Polyhedral products, loop homology and right-angled Coxeter groups

Based on joint works with Jelena Grbić, Marina Ilyasova, George Simmons, Stephen Theriault, Yakov Veryovkin and Jie Wu.

Taras Panov

Lomonosov Moscow State University/Fields Institute

Workshop on Polyhedral Products in Geometric Group Theory Fields Institute, Toronto, Canada, 25–29 May 2020

1. Preliminaries

Polyhedral product $(X, A) = \{(X_1, A_1), \dots, (X_m, A_m)\}$ a sequence of pairs of spaces, $A_i \subset X_i$. \mathcal{K} a simplicial complex on $[m] = \{1, 2, \dots, m\}$, $\emptyset \in \mathcal{K}$. Given $I = \{i_1, \dots, i_k\} \subset [m]$, set $(X, A)^I = Y_1 \times \dots \times Y_m$ where $Y_i = \begin{cases} X_i & \text{if } i \in I, \\ A_i & \text{if } i \notin I. \end{cases}$

The \mathcal{K} -polyhedral product of $(\boldsymbol{X}, \boldsymbol{A})$ is

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I} = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} X_{i} \times \prod_{j \notin I} A_{j} \right) \subset \prod_{i=1}^{m} X_{i}.$$

Notation: $(X, A)^{\mathcal{K}} = (X, A)^{\mathcal{K}}$ when all $(X_i, A_i) = (X, A)$; $X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}, X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}.$

Categorical approach

Category of faces $CAT(\mathcal{K})$. Objects: simplices $I \in \mathcal{K}$. Morphisms: inclusions $I \subset J$.

TOP the category of topological spaces. Define the $CAT(\mathcal{K})$ -diagram

$$\mathcal{D}_{\mathcal{K}}(oldsymbol{X},oldsymbol{A})\colon ext{cat}(\mathcal{K})\longrightarrow ext{top},\ oldsymbol{I}\longmapsto(oldsymbol{X},oldsymbol{A})^{I}$$

which maps the morphism $I \subset J$ of $CAT(\mathcal{K})$ to the inclusion of spaces $(X, A)^I \subset (X, A)^J$.

Then we have

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \operatorname{colim} \mathcal{D}_{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{A}) = \operatorname{colim}_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I}.$$

Let $(X, A) = (S^1, pt)$, where S^1 is a circle. Then

$$(S^1)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (S^1)^I \subset (S^1)^m.$$

When $\mathcal{K} = \{\emptyset, \{1\}, \dots, \{m\}\}$ (*m* disjoint points), the polyhedral product $(S^1)^{\mathcal{K}}$ is the wedge $(S^1)^{\vee m}$ of *m* circles.

When \mathcal{K} consists of all proper subsets of [m] (the boundary $\partial \Delta^{m-1}$ of an (m-1)-dimensional simplex), $(S^1)^{\mathcal{K}}$ is the fat wedge of m circles; it is obtained by removing the top-dimensional cell from the m-torus $(S^1)^m$.

For a general $\mathcal K$ on m vertices, $(S^1)^{\vee m} \subset (S^1)^{\mathcal K} \subset (S^1)^m$.

4 / 26

Let $(X, A) = (\mathbb{R}, \mathbb{Z})$. Then

$$\mathcal{L}_{\mathcal{K}} := (\mathbb{R}, \mathbb{Z})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{R}, \mathbb{Z})^{I} \subset \mathbb{R}^{m}.$$

When \mathcal{K} consists of m disjoint points, $\mathcal{L}_{\mathcal{K}}$ is a grid in \mathbb{R}^m consisting of all lines parallel to one of the coordinate axis and passing though integer points.

When $\mathcal{K} = \partial \Delta^{m-1}$, the complex $\mathcal{L}_{\mathcal{K}}$ is the union of all integer hyperplanes parallel to coordinate hyperplanes.

Let
$$(X, A) = (\mathbb{R}P^{\infty}, pt)$$
, where $\mathbb{R}P^{\infty} = B\mathbb{Z}_2$. Then
 $(\mathbb{R}P^{\infty})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{R}P^{\infty})^I \subset (\mathbb{R}P^{\infty})^m$.

