Polyhedral products, loop homology and right-angled Coxeter groups

Based on joint works with Jelena Grbić, Marina Ilyasova, George Simmons, Stephen Theriault, Yakov Veryovkin and Jie Wu.

Taras Panov

Lomonosov Moscow State University/Fields Institute
Workshop on Polyhedral Products in Geometric Group Theory
Fields Institute, Toronto, Canada, 25-29 May 2020

1. Preliminaries

Polyhedral product

$(\boldsymbol{X}, \boldsymbol{A})=\left\{\left(X_{1}, A_{1}\right), \ldots,\left(X_{m}, A_{m}\right)\right\}$ a sequence of pairs of spaces, $A_{i} \subset X_{i}$.
\mathcal{K} a simplicial complex on $[m]=\{1,2, \ldots, m\}, \quad \varnothing \in \mathcal{K}$.
Given $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[m]$, set

$$
(\boldsymbol{X}, \boldsymbol{A})^{\prime}=Y_{1} \times \cdots \times Y_{m} \quad \text { where } Y_{i}= \begin{cases}X_{i} & \text { if } i \in I \\ A_{i} & \text { if } i \notin I\end{cases}
$$

The \mathcal{K}-polyhedral product of $(\boldsymbol{X}, \boldsymbol{A})$ is

$$
(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}(\boldsymbol{X}, \boldsymbol{A})^{\prime}=\bigcup_{I \in \mathcal{K}}\left(\prod_{i \in I} X_{i} \times \prod_{j \notin I} A_{j}\right) \subset \prod_{i=1}^{m} X_{i}
$$

Notation: $(X, A)^{\mathcal{K}}=(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}}$ when all $\left(X_{i}, A_{i}\right)=(X, A)$;
$\boldsymbol{X}^{\mathcal{K}}=(\boldsymbol{X}, p t)^{\mathcal{K}}, X^{\mathcal{K}}=(X, p t)^{\mathcal{K}}$.

Categorical approach

Category of faces CAT (\mathcal{K}).
Objects: simplices $I \in \mathcal{K}$. Morphisms: inclusions $I \subset J$.
TOP the category of topological spaces.
Define the CAT (\mathcal{K})-diagram

$$
\begin{aligned}
\mathcal{D}_{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{A}): \operatorname{cAT}(\mathcal{K}) & \longrightarrow \mathrm{TOP}, \\
\boldsymbol{I} & \longmapsto(\boldsymbol{X}, \boldsymbol{A})^{\prime},
\end{aligned}
$$

which maps the morphism $I \subset J$ of $\operatorname{CAT}(\mathcal{K})$ to the inclusion of spaces $(\boldsymbol{X}, \boldsymbol{A})^{\prime} \subset(\boldsymbol{X}, \boldsymbol{A})^{J}$.

Then we have

$$
(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}}=\operatorname{colim} \mathcal{D}_{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{A})=\underset{\boldsymbol{I} \in \mathcal{K}}{\operatorname{colim}}(\boldsymbol{X}, \boldsymbol{A})^{\prime}
$$

Example

Let $(X, A)=\left(S^{1}, p t\right)$, where S^{1} is a circle. Then

$$
\left(S^{1}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(S^{1}\right)^{\prime} \subset\left(S^{1}\right)^{m}
$$

When $\mathcal{K}=\{\varnothing,\{1\}, \ldots,\{m\}\}$ (m disjoint points), the polyhedral product $\left(S^{1}\right)^{\mathcal{K}}$ is the wedge $\left(S^{1}\right)^{\vee m}$ of m circles.

When \mathcal{K} consists of all proper subsets of $\left[m\right.$] (the boundary $\partial \Delta^{m-1}$ of an ($m-1$)-dimensional simplex), $\left(S^{1}\right)^{\mathcal{K}}$ is the fat wedge of m circles; it is obtained by removing the top-dimensional cell from the m-torus $\left(S^{1}\right)^{m}$.

For a general \mathcal{K} on m vertices, $\left(S^{1}\right)^{\vee m} \subset\left(S^{1}\right)^{\mathcal{K}} \subset\left(S^{1}\right)^{m}$.

Example

Let $(X, A)=(\mathbb{R}, \mathbb{Z})$. Then

$$
\mathcal{L}_{\mathcal{K}}:=(\mathbb{R}, \mathbb{Z})^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}(\mathbb{R}, \mathbb{Z})^{I} \subset \mathbb{R}^{m}
$$

When \mathcal{K} consists of m disjoint points, $\mathcal{L}_{\mathcal{K}}$ is a grid in \mathbb{R}^{m} consisting of all lines parallel to one of the coordinate axis and passing though integer points.

When $\mathcal{K}=\partial \Delta^{m-1}$, the complex $\mathcal{L}_{\mathcal{K}}$ is the union of all integer hyperplanes parallel to coordinate hyperplanes.

