Holomorphic foliations on complex moment-angle manifolds based on joint works with Hiroaki Ishida, Roman Krutowski, Yuri Ustinovsky and Misha Verbitsky

Taras Panov

Moscow State University

XXI Geometrical Seminar Belgrade, Serbia, 26 June – 2 July 2022

The moment-angle complex

 \mathcal{K} an abstract simplicial complex on the set $[m] = \{1, 2, ..., m\}$ $I = \{i_1, ..., i_k\} \in \mathcal{K}$ a simplex; always assume $\emptyset \in \mathcal{K}$.

Consider the *m*-dimensional unit polydisc:

$$\mathbb{D}^m = \{(z_1,...,z_m) \in \mathbb{C}^m : |z_i|^2 \leqslant 1 \text{ for } i = 1,...,m\}.$$

The moment-angle complex is

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} \mathbb{D} \times \prod_{i \notin I} \mathbb{S} \right) \subset \mathbb{D}^m,$$

where ${\mathbb S}$ is the boundary of the unit disk ${\mathbb D}.$

 $\mathcal{Z}_{\mathcal{K}}$ has a natural action of the torus T^m . When \mathcal{K} is a simplicial subdivision of sphere (e.g., the boundary of a simplicial polytope), $\mathcal{Z}_{\mathcal{K}}$ is a topological manifold, called the moment-angle manifold.

Taras Panov (Moscow State University)

We define an open submanifold $U(\mathcal{K}) \subset \mathbb{C}^m$ in a similar way:

$$U(\mathcal{K}) := igcup_{I \in \mathcal{K}} \Big(\prod_{i \in I} \mathbb{C} imes \prod_{i \notin I} \mathbb{C}^{ imes} \Big), \qquad \mathbb{C}^{ imes} = \mathbb{C} \setminus \{0\}.$$

 $U(\mathcal{K})$ is a toric variety with the corresponding fan given by

$$\Sigma_{\mathcal{K}} = \{ \mathbb{R}_{\geq} \langle \mathbf{e}_i \colon i \in I \rangle \colon I \in \mathcal{K} \},\$$

where \mathbf{e}_i denotes the *i*-th standard basis vector of \mathbb{R}^m .

Theorem

E.g.,
$$\mathcal{K} = \bigwedge$$
 Then $U(\mathcal{K}) = \mathbb{C}^3 \setminus \{z_1 = z_2 = z_3 = 0\} \xrightarrow{\simeq} S^5 = \mathcal{Z}_{\mathcal{K}}.$

Taras Panov (Moscow State University)

Assume $\mathcal{Z}_{\mathcal{K}}$ admits a T^m -invariant complex structure. Then the T^m -action extends to a holomorphic action of $(\mathbb{C}^{\times})^m$ on $\mathcal{Z}_{\mathcal{K}}$. Have a complex-analytic subgroup of global stabilisers

$$H = \{g \in (\mathbb{C}^{\times})^m \colon g \cdot x = x \text{ for all } x \in \mathcal{Z}_{\mathcal{K}}\}.$$

 $\mathfrak{h} = \mathrm{Lie}(H)$ is a complex subalgebra of $\mathrm{Lie}(\mathbb{C}^{ imes})^m = \mathbb{C}^m$ and satisfies

- (a) the composite $\mathfrak{h} \hookrightarrow \mathbb{C}^m \xrightarrow{\operatorname{Re}} \mathbb{R}^m$ is injective;
- (b) the quotient map $q : \mathbb{R}^m \to \mathbb{R}^m / \operatorname{Re}(\mathfrak{h})$ sends the fan $\Sigma_{\mathcal{K}}$ to a complete fan $q(\Sigma_{\mathcal{K}})$ in $\mathbb{R}^m / \operatorname{Re}(\mathfrak{h})$.

Theorem (Ishida)

Every complex moment-angle manifold $\mathcal{Z}_{\mathcal{K}}$ is T^m -equivariantly biholomorphic to the quotient manifold $U(\mathcal{K})/H$.

Conversely, suppose $\mathfrak{h} \subset \mathbb{C}^m$ satisfies conditions (a) and (b) above, and let H be the complex Lie subgroup of $(\mathbb{C}^{\times})^m$ corresponding to \mathfrak{h} .

Theorem (P.-Ustinovsky)

- (1) the holomorphic action of the group $H \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K})/H$ is a compact complex $(m \ell)$ -manifold;
- (2) there is a T^m -equivariant diffeomorphism $U(\mathcal{K})/H \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which T^m acts by holomorphic transformations.

Thus, $\mathcal{Z}_{\mathcal{K}}$ admits a complex structure if and only if \mathcal{K} is the underlying complex of a complete simplicial fan (that is, \mathcal{K} is a star-shaped sphere triangulation), and any complex structure on such $\mathcal{Z}_{\mathcal{K}}$ is defined by a choice of a complex subspace $\mathfrak{h} \subset \mathbb{C}^m$ satisfying (a) and (b) above.