Similarly,

$$(\mathbb{C}P^{\infty})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{C}P^{\infty})^{I} \subset (\mathbb{C}P^{\infty})^{m}.$$

Taras Panov (MSU/Fields)

Fields Inst, 26 May 2020

6 / 26

Let $(X, A) = (D^1, S^0)$, where $D^1 = [-1, 1]$ and $S^0 = \{1, -1\}$. The real moment-angle complex is

$$\mathcal{R}_{\mathcal{K}} := (D^1, S^0)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (D^1, S^0)^I.$$

It is a cubic subcomplex in the *m*-cube $(D^1)^m = [-1, 1]^m$.

When \mathcal{K} consists of m disjoint points, $\mathcal{R}_{\mathcal{K}}$ is the 1-dimensional skeleton of the cube $[-1,1]^m$. When $\mathcal{K} = \partial \Delta^{m-1}$, $\mathcal{R}_{\mathcal{K}}$ is the boundary of the cube $[-1,1]^m$. Also, $\mathcal{R}_{\mathcal{K}}$ is a topological manifold when $|\mathcal{K}|$ is a sphere.

Let $(X, A) = (D^2, S^1)$. The moment-angle complex is

$$\mathcal{Z}_{\mathcal{K}} := (D^2, S^1)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (D^2, S^1)^I.$$

It is a topological (m + n)-manifold when $|\mathcal{K}| \cong S^{n-1}$ is a sphere.

Replacing spaces by groups in the construction of the polyhedral product $X^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}} X^{I}$ we arrive at the following

Graph product

 $oldsymbol{G} = (G_1, \dots, G_m)$ a sequence of m (topological) groups, $G_i \neq \{1\}$. Given $I = \{i_1, \dots, i_k\} \subset [m]$, set $oldsymbol{G}' = \{(g_1, \dots, g_m) \in \prod_{k=1}^m G_k \colon g_k = 1 \ \text{ for } k \notin I\}.$

Consider the following $CAT(\mathcal{K})$ -diagram of groups:

$$\mathcal{D}_{\mathcal{K}}(\boldsymbol{G})\colon \operatorname{CAT}(\mathcal{K})\longrightarrow \operatorname{GRP}, \quad I\longmapsto \boldsymbol{G}',$$

which maps a morphism $I \subset J$ to the canonical monomorphism $G^I \to G^J$. The graph product of the groups G_1, \ldots, G_m is

$$\boldsymbol{G}^{\mathcal{K}} = \operatorname{colim}^{\operatorname{GRP}} \mathcal{D}_{\mathcal{K}}(\boldsymbol{G}) = \operatorname{colim}^{\operatorname{GRP}}_{\boldsymbol{I} \in \mathcal{K}} \boldsymbol{G}^{\boldsymbol{I}}.$$

The graph product ${\pmb G}^{\cal K}$ depends only on the 1-skeleton (graph) of ${\cal K}$. Namely,

Proposition

The is an isomorphism of groups

where $\bigstar_{k=1}^m G_k$ denotes the free product of the groups G_k .

Let $G_i = \mathbb{Z}$. Then $\boldsymbol{G}^{\mathcal{K}}$ is the right-angled Artin group

$$RA_{\mathcal{K}} = F(g_1, \ldots, g_m) / (g_i g_j = g_j g_i ext{ for } \{i, j\} \in \mathcal{K}),$$

where $F(g_1, \ldots, g_m)$ is a free group with *m* generators.

When \mathcal{K} is a full simplex, we have $RA_{\mathcal{K}} = \mathbb{Z}^m$. When \mathcal{K} is *m* points, we obtain a free group of rank *m*.

Example

Let $G_i = \mathbb{Z}_2$. Then $\mathbf{G}^{\mathcal{K}}$ is the right-angled Coxeter group

$$RC_{\mathcal{K}} = F(g_1, \ldots, g_m)/(g_i^2 = 1, g_ig_j = g_jg_i \text{ for } \{i, j\} \in \mathcal{K}).$$

2. Classifying spaces

A natural question: when $B(\mathbf{G}^{\mathcal{K}}) \simeq (B\mathbf{G})^{\mathcal{K}}$?

