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1. Preliminaries

Polyhedral product

(X ,A) = {(X1,A1), . . . , (Xm,Am)} a sequence of pairs of spaces, Ai ⊂ Xi .

K a simplicial complex on [m] = {1, 2, . . . ,m}, ∅ ∈ K.

Given I = {i1, . . . , ik} ⊂ [m], set

(X ,A)I = Y1 × · · · × Ym where Yi =

{
Xi if i ∈ I ,
Ai if i /∈ I .

The K-polyhedral product of (X ,A) is

(X ,A)K =
⋃
I∈K

(X ,A)I =
⋃
I∈K

(∏
i∈I

Xi ×
∏
j /∈I

Aj

)
⊂

m∏
i=1

Xi .

Notation: (X ,A)K = (X ,A)K when all (Xi ,Ai ) = (X ,A);
X
K = (X , pt)K, XK = (X , pt)K.
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Categorical approach

Category of faces cat(K).
Objects: simplices I ∈ K. Morphisms: inclusions I ⊂ J.

top the category of topological spaces.
De�ne the cat(K)-diagram

DK(X ,A) : cat(K) −→ top,

I 7−→ (X ,A)I ,

which maps the morphism I ⊂ J of cat(K) to the inclusion of spaces
(X ,A)I ⊂ (X ,A)J .

Then we have

(X ,A)K = colimDK(X ,A) = colim
I∈K

(X ,A)I .
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Example

Let (X ,A) = (S1, pt), where S1 is a circle. Then

(S1)K =
⋃
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral product
(S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of an
(m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it is
obtained by removing the top-dimensional cell from the m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.
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Example

Let (X ,A) = (R,Z). Then

LK := (R,Z)K =
⋃
I∈K

(R,Z)I ⊂ Rm.

When K consists of m disjoint points, LK is a grid in Rm consisting of all
lines parallel to one of the coordinate axis and passing though integer
points.

When K = ∂∆m−1, the complex LK is the union of all integer hyperplanes
parallel to coordinate hyperplanes.
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Example

Let (X ,A) = (RP∞, pt), where RP∞ = BZ2. Then

(RP∞)K =
⋃
I∈K

(RP∞)I ⊂ (RP∞)m.

Similarly,

(CP∞)K =
⋃
I∈K

(CP∞)I ⊂ (CP∞)m.
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Example

Let (X ,A) = (D1,S0), where D1 = [−1, 1] and S0 = {1,−1}. The real
moment-angle complex is

RK := (D1, S0)K =
⋃
I∈K

(D1, S0)I .

It is a cubic subcomplex in the m-cube (D1)m = [−1, 1]m.

When K consists of m disjoint points, RK is the 1-dimensional skeleton of
the cube [−1, 1]m. When K = ∂∆m−1, RK is the boundary of the
cube [−1, 1]m. Also, RK is a topological manifold when |K| is a sphere.

Let (X ,A) = (D2,S1). The moment-angle complex is

ZK := (D2,S1)K =
⋃
I∈K

(D2,S1)I .

It is a topological (m + n)-manifold when |K| ∼= Sn−1 is a sphere.

Taras Panov (MSU/Fields) Polyhedral products and RACG Fields Inst, 26 May 2020 7 / 26



Replacing spaces by groups in the construction of the polyhedral product
X
K = colimI∈KX

I we arrive at the following

Graph product

G = (G1, . . . ,Gm) a sequence of m (topological) groups, Gi 6= {1}.
Given I = {i1, . . . , ik} ⊂ [m], set

G
I =

{
(g1, . . . , gm) ∈

m∏
k=1

Gk : gk = 1 for k /∈ I
}
.

Consider the following cat(K)-diagram of groups:

DK(G ) : cat(K) −→ grp, I 7−→ G
I ,

which maps a morphism I ⊂ J to the canonical monomorphism G
I → G

J .

