutative dga models for the equivariant cohomology $H^*_{T_l}(\mathcal{Z}_{\mathcal{K}})$.

First, consider the dga

$$(\Lambda[u_i: i \notin I] \otimes \mathbb{Z}[\mathcal{K}], d), \quad du_i = v_i, \ dv_i = 0,$$

where $\Lambda[u_i: i \notin I]$ is the exterior algebra on generators indexed by V - I. The grading is given by deg $u_i = 1$, deg $v_i = 2$.

Second, consider the quotient dga

$$\mathcal{R}_{I}(\mathcal{K}) := \Lambda[u_{i} : i \notin I] \otimes \mathbb{Z}[\mathcal{K}]/(u_{i}v_{i} = v_{i}^{2} = 0, i \notin I),$$

noting that the ideal generated by $u_i v_i$ and v_i^2 with $i \notin I$ is *d*-invariant.

Theorem

The singular cochain algebra $C^*(ET_I \times_{T_I} Z_{\mathcal{K}})$ is quasi-isomorphic to $(\Lambda[u_i: i \notin I] \otimes \mathbb{Z}[\mathcal{K}], d)$ and $R_I(\mathcal{K})$. The quasi-isomorphisms are natural with respect to inclusion of subcomplexes.

Proof

There is a polyhedral product decomposition (up to homotopy)

$$ET_I \times_{T_I} \mathcal{Z}_{\mathcal{K}} \xrightarrow{\simeq} (\mathbf{Y}, \mathbf{B})^{\mathcal{K}},$$

where

$$Y_i = \begin{cases} \mathbb{C}P^{\infty}, & i \in I, \\ D^2, & i \notin I, \end{cases} \quad B_i = \begin{cases} pt, & i \in I, \\ S^1, & i \notin I. \end{cases}$$

The polyhedral product $(\mathbf{Y}, \mathbf{B})^{\mathcal{K}}$ interpolates between $(D^2, S^1)^{\mathcal{K}}$ (for $I = \emptyset$) and $(\mathbb{C}P^{\infty}, pt)^{\mathcal{K}}$ (for I = [m]).

Proof (continued)

First consider the case $\mathcal{K} = \Delta^{m-1} = \Delta[m]$, the full simplex on [m]. From the Eilenberg–Zilber and the Künneth theorems we obtain a zig-zag of quasi-isomorphisms

$$R_{I}(\Delta[m]) = \Lambda[u_{i}: i \notin I] \otimes \mathbb{Z}[v_{1}, \dots, v_{m}]/(u_{i}v_{i}, v_{i}^{2}: i \notin I)$$

$$= \bigotimes_{i \in I} \mathbb{Z}[v_{i}] \otimes \bigotimes_{i \notin I} (\Lambda[u_{i}] \otimes \mathbb{Z}[v_{i}]/(u_{i}v_{i}, v_{i}^{2})) \xrightarrow{\simeq} \bigotimes_{i \in I} C^{*}(\mathbb{C}P^{\infty}) \otimes \bigotimes_{i \notin I} C^{*}(D^{2})$$

$$\xrightarrow{\simeq} \dots \xleftarrow{\simeq} C^{*} \left(\prod_{i \in I} \mathbb{C}P^{\infty} \times \prod_{i \notin I} D^{2}\right) = C^{*}((\mathbf{Y}, \mathbf{B})^{\Delta[m]}),$$

which completes the proof for the case $\mathcal{K} = \Delta[m]$.

Proof (continued)

Given a subset $J \subset [m]$, let $\Delta(J)$ denote a simplex on J, viewed as a simplicial complex on [m] (with ghost vertices [m] - J). Then

$$R_{I}(\Delta(J)) = \Lambda[u_{i} : i \notin I] \otimes \mathbb{Z}[v_{j} : j \in J]/(u_{j}v_{j} = v_{j}^{2} = 0, j \in J - I),$$

Consider the $CAT^{op}(\mathcal{K})$ -diagram

$$\mathcal{R}_{I,\mathcal{K}}$$
: CAT^{op} $(\mathcal{K}) \longrightarrow$ DGA, $J \longmapsto \mathcal{R}_{I}(\Delta(J)),$

sending a morphism $J_1 \subset J_2$ of CAT^{op}(\mathcal{K}) to the surjection of dgas $R_l(\Delta(J_2)) \to R_l(\Delta(J_1))$. Then

$$R_I(\mathcal{K}) = \lim \mathcal{R}_{I,\mathcal{K}} = \lim_{J \in \mathcal{K}} R_I(\Delta(J))$$

Proof (continued).

