Polyhedral products, loop homology and right-angled Coxeter groups

Based on joint works with Jelena Grbić, Marina Ilyasova, George Simmons, Stephen Theriault, Yakov Veryovkin and Jie Wu.

Taras Panov

Lomonosov Moscow State University

International Conference Topology and Geometry of Group Actions HSE Moscow (online), 18–22 November 2020

1. Preliminaries

Polyhedral product

$$(\pmb{X},\pmb{A})=\{(X_1,A_1),\ldots,(X_m,A_m)\}$$
 a sequence of pairs of spaces, $A_i\subset X_i$.

 $\mathcal K$ a simplicial complex on $[m]=\{1,2,\ldots,m\}$, $\varnothing\in\mathcal K.$

Given
$$I=\{i_1,\ldots,i_k\}\subset [m]$$
, set $(m{X},m{A})^I=Y_1 imes\cdots imes Y_m$ where $Y_i=\left\{egin{array}{ll} X_i & ext{if } i\in I,\ A_i & ext{if } i\notin I. \end{array}
ight.$

The \mathcal{K} -polyhedral product of (X, A) is

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^I = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} X_i \times \prod_{j \notin I} A_j\right) \subset \prod_{i=1}^m X_i.$$

Notation: $(X, A)^{\mathcal{K}} = (X, A)^{\mathcal{K}}$ when all $(X_i, A_i) = (X, A)$; $X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}$, $X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}$.

Categorical approach

Category of faces $CAT(\mathcal{K})$.

Objects: simplices $I \in \mathcal{K}$. Morphisms: inclusions $I \subset J$.

TOP the category of topological spaces.

Define the CAT (\mathcal{K}) -diagram

$$\mathcal{D}_{\mathcal{K}}(\mathbf{X}, \mathbf{A}) \colon \mathrm{CAT}(\mathcal{K}) \longrightarrow \mathrm{TOP},$$

$$I \longmapsto (\mathbf{X}, \mathbf{A})^{I},$$

which maps the morphism $I \subset J$ of $CAT(\mathcal{K})$ to the inclusion of spaces $(X, A)^I \subset (X, A)^J$.

Then we have

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \operatorname{colim} \mathcal{D}_{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{A}) = \operatorname{colim}_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I}.$$

Replacing spaces by groups in the construction of the polyhedral product $m{X}^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}} m{X}^I$ we arrive at the following

Graph product

 $extbf{\emph{G}} = (extbf{\emph{G}}_1, \ldots, extbf{\emph{G}}_m)$ a sequence of m (topological) groups, $extbf{\emph{G}}_i
eq \{1\}.$

Given $I = \{i_1, \ldots, i_k\} \subset [m]$, set

$$G^I = \{(g_1,\ldots,g_m) \in \prod_{k=1}^m G_k \colon g_k = 1 \text{ for } k \notin I\}.$$

Consider the following $CAT(\mathcal{K})$ -diagram of groups:

$$\mathcal{D}_{\mathcal{K}}(\mathbf{G}) \colon \mathrm{CAT}(\mathcal{K}) \longrightarrow \mathrm{GRP}, \qquad \mathbf{I} \longmapsto \mathbf{G}^{\mathbf{I}},$$

which maps a morphism $I\subset J$ to the canonical monomorphism $oldsymbol{G}^I o oldsymbol{G}^J.$

The graph product of the groups G_1, \ldots, G_m is

$$\mathbf{G}^{\mathcal{K}} = \operatorname{colim}^{\operatorname{GRP}} \mathcal{D}_{\mathcal{K}}(\mathbf{G}) = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GRP}} \mathbf{G}^{I}.$$

The graph product ${m G}^{\mathcal K}$ depends only on the 1-skeleton (graph) of ${\mathcal K}$. Namely,

Proposition

The is an isomorphism of groups

$$G^{\mathcal{K}}\cong igota_{k=1}^m G_k/(g_ig_j=g_jg_i \ \ ext{for } g_i\in G_i,\,g_j\in G_j,\,\{i,j\}\in \mathcal{K}),$$

where $\bigstar_{k=1}^m G_k$ denotes the free product of the groups G_k .