The graph product of the groups G1, . . . ,Gm is

G
K = colim

grpDK(G ) = colim
grp

I∈KG
I .
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The graph product GK depends only on the 1-skeleton (graph) of K.
Namely,

Proposition

The is an isomorphism of groups

G
K ∼=

m

?
k=1

Gk

/
(gigj = gjgi for gi ∈ Gi , gj ∈ Gj , {i , j} ∈ K),

where?m

k=1 Gk denotes the free product of the groups Gk .
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Example

Let Gi = Z. Then GK is the right-angled Artin group

RAK = F (g1, . . . , gm)
/

(gigj = gjgi for {i , j} ∈ K),

where F (g1, . . . , gm) is a free group with m generators.

When K is a full simplex, we have RAK = Zm. When K is m points, we
obtain a free group of rank m.

Example

Let Gi = Z2. Then G
K is the right-angled Coxeter group

RCK = F (g1, . . . , gm)
/

(g2
i = 1, gigj = gjgi for {i , j} ∈ K).
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2. Classifying spaces

A natural question: when B(GK) ' (BG )K?

Proposition

There is a homotopy �bration

(EG,G)K −→ (BG)K −→
m∏

k=1

BGk .

In particular, there are homotopy �brations

(R,Z)K = LK −→ (S1)K −→ (S1)m G = Z

(D1, S0)K = RK −→ (RP∞)K −→ (RP∞)m G = Z2

(D2, S1)K = ZK −→ (CP∞)K −→ (CP∞)m G = S1
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A missing face (a minimal non-face) of K is a subset I ⊂ [m] such that
I /∈ K, but J ∈ K for each J ( I .

K a �ag complex if each of its missing faces consists of two vertices.
Equivalently, K is �ag if any set of vertices of K which are pairwise
connected by edges spans a simplex.

Every �ag complex K is determined by its 1-skeleton K1, and is obtained
from the graph K1 by �lling in all complete subgraphs by simplices.

Theorem (P.�Ray�Vogt, 2002)

B(GK) ' (BG)K if and only if K is �ag.

Higher Whitehead products in π∗((BG )K) are what obstructs the identity
B(GK) ' (BG )K in the general case.
This can be �xed by replacing colim by hocolim in the de�nition of the
graph product GK = colim

grp

I∈KG
I .
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In the case of discrete groups we obtain

Theorem

Let GK be a graph product of discrete groups.

1 π1((BG)K) ∼= G
K.

2 Both spaces (BG)K and (EG,G)K are aspherical i� K is �ag.

3 πi ((BG)K) ∼= πi ((EG,G)K) for i > 2.

4 π1((EG,G)K) is isomorphic to the kernel of the canonical projection

G
K →

∏m
k=1 Gk (the Cartesian subgroup of GK).
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Part of proof

Assume now that K is not �ag. Choose a missing face
J = {j1, . . . , jk} ⊂ [m] with k > 3 vertices. Let KJ = {I ∈ K : I ⊂ J}.
Then (BG )KJ is the fat wedge of the spaces {BGj , j ∈ J}, and it is a
retract of (BG )K.

The homotopy �bre of the inclusion (BG )KJ →
∏

j∈J BGj is

Σk−1Gj1 ∧ · · · ∧ Gjk , a wedge of (k − 1)-dimensional spheres.
Hence, πk−1((BG )KJ ) 6= 0 where k > 3.
Thus, (BG )KJ and (BG )K are non-aspherical.

The rest of the proof (the asphericity of (EG ,G )K and statements (3)
and (4)) follow from the homotopy exact sequence of the �bration
(EG ,G )K → (BG )K →

∏m
k=1 BGk .
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Specialising to the cases Gk = Z and Gk = Z2 respectively we obtain:

Corollary

Let RAK be a right-angled Artin group.

1 π1((S1)K) ∼= RAK.

2 Both (S1)K and LK = (R,Z)K are aspherical i� K is �ag.

3 πi ((S1)K) ∼= πi (LK) for i > 2.