Example (holomorphic tori)

Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have m = 2, $\ell = 1$.

Let $\psi \colon \mathbb{C} \to \mathbb{C}^2$ be given by $z \mapsto (z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$H = \{(e^z, e^{\alpha z})\} \subset (\mathbb{C}^{\times})^2.$$

Condition (b) above is void, while (a) is equivalent to $\alpha \notin \mathbb{R}$. Then $\exp \psi \colon H \to (\mathbb{C}^{\times})^2$ is an embedding, and the quotient $(\mathbb{C}^{\times})^2/H$ is a complex torus $T_{\mathbb{C}}^2$ with parameter $\alpha \in \mathbb{C}$:

$$(\mathbb{C}^{\times})^2/H \cong \mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z}) = T^2_{\mathbb{C}}(\alpha).$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that $m = 2\ell$), we can obtain any complex torus $T_{\mathbb{C}}^{2\ell}$ as the quotient $(\mathbb{C}^{\times})^{2\ell}/H$.

6/14

Example (Hopf manifold)

Let Σ be a complete fan in \mathbb{R}^n whose cones are generated by all proper subsets of n + 1 vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n, -\mathbf{e}_1 - \ldots - \mathbf{e}_n$.

Add one 'empty' 1-cone to make m - n even: m = n + 2, $\ell = 1$.

The underlying complex $\mathcal{K} = \partial \Delta^n$ with n + 1 vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^1 \times S^{2n+1}$, and $U(\mathcal{K}) = \mathbb{C}^{\times} \times (\mathbb{C}^{n+1} \setminus \{0\}).$

Take $\psi \colon \mathbb{C} \to \mathbb{C}^{n+2}$, $z \mapsto (z, \alpha z, \dots, \alpha z)$ for some $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{R}$. Then

$$H = \left\{ (e^z, e^{\alpha z}, \dots, e^{\alpha z}) \colon z \in \mathbb{C} \right\} \subset (\mathbb{C}^{\times})^{n+2},$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K})/H$:

$$\mathbb{C}^{\times} \times \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ (t, \mathbf{w}) \sim (e^{z} t, e^{\alpha z} \mathbf{w}) \right\} \cong \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ \mathbf{w} \sim e^{2\pi i \alpha} \mathbf{w} \right\},$$

where $t \in \mathbb{C}^{\times}$, $\mathbf{w} \in \mathbb{C}^{n+1} \setminus \{0\}$. The Hopf manifold.

A holomorphic foliation on $\mathcal{Z}_\mathcal{K}$

Define the Lie subalgebra and the corresponding Lie group

$$\mathfrak{k} = \operatorname{Re}(\mathfrak{h}) \subset \mathbb{R}^m = \operatorname{Lie}(T^m), \qquad K = \exp(\mathfrak{k}) \subset T^m.$$

The restriction of the T^m -action on $U(\mathcal{K})/H$ to $\mathcal{K} \subset T^m$ is almost free. Since $\mathfrak{h}_{\mathbb{C}} \cong \mathfrak{h} \oplus \mathfrak{k}$, we obtain a *holomorphic* foliation \mathcal{F} on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/H$ by the orbits of $\mathcal{K} = H_{\mathbb{C}}/H$.

If the subspace $\mathfrak{k} \subset \mathbb{R}^m$ is rational (i.e., generated by integer vectors), then K is a subtorus of T^m and the complete simplicial fan $\Sigma := q(\Sigma_{\mathcal{K}})$ is rational. The rational fan Σ defines a toric variety

$$V_{\Sigma} = \mathcal{Z}_{\mathcal{K}}/K = U(\mathcal{K})/K_{\mathbb{C}}.$$

The holomorphic foliation of $Z_{\mathcal{K}}$ by the orbits of K becomes a holomorphic Seifert fibration over the toric orbifold V_{Σ} with fibres compact complex tori $K_{\mathbb{C}}/H \cong T^{m-n}$.

The rational case:

The non-rational case: Have $U(\mathcal{K}) \xrightarrow{H} Z_{\mathcal{K}}$, and a holomorphic foliation \mathcal{F} of $Z_{\mathcal{K}}$ by the orbits of $K \subset T^m$.

The holomorphic foliated manifold $(\mathcal{Z}_{\mathcal{K}}, \mathcal{F})$ is a model for 'irrational' toric varieties in the sense of [Katzarkov, Lupercio, Meersseman, Verjovsky] (arXiv:1308.2774) and [Ratiu, Zung] (arXiv:1705.11110).