Proposition

There is a homotopy fibration

$$(E\mathbf{G},\mathbf{G})^{\mathcal{K}}\longrightarrow (B\mathbf{G})^{\mathcal{K}}\longrightarrow \prod_{k=1}^{m}BG_{k}.$$

In particular, there are homotopy fibrations

$$(\mathbb{R},\mathbb{Z})^{\mathcal{K}} = \mathcal{L}_{\mathcal{K}} \longrightarrow (S^{1})^{\mathcal{K}} \longrightarrow (S^{1})^{m} \qquad G = \mathbb{Z}$$
$$(D^{1}, S^{0})^{\mathcal{K}} = \mathcal{R}_{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{m} \qquad G = \mathbb{Z}_{2}$$

$$(D^2, S^1)^{\mathcal{K}} = \mathcal{Z}_{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^m \qquad G = S^1$$

A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.

 \mathcal{K} a flag complex if each of its missing faces consists of two vertices. Equivalently, \mathcal{K} is flag if any set of vertices of \mathcal{K} which are pairwise connected by edges spans a simplex.

Every flag complex \mathcal{K} is determined by its 1-skeleton \mathcal{K}^1 , and is obtained from the graph \mathcal{K}^1 by filling in all complete subgraphs by simplices.

Theorem (P.–Ray–Vogt, 2002) $B(\mathbf{G}^{\mathcal{K}}) \simeq (B\mathbf{G})^{\mathcal{K}}$ if and only if \mathcal{K} is flag.

Higher Whitehead products in $\pi_*((B\mathbf{G})^{\mathcal{K}})$ are what obstructs the identity $B(\mathbf{G}^{\mathcal{K}}) \simeq (B\mathbf{G})^{\mathcal{K}}$ in the general case. This can be fixed by replacing colim by hocolim in the definition of the graph product $\mathbf{G}^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GRP}} \mathbf{G}^{I}$.

12/26

In the case of discrete groups we obtain

Theorem

- Let $\mathbf{G}^{\mathcal{K}}$ be a graph product of discrete groups.

 - **2** Both spaces $(B\mathbf{G})^{\mathcal{K}}$ and $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
 - $\pi_i((B\mathbf{G})^{\mathcal{K}}) \cong \pi_i((E\mathbf{G},\mathbf{G})^{\mathcal{K}}) \text{ for } i \geq 2.$
 - $\pi_1((E \mathbf{G}, \mathbf{G})^{\mathcal{K}})$ is isomorphic to the kernel of the canonical projection $\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^m G_k$ (the Cartesian subgroup of $\mathbf{G}^{\mathcal{K}}$).

Part of proof

Assume now that \mathcal{K} is not flag. Choose a missing face $J = \{j_1, \ldots, j_k\} \subset [m]$ with $k \ge 3$ vertices. Let $\mathcal{K}_J = \{I \in \mathcal{K} \colon I \subset J\}$. Then $(B\mathbf{G})^{\mathcal{K}_J}$ is the fat wedge of the spaces $\{BG_j, j \in J\}$, and it is a retract of $(B\mathbf{G})^{\mathcal{K}}$.

The homotopy fibre of the inclusion $(B\mathbf{G})^{\mathcal{K}_J} \to \prod_{j \in J} BG_j$ is $\Sigma^{k-1}G_{j_1} \wedge \cdots \wedge G_{j_k}$, a wedge of (k-1)-dimensional spheres. Hence, $\pi_{k-1}((B\mathbf{G})^{\mathcal{K}_J}) \neq 0$ where $k \ge 3$. Thus, $(B\mathbf{G})^{\mathcal{K}_J}$ and $(B\mathbf{G})^{\mathcal{K}}$ are non-aspherical.

The rest of the proof (the asphericity of $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ and statements (3) and (4)) follow from the homotopy exact sequence of the fibration $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}} \to (B\mathbf{G})^{\mathcal{K}} \to \prod_{k=1}^{m} BG_k$.