Similarly, we have a ${}_{\mathrm{CAT}^{\mathrm{op}}}(\mathcal{K})\text{-diagram}$

$$\mathcal{C}_{I,\mathcal{K}}$$
: CAT^{op} $(\mathcal{K}) \longrightarrow$ DGA, $J \longmapsto C^*((\mathbf{Y}, \mathbf{B})^J)$.

The quasi-isomorphisms for the case $\mathcal{K} = \Delta[m]$ imply an objectwise weak equivalence of diagrams $\mathcal{R}_{I,\mathcal{K}} \simeq \mathcal{C}_{I,\mathcal{K}}$. Furthermore, both diagrams are Reedy fibrant, so their limits are quasi-isomorphic. Thus, we obtain the required zig-zag of quasi-isomorphisms

$$\begin{aligned} R_{I}(\mathcal{K}) &= \lim_{J \in \mathcal{K}} R_{I}(\Delta(J)) \simeq \lim_{J \in \mathcal{K}} C^{*}((\mathbf{Y}, \mathbf{B})^{J}) \xleftarrow{\simeq} C^{*}(\operatornamewithlimits{colim}_{J \in \mathcal{K}} (\mathbf{Y}, \mathbf{B})^{J}) \\ &= C^{*}((\mathbf{Y}, \mathbf{B})^{\mathcal{K}}) \simeq C^{*}(ET_{I} \times_{T_{I}} \mathcal{Z}_{\mathcal{K}}), \end{aligned}$$

where the last map in the top line is a quasi-isomorphism by excision (or by Mayer–Vietoris).

Theorem

There are isomorphisms of rings

$$\begin{aligned} H^*_{T_I}(\mathcal{Z}_{\mathcal{K}}) &\cong H^*\big(\Lambda[u_i \colon i \notin I] \otimes \mathbb{Z}[\mathcal{K}], d\big) \cong H^*\big(R_I(\mathcal{K}), d\big) \\ &\cong \operatorname{Tor}_{\mathbb{Z}[v_1, \dots, v_m]}\big(\mathbb{Z}[v_i \colon i \in I], \mathbb{Z}[\mathcal{K}]\big), \end{aligned}$$

where $\mathbb{Z}[v_i: i \in I]$ is the $\mathbb{Z}[v_1, \ldots, v_m]$ -module via the homomorphism sending v_i to 0 for $i \notin I$.

When I = [m], we obtain that the singular cochain algebra of $ET^m \times_{T^m} \mathcal{Z}_{\mathcal{K}} \simeq (\mathbb{C}P^{\infty}, pt)^{\mathcal{K}}$ is quasi-isomorphic to $\mathbb{Z}[\mathcal{K}]$ with zero differential, which is the integral formality result of Notbohm and Ray.

When $I = \emptyset$, we recover the description of the ordinary integral cohomology of $\mathcal{Z}_{\mathcal{K}}$.

Equivariant formality

A T^k -space X is called equivariantly formal if $H^*_{T^k}(X)$ is free as a module over $H^*_{T^k}(pt) = H^*(BT^k)$. The latter condition implies that the spectral sequence of the bundle $ET^k \times_{T^k} X \to BT^k$ collapses at the E_2 page.

By the previous calculation, $Z_{\mathcal{K}}$ is equivariantly formal with respect to the action of T_I if $\operatorname{Tor}_{\mathbb{Z}[v_1,...,v_m]}(\mathbb{Z}[v_i: i \in I], \mathbb{Z}[\mathcal{K}])$ is free as a module over $H^*(BT_I) = \mathbb{Z}[v_i: i \in I]$.