Taras Panov (Moscow State University)

Holomorphic foliations

Basic cohomology

M a manifold with an action of a connected Lie group *G*, $\mathfrak{g} = \operatorname{Lie} G$.

$$\Omega(M)_{\mathrm{bas},\,\mathsf{G}} = \{\omega \in \Omega(M) \colon \iota_{\xi}\omega = \mathsf{L}_{\xi}\omega = \mathsf{0} \text{ for any } \xi \in \mathfrak{g}\},$$

 $H^*_{\text{bas, }G}(M) = H(\Omega(M)_{\text{bas, }G}, d)$ the basic cohomology of M.

 $S(\mathfrak{g}^*)$ the symmetric algebra on \mathfrak{g}^* with generators of degree 2. The Cartan model is

$$\mathcal{C}_{\mathfrak{g}}(\Omega(M)) = ((S(\mathfrak{g}^*) \otimes \Omega(M))^{\mathfrak{g}}, d_{\mathfrak{g}}),$$

where $(S(\mathfrak{g}^*) \otimes \Omega(M))^{\mathfrak{g}}$ denotes the \mathfrak{g} -invariant subalgebra. An element $\omega \in C_{\mathfrak{g}}(\Omega(M))$ is a " \mathfrak{g} -equivariant polynomial map from \mathfrak{g} to $\Omega(M)$ ". The differential $d_{\mathfrak{g}}$ is given by

$$d_{\mathfrak{g}}(\omega)(\xi) = d(\omega(\xi)) - \iota_{\xi}(\omega(\xi)).$$

Theorem

$$H^*_{\mathrm{bas}, G}(M) \cong H(\mathcal{C}_{\mathfrak{g}}(\Omega(M)), d_{\mathfrak{g}}).$$

If in addition G is a compact, then

 $H^*_{\mathrm{bas}, G}(M) \cong H^*_G(M) = H^*(EG \times_G M)$ the equivariant cohomology.

11/14

Now consider $\mathcal{Z}_{\mathcal{K}}$ with the action of K (the holomorphic foliation \mathcal{F}).

Theorem (Ishida–Krutowski–P.)

There is an isomorphism of algebras:

$$H^*_{\mathrm{bas}, K}(\mathcal{Z}_{\mathcal{K}}) \cong \mathbb{C}[v_1, ..., v_m]/(I_{\mathcal{K}} + J_{\Sigma}),$$

where $I_{\mathcal{K}}$ is the Stanley–Reisner ideal of \mathcal{K} , generated by the monomials

$$v_{i_1}\cdots v_{i_k}$$
 with $\{i_1,\ldots,i_k\}\notin \mathcal{K},$

and $J_{\boldsymbol{\Sigma}}$ is the ideal generated by the linear forms

$$\sum_{i=1}^m \langle \mathbf{a}_i, \mathbf{u} \rangle v_i \quad \text{with } \mathbf{u} \in (\mathbb{R}^m/\mathfrak{k})^*.$$

This settles a conjecture by [Battaglia and Zaffran] (arXiv:1108.1637).

If K is a compact torus (the fan Σ is rational), then we get

$$H^*_{\mathrm{bas},\,K}(\mathcal{Z}_{\mathcal{K}}) = H^*(\mathcal{Z}_{\mathcal{K}}/K) = H^*(V_{\Sigma})$$

and the result above turns into the well-known description of the cohomology of toric manifolds, due to [Danilov and Jurkiewicz].

Idea of proof of the theorem.

Let $\mathfrak{t} = \operatorname{Lie}(T^m) \cong \mathbb{R}^m$ and consider the Cartan model

$$\mathcal{C}_{\mathfrak{t}}(\varOmega(\mathcal{Z}_{\mathcal{K}})) = \left((\mathcal{S}(\mathfrak{t}^*) \otimes \Omega(\mathcal{Z}_{\mathcal{K}}))^{\mathcal{T}^m}, d_{\mathfrak{t}}
ight).$$

Then

$$H(\mathcal{C}_{t}(\Omega(\mathcal{Z}_{\mathcal{K}}))) = H^{*}_{T^{m}}(\mathcal{Z}_{\mathcal{K}}) = \mathbb{C}[v_{1}, ..., v_{m}]/I_{\mathcal{K}}.$$

Key lemma: the dga $C_t(\Omega(\mathcal{Z}_{\mathcal{K}}))$ is formal (quasi-isomorphic to its cohomology).

- Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. 12 (2012), no. 1, 149–172.
- [2] Taras Panov, Yuri Ustinovsky and Misha Verbitsky. *Complex geometry of moment-angle manifolds*. Math. Zeitschrift 284 (2016), no. 1, 309–333.
- [3] Roman Krutowski and Taras Panov. Dolbeault cohomology of complex manifolds with torus action. In "Topology, Geometry, and Dynamics: Rokhlin Memorial". Contemp. Math., vol. 772; American Mathematical Society, Providence, RI, 2021, pp.173–187.
- [4] Hiroaki Ishida, Roman Krutowski and Taras Panov. Basic cohomology of canonical holomorphic foliations on complex moment-angle manifolds. Internat. Math. Research Notices 2022 (2022), no. 7, 5541–5563.