Specialising to the cases $G_k = \mathbb{Z}$ and $G_k = \mathbb{Z}_2$ respectively we obtain:

Corollary

Let $RA_{\mathcal{K}}$ be a right-angled Artin group.

$$1 \pi_1((S^1)^{\mathcal{K}}) \cong RA_{\mathcal{K}}.$$

3 Both $(S^1)^{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}} = (\mathbb{R}, \mathbb{Z})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.

•
$$\pi_i((S^1)^{\mathcal{K}}) \cong \pi_i(\mathcal{L}_{\mathcal{K}}) \text{ for } i \geq 2.$$

• $\pi_1(\mathcal{L}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $\mathsf{RA}'_{\mathcal{K}}$.

Corollary

Let $RC_{\mathcal{K}}$ be a right-angled Coxeter group.

$$\ \, \bullet \ \, \pi_1((\mathbb{R}P^\infty)^{\mathcal{K}})\cong RC_{\mathcal{K}}.$$

3 Both $(\mathbb{R}P^{\infty})^{\mathcal{K}}$ and $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.

•
$$\pi_i((\mathbb{R}P^\infty)^{\mathcal{K}}) \cong \pi_i(\mathcal{R}_{\mathcal{K}}) \text{ for } i \geq 2.$$

• $\pi_1(\mathcal{R}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $\mathcal{R}C'_{\mathcal{K}}$.

Let \mathcal{K} be an *m*-cycle (the boundary of an *m*-gon). A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4)2^{m-3} + 1$. (This observation goes back to a 1938 work of Coxeter.) Therefore, the commutator subgroup of the corresponding right-angled Coxeter group $\mathcal{RC}_{\mathcal{K}}$ is a surface group.

Similarly, when $|\mathcal{K}| \cong S^2$ (which is equivalent to \mathcal{K} being the boundary of a 3-dimensional simplicial polytope), $\mathcal{R}_{\mathcal{K}}$ is a 3-dimensional manifold. Therefore, the commutator subgroup of the corresponding $RC_{\mathcal{K}}$ is a 3-manifold group.

3. Commutator subgroups and subalgebras

First consider the case $G_i = S^1$. The homotopy fibration

$$(D^2, S^1)^{\mathcal{K}} = \mathcal{Z}_{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^m$$

splits after looping:

$$\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}} \simeq \Omega \mathcal{Z}_{\mathcal{K}} \times T^{m}$$

Warning: this is not an *H*-space splitting!

Proposition

There exists an exact sequence of Hopf algebras (over a base ring \mathbf{k})

$$\mathbf{k} \longrightarrow H_*(\Omega \mathcal{Z}_{\mathcal{K}}) \longrightarrow H_*(\Omega(\mathbb{C}P^\infty)^{\mathcal{K}}) \stackrel{\operatorname{Ab}}{\longrightarrow} \Lambda[u_1, \dots, u_m] \longrightarrow 0$$

where $\Lambda[u_1, \ldots, u_m]$ denotes the exterior algebra and deg $u_i = 1$.

Here, $H_*(\Omega Z_{\mathcal{K}})$ is the commutator subalgebra of a largely non-commutative algebra $H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$.

Taras Panov (MSU/Fields)

Polyhedral products and R

Consider the graph product Lie algebra

$$\mathcal{L}_{\mathcal{K}} = \mathcal{F}\mathcal{L}\langle u_1, \dots, u_m \rangle / ([u_i, u_i] = 0, \ [u_i, u_j] = 0 \ ext{for} \ \{i, j\} \in \mathcal{K}),$$

where $FL\langle u_1, \ldots, u_m \rangle$ is the free graded Lie algebra, deg $u_i = 1$, and $[a, b] = -(-1)^{|a||b|}[b, a]$ denotes the graded Lie bracket.

We can write $L_{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GLA}} CL\langle u_i \colon i \in I \rangle$, where *CL* denotes the trivial graded Lie algebra and the colimit taken in the category of graded Lie algebras. (Similar to $RC_{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{GRP}}(\mathbb{Z}_2)^I$.)

The universal enveloping algebra of $L_{\mathcal{K}}$ is the quotient of the free associative algebra $\mathcal{T}\langle \lambda_1, \ldots, \lambda_m \rangle$ by the same relations.