Example

Let $G_i = \mathbb{Z}$. Then $G^{\mathcal{K}}$ is the right-angled Artin group

$$\mathit{RA}_{\mathcal{K}} = \mathit{F}(g_1, \ldots, g_m) \big/ (g_i g_j = g_j g_i \ \text{for} \ \{i, j\} \in \mathcal{K}),$$

where $F(g_1, \ldots, g_m)$ is a free group with m generators.

When K is a full simplex, we have $RA_K = \mathbb{Z}^m$. When K is m points, we obtain a free group of rank m.

Example

Let $G_i = \mathbb{Z}_2$. Then $G^{\mathcal{K}}$ is the right-angled Coxeter group

$$RC_{\mathcal{K}} = F(g_1, \dots, g_m)/(g_i^2 = 1, \ g_ig_j = g_jg_i \ \text{for} \ \{i,j\} \in \mathcal{K}).$$

2. Classifying spaces

A natural question: when $B(\mathbf{G}^{\mathcal{K}}) \simeq (B\mathbf{G})^{\mathcal{K}}$?

Proposition

There is a homotopy fibration

$$(E\mathbf{G},\mathbf{G})^{\mathcal{K}} \longrightarrow (B\mathbf{G})^{\mathcal{K}} \longrightarrow \prod_{k=1}^{m} BG_{k}.$$

In particular, there are homotopy fibrations

$$(\mathbb{R}, \mathbb{Z})^{\mathcal{K}} = \mathcal{L}_{\mathcal{K}} \longrightarrow (S^{1})^{\mathcal{K}} \longrightarrow (S^{1})^{m} \qquad G = \mathbb{Z}$$

$$(D^{1}, S^{0})^{\mathcal{K}} = \mathcal{R}_{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{m} \qquad G = \mathbb{Z}_{2}$$

$$(D^{2}, S^{1})^{\mathcal{K}} = \mathcal{Z}_{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^{m} \qquad G = S^{1}$$

A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.

 ${\cal K}$ a flag complex if each of its missing faces consists of two vertices. Equivalently, ${\cal K}$ is flag if any set of vertices of ${\cal K}$ which are pairwise connected by edges spans a simplex.

Every flag complex \mathcal{K} is determined by its 1-skeleton \mathcal{K}^1 , and is obtained from the graph \mathcal{K}^1 by filling in all complete subgraphs by simplices.

Theorem (P.-Ray-Vogt, 2002)

 $B(\mathbf{G}^{\mathcal{K}}) \simeq (B\mathbf{G})^{\mathcal{K}}$ if and only if \mathcal{K} is flag.

Higher Whitehead products in $\pi_*((B\mathbf{G})^{\mathcal{K}})$ are what obstructs the homotopy equivalence $B(\mathbf{G}^{\mathcal{K}}) \simeq (B\mathbf{G})^{\mathcal{K}}$ in the general case. This can be fixed by replacing colim by hocolim in the definition of the graph product $\mathbf{G}^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GRP}} \mathbf{G}^I$.

In the case of discrete groups we obtain

Proposition

Let $G^{\mathcal{K}}$ be a graph product of discrete groups.

- $\bullet \quad \pi_1((B\mathbf{G})^{\mathcal{K}}) \cong \mathbf{G}^{\mathcal{K}}.$
- 2 Both spaces $(B\mathbf{G})^{\mathcal{K}}$ and $(E\mathbf{G},\mathbf{G})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
- $\pi_1((E\,\mathbf{G},\mathbf{G})^{\mathcal{K}})$ is isomorphic to the kernel of the canonical projection $\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^m G_k$ (the Cartesian subgroup of $\mathbf{G}^{\mathcal{K}}$).

Part of proof

Assume now that ${\mathcal K}$ is not flag. Choose a missing face

$$J = \{j_1, \dots, j_k\} \subset [m]$$
 with $k \geqslant 3$ vertices. Let $\mathcal{K}_J = \{I \in \mathcal{K} \colon I \subset J\}$.

Then $(B\mathbf{G})^{\mathcal{K}_J}$ is the fat wedge of the spaces $\{BG_j, j \in J\}$, and it is a retract of $(B\mathbf{G})^{\mathcal{K}}$.

The homotopy fibre of the inclusion $(B\mathbf{G})^{\mathcal{K}_J} o \prod_{j \in J} BG_j$ is

 $\Sigma^{k-1}G_{j_1}\wedge\cdots\wedge G_{j_k}$ a wedge of (k-1)-dimensional spheres.