The join of simplicial complexes \mathcal{K}_1 and \mathcal{K}_2 on the sets V_1 and V_2 is

$$\mathcal{K}_1 * \mathcal{K}_2 = \{ I_1 \sqcup I_2 \subset V_1 \sqcup V_2 \colon I_1 \in \mathcal{K}_1, \ I_2 \in \mathcal{K}_2 \}.$$

Theorem

Let \mathcal{K} be a simplicial complex on a finite set V. The following conditions are equivalent:

- (a) For any $I \in \mathcal{K}$, the equivariant cohomology $H^*_{T_I}(\mathcal{Z}_{\mathcal{K}})$ is a free module over $H^*(BT_I)$.
- (b) There is a partition $V = V_1 \sqcup \cdots \sqcup V_p \sqcup U$ such that

$$\mathcal{K} = \partial \Delta(V_1) * \cdots * \partial \Delta(V_p) * \Delta(U),$$

where $\Delta(U)$ denotes a full simplex on U, and $\partial \Delta(V_i)$ denotes the boundary of a simplex on V_i .

(c) The rational face ring $\mathbb{Q}[\mathcal{K}]$ is a complete intersection ring (the quotient of the polynomial ring by an ideal generated by a regular sequence).

Proof of (a) \Rightarrow (b)

We have $\mathbb{Q}[\mathcal{K}] = \mathbb{Q}[v_1, \ldots, v_m]/(t_1, \ldots, t_p)$ where $t_k = \prod_{i \in V_k} v_i$ is a square-free monomial and V_k is a missing face of \mathcal{K} , for $k = 1, \ldots, p$. Suppose some of these missing faces intersect nontrivially, say, $V_1 \cap V_2 \neq \emptyset$. Then $I = V_1 - V_2$ is nonempty, and one can see that $H^*_{T_I}(\mathcal{Z}_{\mathcal{K}})$ is not a free $H^*(BT_I)$ -module. A contradiction. Hence, V_1, \ldots, V_p are pairwise non-intersecting, so \mathcal{K} is as described in (b).

Proof of (b) \Rightarrow (a) Write $I = I_1 \sqcup \cdots \sqcup I_p \sqcup J$, where $I_k \subsetneq V_k$, $J \subset U$. Then $\mathcal{Z}_{\mathcal{K}} = \mathcal{Z}_{\Delta(V_1)} \times \cdots \mathcal{Z}_{\partial\Delta(V_p)} \times \mathcal{Z}_{\Delta(U)}$ and $H^*_{T_{I_k}}(\mathcal{Z}_{\Delta(V_k)})$ is a free $H^*(BT_{I_k})$ -module.

Proof of (b) \Rightarrow (c)

A sequence of homogeneous elements (t_1, \ldots, t_k) of positive degree in $\mathbb{Q}[v_1, \ldots, v_m]$ is a regular sequence if t_{i+1} is not a zero divisor in $\mathbb{Q}[v_1, \ldots, v_m]/(t_1, \ldots, t_i)$ for $0 \leq i < k$. If \mathcal{K} is as in (b), then $\mathbb{Q}[\mathcal{K}] = \mathbb{Q}[v_1, \ldots, v_m]/(t_1, \ldots, t_p)$, where m = |V| and $t_k = \prod_{i \in V_k} v_i$ for $k = 1, \ldots, p$. Then (t_1, \ldots, t_p) is a regular sequence, so $\mathbb{Q}[\mathcal{K}]$ is a complete intersection ring.

Proof of (c) \Rightarrow (b)

Suppose $\mathbb{Q}[\mathcal{K}] = \mathbb{Q}[v_1, \ldots, v_m]/(t_1, \ldots, t_p)$ where (t_1, \ldots, t_p) is a regular sequence. We can assume that $t_k = \prod_{i \in V_k} v_i$ where V_k is a missing face of \mathcal{K} , for $k = 1, \ldots, p$. Suppose some of these missing faces intersect nontrivially, say, $V_1 \cap V_2 \neq \emptyset$. Then $t_2 \cdot \prod_{i \in V_1 - V_2} v_i = t_1 \cdot \prod_{j \in V_2 - V_1} v_j$, so t_2 is a zero divisor in $\mathbb{Q}[v_1, \ldots, v_m]/(t_1)$. A contradiction. Hence, V_1, \ldots, V_p are pairwise non-intersecting, so \mathcal{K} is as described in (b).

References

 Taras Panov and Indira Zeinikesheva. Equivariant cohomology of moment-angle complexes with respect to coordinate subtori. arXiv:2205.14678.