Theorem

There is an injective homomorphism of Hopf algebras

 $T\langle u_1, \ldots, u_m \rangle / (u_i^2 = 0, u_i u_j + u_j u_i = 0 \text{ for } \{i, j\} \in \mathcal{K}) \hookrightarrow H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$

which is an isomorphism if and only if \mathcal{K} is flag.

Now consider the case of discrete G_i (e.g., $G_i = \mathbb{Z}_2$). The homotopy fibration

$$(E\mathbf{G},\mathbf{G})^{\mathcal{K}}\longrightarrow (B\mathbf{G})^{\mathcal{K}}\longrightarrow \prod_{k=1}^{m}BG_{k}.$$

gives rise to a short exact sequence of groups

$$1 \longrightarrow \pi_1((E \mathbf{G}, \mathbf{G})^{\mathcal{K}}) \longrightarrow \mathbf{G}^{\mathcal{K}} \longrightarrow \prod_{k=1}^m G_k \longrightarrow 1$$

so

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_i is abelian), the group above is the commutator subgroup $(\mathbf{G}^{\mathcal{K}})'$.

Theorem (Grbić-P-Theriault-Wu, 2012)

Assume that \mathcal{K} is flag. The commutator subalgebra $H_*(\Omega \mathcal{Z}_{\mathcal{K}})$ is generated by $\sum_{I \subset [m]} \dim \widetilde{H}^0(\mathcal{K}_I)$ iterated commutators of the form

 $[u_j, u_i], [u_{k_1}, [u_j, u_i]], \ldots, [u_{k_1}, [u_{k_2}, \cdots [u_{k_{m-2}}, [u_j, u_i]] \cdots]]$

where $k_1 < k_2 < \cdots < k_p < j > i$, $k_s \neq i$ for any s, and i is the smallest vertex in a connected component not containing j of the subcomplex $\mathcal{K}_{\{k_1,\ldots,k_p,j,i\}}$. Furthermore, this multiplicative generating set is minimal, that is, the commutators above form a basis in the submodule of indecomposables in $H_*(\Omega \mathcal{Z}_{\mathcal{K}})$.

Theorem (P-Veryovkin, 2016)

The commutator subgroup $RC'_{\mathcal{K}} = \pi_1(\mathcal{R}_{\mathcal{K}}) = H_*(\Omega\mathcal{R}_{\mathcal{K}})$ has a minimal generator set consisting of $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$ iterated commutators

$$(g_j, g_i), (g_{k_1}, (g_j, g_i)), \ldots, (g_{k_1}, (g_{k_2}, \cdots (g_{k_{m-2}}, (g_j, g_i)))),$$

with the same condition on the indices as in the previous theorem.

Taras Panov (MSU/Fields)

4. When the commutator subgroup is free?

A graph Γ is called chordal (in other terminology, triangulated) if each of its cycles with ≥ 4 vertices has a chord.

By a result of Fulkerson-Gross, a graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex i, the lesser neighbours of i form a complete subgraph. (A perfect elimination order.)

Theorem (Grbić-P-Theriault-Wu, 2012)

Let ${\cal K}$ be a flag complex and k a field. The following conditions are equivalent:

- $\ \, \bullet \ \, H_*(\Omega {\mathcal Z}_{\mathcal K}; {\boldsymbol k}) \ \, \text{is a free associative algebra};$
- 2 $\mathcal{Z}_{\mathcal{K}}$ has homotopy type of a wedge of spheres;
- **③** \mathcal{K}^1 is a chordal graph.

Theorem (P-Veryovkin, 2016)

Let ${\mathcal K}$ be a flag complex. The following conditions are equivalent:

- Ker $(\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k)$ is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- **3** \mathcal{K}^1 is a chordal graph.

Proof

(2)
$$\Rightarrow$$
(1) Because $\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$

 $(3) \Rightarrow (2)$ Use induction and perfect elimination order.

 $(1)\Rightarrow(3)$ Assume that \mathcal{K}^1 is not chordal. Then, for each chordless cycle of length ≥ 4 , one can find a subgroup in $\operatorname{Ker}(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k)$ which is a surface group. Hence, $\operatorname{Ker}(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k)$ is not a free group.