Hence, $\pi_{k-1}((B\mathbf{G})^{\mathcal{K}_J}) \neq 0$ where $k \geqslant 3$.

Thus, $(B\boldsymbol{G})^{\mathcal{K}_J}$ and $(B\boldsymbol{G})^{\mathcal{K}}$ are non-aspherical.

The rest of the proof (the asphericity of $(EG, G)^{\mathcal{K}}$ and statements (3) and (4)) follow from the homotopy exact sequence of the fibration $(EG, G)^{\mathcal{K}} \to (BG)^{\mathcal{K}} \to \prod_{k=1}^m BG_k$.

Specialising to the cases $G_k=\mathbb{Z}$ and $G_k=\mathbb{Z}_2$ respectively we obtain:

Corollary

Let $RA_{\mathcal{K}}$ be a right-angled Artin group.

- $\bullet \pi_1((S^1)^{\mathcal{K}}) \cong RA_{\mathcal{K}}.$
- **2** Both $(S^1)^{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}} = (\mathbb{R}, \mathbb{Z})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
- \bullet $\pi_i((S^1)^{\mathcal{K}}) \cong \pi_i(\mathcal{L}_{\mathcal{K}}) \text{ for } i \geqslant 2.$
- $\pi_1(\mathcal{L}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $RA'_{\mathcal{K}}$.

Corollary

Let RC_K be a right-angled Coxeter group.

- $\bullet \ \pi_1((\mathbb{R}P^{\infty})^{\mathcal{K}}) \cong RC_{\mathcal{K}}.$
- **2** Both $(\mathbb{R}P^{\infty})^{\mathcal{K}}$ and $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
- \bullet $\pi_i((\mathbb{R}P^{\infty})^{\mathcal{K}}) \cong \pi_i(\mathcal{R}_{\mathcal{K}})$ for $i \geqslant 2$.
- \bullet $\pi_1(\mathcal{R}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $RC'_{\mathcal{K}}$.

Example

Let $\mathcal K$ be an m-cycle (the boundary of an m-gon).

A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4)2^{m-3}+1$. (This observation goes back to a 1938 work of Coxeter.)

Therefore, the commutator subgroup of the corresponding right-angled Coxeter group RC_K is a surface group.

Similarly, when $|\mathcal{K}|\cong S^2$ (which is equivalent to \mathcal{K} being the boundary of a 3-dimensional simplicial polytope), $\mathcal{R}_{\mathcal{K}}$ is a 3-dimensional manifold. Therefore, the commutator subgroup of the corresponding $R\mathcal{C}_{\mathcal{K}}$ is a

3-manifold group.

3. Commutator subgroups and subalgebras

First consider the case $G_i = S^1$. The homotopy fibration

$$(D^2,S^1)^{\mathcal{K}}=\mathcal{Z}_{\mathcal{K}}\longrightarrow (\mathbb{C}P^{\infty})^{\mathcal{K}}\longrightarrow (\mathbb{C}P^{\infty})^m$$

splits after looping:

$$\varOmega(\mathbb{C}P^\infty)^\mathcal{K}\simeq \varOmega\mathcal{Z}_\mathcal{K}\times T^m$$

Warning: this is not an *H*-space splitting!

Proposition

There exists an exact sequence of Hopf algebras (over a base ring \mathbf{k})

$$\mathbf{k} \longrightarrow H_*(\Omega \mathcal{Z}_{\mathcal{K}}) \longrightarrow H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}) \xrightarrow{\mathrm{Ab}} \Lambda[u_1, \dots, u_m] \longrightarrow 0$$

where $\Lambda[u_1, \ldots, u_m]$ denotes the exterior algebra and deg $u_i = 1$.

Here, $H_*(\Omega \mathcal{Z}_{\mathcal{K}})$ is the commutator subalgebra of a largely non-commutative algebra $H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$.

Consider the graph product Lie algebra

$$L_{\mathcal{K}} = FL\langle u_1, \dots, u_m \rangle / ([u_i, u_i] = 0, [u_i, u_j] = 0 \text{ for } \{i, j\} \in \mathcal{K}),$$

where $FL\langle u_1,\ldots,u_m\rangle$ is the free graded Lie algebra, $\deg u_i=1$, and $[a,b]=-(-1)^{|a||b|}[b,a]$ denotes the graded Lie bracket.