4 π1(LK) is isomorphic to the commutator subgroup RA′K.

Corollary

Let RCK be a right-angled Coxeter group.

1 π1((RP∞)K) ∼= RCK.

2 Both (RP∞)K and RK = (D1,S0)K are aspherical i� K is �ag.

3 πi ((RP∞)K) ∼= πi (RK) for i > 2.

4 π1(RK) is isomorphic to the commutator subgroup RC ′K.
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Example

Let K be an m-cycle (the boundary of an m-gon).
A simple argument with Euler characteristic shows that RK = (D1, S0)K is
homeomorphic to a closed orientable surface of genus (m − 4)2m−3 + 1.
(This observation goes back to a 1938 work of Coxeter.)
Therefore, the commutator subgroup of the corresponding right-angled
Coxeter group RCK is a surface group.

Similarly, when |K| ∼= S2 (which is equivalent to K being the boundary of a
3-dimensional simplicial polytope), RK is a 3-dimensional manifold.
Therefore, the commutator subgroup of the corresponding RCK is a
3-manifold group.
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3. Commutator subgroups and subalgebras

First consider the case Gi = S1. The homotopy �bration

(D2,S1)K = ZK −→ (CP∞)K −→ (CP∞)m

splits after looping:
Ω(CP∞)K ' ΩZK × Tm

Warning: this is not an H-space splitting!

Proposition

There exists an exact sequence of Hopf algebras (over a base ring k)

k −→ H∗(ΩZK) −→ H∗(Ω(CP∞)K)
Ab−→ Λ[u1, . . . , um] −→ 0

where Λ[u1, . . . , um] denotes the exterior algebra and deg ui = 1.

Here, H∗(ΩZK) is the commutator subalgebra of a largely
non-commutative algebra H∗(Ω(CP∞)K).
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Consider the graph product Lie algebra

LK = FL〈u1, . . . , um〉
/(

[ui , ui ] = 0, [ui , uj ] = 0 for {i , j} ∈ K
)
,

where FL〈u1, . . . , um〉 is the free graded Lie algebra, deg ui = 1, and
[a, b] = −(−1)|a||b|[b, a] denotes the graded Lie bracket.

We can write LK = colim
gla

I∈K CL〈ui : i ∈ I 〉, where CL denotes the trivial
graded Lie algebra and the colimit taken in the category of graded Lie
algebras. (Similar to RCK = colim

grp

I∈K(Z2)I .)

The universal enveloping algebra of LK is the quotient of the free
associative algebra T 〈λ1, . . . , λm〉 by the same relations.

Theorem

There is an injective homomorphism of Hopf algebras

T 〈u1, . . . , um〉
/(

u2i = 0, uiuj + ujui = 0 for {i , j} ∈ K
)
↪→ H∗

(
Ω(CP∞)K

)
which is an isomorphism if and only if K is �ag.
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Now consider the case of discrete Gi (e. g., Gi = Z2). The homotopy
�bration

(EG ,G )K −→ (BG )K −→
m∏

k=1

BGk .

gives rise to a short exact sequence of groups

1 −→ π1((EG ,G )K) −→ G
K −→

m∏
k=1

Gk −→ 1

so

Ker

(
G
K →

m∏
k=1

Gk

)
= π1((EG ,G )K).

In the case of right-angled Artin or Coxeter groups (or when each Gi is
abelian), the group above is the commutator subgroup (GK)

′
.
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Theorem (Grbi�c�P�Theriault�Wu, 2012)

Assume that K is �ag. The commutator subalgebra H∗(ΩZK) is generated

by
∑

I⊂[m] dim H̃0(KI ) iterated commutators of the form

[uj , ui ], [uk1 , [uj , ui ]], . . . , [uk1 , [uk2 , · · · [ukm−2 , [uj , ui ]] · · · ]]

where k1 < k2 < · · · < kp < j > i , ks 6= i for any s, and i is the smallest

vertex in a connected component not containing j of the subcomplex

K{k1,...,kp ,j ,i}. Furthermore, this multiplicative generating set is minimal,

that is, the commutators above form a basis in the submodule of

indecomposables in H∗(ΩZK).