Example

Let $(X, A)=\left(\mathbb{R} P^{\infty}, p t\right)$, where $\mathbb{R} P^{\infty}=B \mathbb{Z}_{2}$. Then

$$
\left(\mathbb{R} P^{\infty}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(\mathbb{R} P^{\infty}\right)^{\prime} \subset\left(\mathbb{R} P^{\infty}\right)^{m}
$$

Similarly,

$$
\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(\mathbb{C} P^{\infty}\right)^{\prime} \subset\left(\mathbb{C} P^{\infty}\right)^{m}
$$

Example

Let $(X, A)=\left(D^{1}, S^{0}\right)$, where $D^{1}=[-1,1]$ and $S^{0}=\{1,-1\}$. The real moment-angle complex is

$$
\mathcal{R}_{\mathcal{K}}:=\left(D^{1}, S^{0}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(D^{1}, S^{0}\right)^{\prime}
$$

It is a cubic subcomplex in the m-cube $\left(D^{1}\right)^{m}=[-1,1]^{m}$.
When \mathcal{K} consists of m disjoint points, $\mathcal{R}_{\mathcal{K}}$ is the 1 -dimensional skeleton of the cube $[-1,1]^{m}$. When $\mathcal{K}=\partial \Delta^{m-1}, \mathcal{R}_{\mathcal{K}}$ is the boundary of the cube $[-1,1]^{m}$. Also, $\mathcal{R}_{\mathcal{K}}$ is a topological manifold when $|\mathcal{K}|$ is a sphere.

Let $(X, A)=\left(D^{2}, S^{1}\right)$. The moment-angle complex is

$$
\mathcal{Z}_{\mathcal{K}}:=\left(D^{2}, S^{1}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(D^{2}, S^{1}\right)^{\prime}
$$

It is a topological $(m+n)$-manifold when $|\mathcal{K}| \cong S^{n-1}$ is a sphere.

Replacing spaces by groups in the construction of the polyhedral product $\boldsymbol{X}^{\mathcal{K}}=\operatorname{colim}_{I \in \mathcal{K}} \boldsymbol{X}^{\prime}$ we arrive at the following

Graph product

$\boldsymbol{G}=\left(G_{1}, \ldots, G_{m}\right)$ a sequence of m (topological) groups, $G_{i} \neq\{1\}$.
Given $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[m]$, set

$$
G^{\prime}=\left\{\left(g_{1}, \ldots, g_{m}\right) \in \prod_{k=1}^{m} G_{k}: g_{k}=1 \quad \text { for } k \notin I\right\}
$$

Consider the following $\operatorname{CAT}(\mathcal{K})$-diagram of groups:

$$
\mathcal{D}_{\mathcal{K}}(\boldsymbol{G}): \operatorname{CAT}(\mathcal{K}) \longrightarrow \mathrm{GRP}, \quad I \longmapsto \boldsymbol{G}^{\prime}
$$

which maps a morphism $I \subset J$ to the canonical monomorphism $G^{\prime} \rightarrow G^{J}$.
The graph product of the groups G_{1}, \ldots, G_{m} is

$$
\boldsymbol{G}^{\mathcal{K}}=\operatorname{colim}^{\mathrm{GRP}} \mathcal{D}_{\mathcal{K}}(\boldsymbol{G})=\operatorname{colim}_{\boldsymbol{l} \in \mathcal{K}}^{\mathrm{GRP}} \boldsymbol{G}^{\prime} .
$$

The graph product $\boldsymbol{G}^{\mathcal{K}}$ depends only on the 1 -skeleton (graph) of \mathcal{K}. Namely,

Proposition

The is an isomorphism of groups

$$
\boldsymbol{G}^{\mathcal{K}} \cong{\underset{k=1}{\not}}_{\nrightarrow}^{*} G_{k} /\left(g_{i} g_{j}=g_{j} g_{i} \text { for } g_{i} \in G_{i}, g_{j} \in G_{j},\{i, j\} \in \mathcal{K}\right)
$$

where $\star_{k=1}^{m} G_{k}$ denotes the free product of the groups G_{k}.

Example

Let $G_{i}=\mathbb{Z}$. Then $G^{\mathcal{K}}$ is the right-angled Artin group

$$
R A_{\mathcal{K}}=F\left(g_{1}, \ldots, g_{m}\right) /\left(g_{i} g_{j}=g_{j} g_{i} \text { for }\{i, j\} \in \mathcal{K}\right)
$$

where $F\left(g_{1}, \ldots, g_{m}\right)$ is a free group with m generators.
When \mathcal{K} is a full simplex, we have $R A_{\mathcal{K}}=\mathbb{Z}^{m}$. When \mathcal{K} is m points, we obtain a free group of rank m.

Example

Let $G_{i}=\mathbb{Z}_{2}$. Then $G^{\mathcal{K}}$ is the right-angled Coxeter group

$$
R C_{\mathcal{K}}=F\left(g_{1}, \ldots, g_{m}\right) /\left(g_{i}^{2}=1, g_{i} g_{j}=g_{j} g_{i} \text { for }\{i, j\} \in \mathcal{K}\right)
$$

2. Classifying spaces

A natural question: when $B\left(\boldsymbol{G}^{\mathcal{K}}\right) \simeq(B \boldsymbol{G})^{\mathcal{K}}$?