We can write $L_{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GLA}} \mathcal{C}L\langle u_i \colon i \in I \rangle$, where $\mathcal{C}L$ denotes the trivial graded Lie algebra and the colimit taken in the category of graded Lie algebras. (Similar to $R\mathcal{C}_{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GRP}}(\mathbb{Z}_2)^I$.)

The universal enveloping algebra of $L_{\mathcal{K}}$ is the quotient of the free associative algebra $T\langle \lambda_1,\ldots,\lambda_m\rangle$ by the same relations.

Theorem

There is an injective homomorphism of Hopf algebras

$${T\langle u_1,\dots,u_m\rangle}\big/\big(u_i^2=0,\ u_iu_j+u_ju_i=0\ \text{ for } \{i,j\}\in\mathcal{K}\big)\hookrightarrow H_*\big(\Omega(\mathbb{C}P^\infty)^\mathcal{K}\big)$$

which is an isomorphism if and only if K is flag.

Now consider the case of discrete G_i (e.g., $G_i = \mathbb{Z}_2$). The homotopy fibration

$$(E\mathbf{G},\mathbf{G})^{\mathcal{K}} \longrightarrow (B\mathbf{G})^{\mathcal{K}} \longrightarrow \prod_{k=1}^{m} BG_{k}.$$

gives rise to a short exact sequence of groups

$$1 \longrightarrow \pi_1((E\mathbf{G},\mathbf{G})^{\mathcal{K}}) \longrightarrow \mathbf{G}^{\mathcal{K}} \longrightarrow \prod_{k=1}^m G_k \longrightarrow 1$$

SO

$$\operatorname{Ker}\!\left(\boldsymbol{G}^{\mathcal{K}}
ightarrow \prod_{k=1}^{m} G_{k}
ight) = \pi_{1}((\boldsymbol{E}\,\boldsymbol{G},\,\boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_i is abelian), the group above is the commutator subgroup $(\mathbf{G}^{\mathcal{K}})'$.

Theorem (Grbić-P-Theriault-Wu, 2012)

Assume that \mathcal{K} is flag. The commutator subalgebra $H_*(\Omega \mathcal{Z}_{\mathcal{K}})$ is generated by $\sum_{I \subset [m]} \dim \widetilde{H}^0(\mathcal{K}_I)$ iterated commutators of the form

$$[u_j, u_i], [u_{k_1}, [u_j, u_i]], \ldots, [u_{k_1}, [u_{k_2}, \cdots [u_{k_{m-2}}, [u_j, u_i]] \cdots]]$$

where $k_1 < k_2 < \cdots < k_p < j > i$, $k_s \neq i$ for any s, and i is the smallest vertex in a connected component not containing j of the subcomplex $\mathcal{K}_{\{k_1,\ldots,k_p,j,i\}}$. Furthermore, this multiplicative generating set is minimal, that is, the commutators above form a basis in the submodule of indecomposables in $H_*(\Omega\mathcal{Z}_{\mathcal{K}})$.

Theorem (P-Veryovkin, 2016)

The commutator subgroup $RC'_{\mathcal{K}} = \pi_1(\mathcal{R}_{\mathcal{K}}) = H_*(\Omega\mathcal{R}_{\mathcal{K}})$ has a minimal generator set consisting of $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$ iterated commutators

$$(g_j,g_i), (g_{k_1},(g_j,g_i)), \ldots, (g_{k_1},(g_{k_2},\cdots(g_{k_{m-2}},(g_j,g_i))\cdots)),$$

with the same condition on the indices as in the previous theorem.

4. When the commutator subgroup is free?

A graph Γ is called chordal (in other terminology, triangulated) if each of its cycles with \geqslant 4 vertices has a chord.

By a result of Fulkerson–Gross, a graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex i, the lesser neighbours of i form a complete subgraph. (A perfect elimination order.)

Theorem (Grbić-P-Theriault-Wu, 2012)

Let K be a flag complex and k a field. The following conditions are equivalent:

- **1** $H_*(\Omega \mathcal{Z}_{\mathcal{K}}; \mathbf{k})$ is a free associative algebra;
- 2 $\mathcal{Z}_{\mathcal{K}}$ has homotopy type of a wedge of spheres;
- \odot \mathcal{K}^1 is a chordal graph.