Corollary

Let $RA_{\mathcal{K}}$ and $RC_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K} .

- (a) The commutator subgroup $RA'_{\mathcal{K}}$ is free iff \mathcal{K}^1 is a chordal graph.
- (b) The commutator subgroup $RC'_{\mathcal{K}}$ is free iff \mathcal{K}^1 is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The difference between (a) and (b) is that the commutator subgroup $RA'_{\mathcal{K}}$ is infinitely generated, unless $RA_{\mathcal{K}} = \mathbb{Z}^m$, while the commutator subgroup $RC'_{\mathcal{K}}$ is finitely generated.

Let $\mathcal{K} = \frac{1}{1} \bullet \frac{1}{2} \bullet 4$

Then the commutator subgroup $RC'_{\mathcal{K}}$ is free with the following basis:

 $(g_3, g_1), (g_4, g_1), (g_4, g_2), (g_4, g_3),$ $(g_2, (g_4, g_1)), (g_3, (g_4, g_1)), (g_1, (g_4, g_3)), (g_3, (g_4, g_2)),$ $(g_2, (g_3, (g_4, g_1))).$

Example

Let $\mathcal K$ be an m-cycle with $m \geqslant$ 4 vertices.

Then \mathcal{K}^1 is not a chordal graph, so the group $\mathcal{RC}'_{\mathcal{K}}$ is not free.

In fact, $\mathcal{R}_{\mathcal{K}}$ is an orientable surface of genus $(m-4)2^{m-3} + 1$, so $RC'_{\mathcal{K}} \cong \pi_1(\mathcal{R}_{\mathcal{K}})$ is a one-relator group.

5. One-relator groups

Theorem (Grbić-Ilyasova-P-Simmons, 2020)

Let $\mathcal K$ be a flag complex. The following conditions are equivalent:

•
$$\pi_1(\mathcal{R}_{\mathcal{K}}) = \mathcal{R}\mathcal{C}'_{\mathcal{K}}$$
 is a one-relator group;

- $\mathcal{K} = C_p \text{ or } \mathcal{K} = C_p * \Delta^q \text{ for } p \ge 4 \text{ and } q \ge 0, \text{ where } C_p \text{ is a } p$ -cycle, Δ^q is a q-simplex, and * denotes the join of simplicial complexes.

Theorem (Grbić-Ilyasova-P-Simmons, 2020)

Let $\mathcal K$ be a flag complex. The following conditions are equivalent:

• $H_*(\Omega Z_{\mathcal{K}})$ is a one-relator algebra;

\$\mathcal{H}_{2-j,2j}(\mathcal{Z}_{\mathcal{K}}) = \begin{bmatrix} \mathcal{Z} & if \$j = p\$ for some \$p\$, \$4 \le \$p \le \$m\$ \$\mathcal{M}\$ \$\mathcal{D}\$ \$\mathcal{L}\$ \$\mathcal{L}_{p}\$ otherwise;
\$\mathcal{K} = \mathcal{C}_{p}\$ or \$\mathcal{K} = \mathcal{C}_{p} * \Delta^{q}\$ for \$p \ge 4\$ and \$q \ge 0\$.

References

- T. Panov, N. Ray and R. Vogt. Colimits, Stanley-Reiner algebras, and loop spaces, in: "Categorical Decomposition Techniques in Algebraic Topology" (G. Arone et al eds.), Progress in Mathematics, vol. 215, Birkhauser, Basel, 2004, pp. 261–291; arXiv:math.AT/0202081.
- J. Grbić, T. Panov, S. Theriault and J. Wu. The homotopy types of moment-angle complexes for flag complexes. Trans. of the Amer. Math. Soc. 368 (2016), no. 9, 6663–6682; arXiv:1211.0873.
- [3] T. Panov and Ya. Veryovkin. Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups. Sb. Math. 207 (2016), no. 11, 1582-1600; arXiv:1603.06902.
- [4] J. Grbić, M. Ilyasova, T. Panov and G. Simmons. One-relator groups and algebras related to polyhedral products. Preprint (2020); arXiv:2002.11476.