Theorem (P�Veryovkin, 2016)

The commutator subgroup RC ′K = π1(RK) = H∗(ΩRK) has a minimal

generator set consisting of
∑

J⊂[m] rank H̃0(KJ) iterated commutators

(gj , gi ), (gk1 , (gj , gi )), . . . , (gk1 , (gk2 , · · · (gkm−2 , (gj , gi )) · · · )),

with the same condition on the indices as in the previous theorem.
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4. When the commutator subgroup is free?

A graph Γ is called chordal (in other terminology, triangulated) if each of
its cycles with > 4 vertices has a chord.

By a result of Fulkerson�Gross, a graph is chordal if and only if its vertices
can be ordered in such a way that, for each vertex i , the lesser neighbours
of i form a complete subgraph. (A perfect elimination order.)

Theorem (Grbi�c�P�Theriault�Wu, 2012)

Let K be a �ag complex and k a �eld. The following conditions are

equivalent:

1 H∗(ΩZK; k) is a free associative algebra;

2 ZK has homotopy type of a wedge of spheres;

3 K1 is a chordal graph.
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Theorem (P�Veryovkin, 2016)

Let K be a �ag complex. The following conditions are equivalent:

1 Ker(GK →
∏m

k=1 Gk) is a free group;

2 (EG,G)K is homotopy equivalent to a wedge of circles;

3 K1 is a chordal graph.

Proof

(2)⇒(1) Because Ker

(
G
K →

∏m
k=1 Gk

)
= π1((EG ,G )K).

(3)⇒(2) Use induction and perfect elimination order.

(1)⇒(3) Assume that K1 is not chordal. Then, for each chordless cycle of
length > 4, one can �nd a subgroup in Ker(GK →

∏m
k=1 Gk) which is a

surface group. Hence, Ker(GK →
∏m

k=1 Gk) is not a free group.
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Corollary

Let RAK and RCK be the right-angled Artin and Coxeter groups

corresponding to a simplicial complex K.
(a) The commutator subgroup RA′K is free i� K1 is a chordal graph.

(b) The commutator subgroup RC ′K is free i� K1 is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The di�erence between (a) and (b) is that the commutator subgroup RA′K
is in�nitely generated, unless RAK = Zm, while the commutator subgroup
RC ′K is �nitely generated.
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Example

Let K = s s
s

1 2

3 s
4

Then the commutator subgroup RC ′K is free with the following basis:

(g3, g1), (g4, g1), (g4, g2), (g4, g3),

(g2, (g4, g1)), (g3, (g4, g1)), (g1, (g4, g3)), (g3, (g4, g2)),

(g2, (g3, (g4, g1))).

Example

Let K be an m-cycle with m > 4 vertices.
Then K1 is not a chordal graph, so the group RC ′K is not free.

In fact, RK is an orientable surface of genus (m − 4)2m−3 + 1, so
RC ′K

∼= π1(RK) is a one-relator group.
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5. One-relator groups

Theorem (Grbi�c�Ilyasova�P�Simmons, 2020)

Let K be a �ag complex. The following conditions are equivalent:

1 π1(RK) = RC ′K is a one-relator group;

2 H2(RK) = Z;
3 K = Cp or K = Cp ∗∆q for p > 4 and q > 0, where Cp is a p-cycle,

∆q is a q-simplex, and ∗ denotes the join of simplicial complexes.

Theorem (Grbi�c�Ilyasova�P�Simmons, 2020)

Let K be a �ag complex. The following conditions are equivalent:

1 H∗(ΩZK) is a one-relator algebra;

2 H2−j ,2j(ZK) =

{
Z if j = p for some p, 4 6 p 6 m

0 otherwise;

3 K = Cp or K = Cp ∗∆q for p > 4 and q > 0.
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