Theorem (P-Veryovkin, 2016)

Let $\mathcal K$ be a flag complex. The following conditions are equivalent:

- $\operatorname{Ker}(\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^m G_k)$ is a free group;
- $(EG, G)^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- \odot \mathcal{K}^1 is a chordal graph.

Proof

- (2) \Rightarrow (1) Because $\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((E\boldsymbol{G},\boldsymbol{G})^{\mathcal{K}}).$
- $(3)\Rightarrow(2)$ Use induction and perfect elimination order.
- $(1)\Rightarrow (3)$ Assume that \mathcal{K}^1 is not chordal. Then, for each chordless cycle of length \geqslant 4, one can find a subgroup in $\operatorname{Ker}(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^m G_k)$ which is a surface group. Hence, $\operatorname{Ker}(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^m G_k)$ is not a free group.

Corollary

Let $RA_{\mathcal{K}}$ and $RC_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K} .

- (a) The commutator subgroup $RA'_{\mathcal{K}}$ is free iff \mathcal{K}^1 is a chordal graph.
- (b) The commutator subgroup $RC'_{\mathcal{K}}$ is free iff \mathcal{K}^1 is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The difference between (a) and (b) is that the commutator subgroup $RA'_{\mathcal{K}}$ is infinitely generated, unless $RA_{\mathcal{K}}=\mathbb{Z}^m$, while the commutator subgroup $RC'_{\mathcal{K}}$ is finitely generated.

Example

Let
$$\mathcal{K} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Then the commutator subgroup $RC_{\mathcal{K}}'$ is free with the following basis:

$$(g_3,g_1), (g_4,g_1), (g_4,g_2), (g_4,g_3),$$

 $(g_2,(g_4,g_1)), (g_3,(g_4,g_1)), (g_1,(g_4,g_3)), (g_3,(g_4,g_2)),$
 $(g_2,(g_3,(g_4,g_1))).$

Example

Let \mathcal{K} be an m-cycle with $m \geqslant 4$ vertices.

Then \mathcal{K}^1 is not a chordal graph, so the group $RC_\mathcal{K}'$ is not free.

In fact, $\mathcal{R}_{\mathcal{K}}$ is an orientable surface of genus $(m-4)2^{m-3}+1$, so $\mathcal{RC}_{\mathcal{K}}'\cong\pi_1(\mathcal{R}_{\mathcal{K}})$ is a one-relator group.

5. One-relator groups

Theorem (Grbić-Ilyasova-P-Simmons, 2020)

Let $\mathcal K$ be a flag complex. The following conditions are equivalent:

- ① $\pi_1(\mathcal{R}_{\mathcal{K}}) = RC'_{\mathcal{K}}$ is a one-relator group;
- ③ $\mathcal{K} = C_p$ or $\mathcal{K} = C_p * \Delta^q$ for $p \geqslant 4$ and $q \geqslant 0$, where C_p is a p-cycle, Δ^q is a q-simplex, and * denotes the join of simplicial complexes.

Theorem (Grbić-Ilyasova-P-Simmons, 2020)

Let K be a flag complex. The following conditions are equivalent:

- **1** $H_*(\Omega \mathcal{Z}_K)$ is a one-relator algebra;
- $H_{2-j,2j}(\mathcal{Z}_{\mathcal{K}}) = \begin{cases} \mathbb{Z} & \text{if } j = p \text{ for some } p, \ 4 \leqslant p \leqslant m \\ 0 & \text{otherwise;} \end{cases}$

References

- T. Panov, N. Ray and R. Vogt. Colimits, Stanley-Reiner algebras, and loop spaces, in: "Categorical Decomposition Techniques in Algebraic Topology" (G. Arone et al eds.), Progress in Mathematics, vol. 215, Birkhauser, Basel, 2004, pp. 261–291; arXiv:math.AT/0202081.
- [2] J. Grbić, T. Panov, S. Theriault and J. Wu. The homotopy types of moment-angle complexes for flag complexes. Trans. of the Amer. Math. Soc. 368 (2016), no. 9, 6663-6682; arXiv:1211.0873.
- [3] T. Panov and Ya. Veryovkin. *Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups.* Sb. Math. 207 (2016), no. 11, 1582–1600; arXiv:1603.06902.
- [4] J. Grbić, M. Ilyasova, T. Panov and G. Simmons. *One-relator groups and algebras related to polyhedral products*. Preprint (2020); arXiv:2002.11476.