Proposition

There is a homotopy fibration

$$
(E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}} \longrightarrow(B G)^{\mathcal{K}} \longrightarrow \prod_{k=1}^{m} B G_{k} .
$$

In particular, there are homotopy fibrations

$$
\begin{aligned}
(\mathbb{R}, \mathbb{Z})^{\mathcal{K}} & =\mathcal{L}_{\mathcal{K}} \longrightarrow\left(S^{1}\right)^{\mathcal{K}} \longrightarrow\left(S^{1}\right)^{m} & & G=\mathbb{Z} \\
\left(D^{1}, S^{0}\right)^{\mathcal{K}} & =\mathcal{R}_{\mathcal{K}} \longrightarrow\left(\mathbb{R} P^{\infty}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{R} P^{\infty}\right)^{m} & & G=\mathbb{Z}_{2} \\
\left(D^{2}, S^{1}\right)^{\mathcal{K}} & =\mathcal{Z}_{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{m} & & G=S^{1}
\end{aligned}
$$

A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset[m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.
\mathcal{K} a flag complex if each of its missing faces consists of two vertices. Equivalently, \mathcal{K} is flag if any set of vertices of \mathcal{K} which are pairwise connected by edges spans a simplex.

Every flag complex \mathcal{K} is determined by its 1 -skeleton \mathcal{K}^{1}, and is obtained from the graph \mathcal{K}^{1} by filling in all complete subgraphs by simplices.

$$
\begin{aligned}
& \text { Theorem (P.-Ray-Vogt, 2002) } \\
& B\left(\boldsymbol{G}^{\mathcal{K}}\right) \simeq(B \boldsymbol{G})^{\mathcal{K}} \text { if and only if } \mathcal{K} \text { is flag. }
\end{aligned}
$$

Higher Whitehead products in $\pi_{*}\left((B G)^{\mathcal{K}}\right)$ are what obstructs the identity $B\left(\boldsymbol{G}^{\mathcal{K}}\right) \simeq(B \boldsymbol{G})^{\mathcal{K}}$ in the general case.
This can be fixed by replacing colim by hocolim in the definition of the graph product $\boldsymbol{G}^{\mathcal{K}}=\operatorname{colim}_{\boldsymbol{l} \in \mathcal{K}}^{\operatorname{GRP}} \boldsymbol{G}^{\boldsymbol{\prime}}$.

In the case of discrete groups we obtain

Theorem

Let $G^{\mathcal{K}}$ be a graph product of discrete groups.
(1) $\pi_{1}\left((B G)^{\mathcal{K}}\right) \cong G^{\mathcal{K}}$.
(2) Both spaces $(B G)^{\mathcal{K}}$ and $(E G, G)^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
(3) $\pi_{i}\left((B \boldsymbol{G})^{\mathcal{K}}\right) \cong \pi_{i}\left((E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}\right)$ for $i \geqslant 2$.
(9) $\pi_{1}\left((E G, G)^{\mathcal{K}}\right)$ is isomorphic to the kernel of the canonical projection $\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}$ (the Cartesian subgroup of $\boldsymbol{G}^{\mathcal{K}}$).

Part of proof

Assume now that \mathcal{K} is not flag. Choose a missing face $J=\left\{j_{1}, \ldots, j_{k}\right\} \subset[m]$ with $k \geqslant 3$ vertices. Let $\mathcal{K}_{J}=\{I \in \mathcal{K}: I \subset J\}$. Then $(B G)^{\mathcal{K} J}$ is the fat wedge of the spaces $\left\{B G_{j}, j \in J\right\}$, and it is a retract of $(B G)^{\mathcal{K}}$.
The homotopy fibre of the inclusion $(B G)^{\mathcal{K}_{J}} \rightarrow \prod_{j \in J} B G_{j}$ is $\Sigma^{k-1} G_{j_{1}} \wedge \cdots \wedge G_{j_{k}}$, a wedge of $(k-1)$-dimensional spheres. Hence, $\pi_{k-1}\left((B G)^{\mathcal{K}_{\jmath}}\right) \neq 0$ where $k \geqslant 3$.
Thus, $(B G)^{\mathcal{K}_{J}}$ and $(B G)^{\mathcal{K}}$ are non-aspherical.
The rest of the proof (the asphericity of $(E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}$ and statements (3) and (4)) follow from the homotopy exact sequence of the fibration $(E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}} \rightarrow(B \boldsymbol{G})^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} B G_{k}$.

Specialising to the cases $G_{k}=\mathbb{Z}$ and $G_{k}=\mathbb{Z}_{2}$ respectively we obtain:

Corollary

Let $R A_{\mathcal{K}}$ be a right-angled Artin group.
(1) $\pi_{1}\left(\left(S^{1}\right)^{\mathcal{K}}\right) \cong R A_{\mathcal{K}}$.
(2) Both $\left(S^{1}\right)^{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}}=(\mathbb{R}, \mathbb{Z})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
(3) $\pi_{i}\left(\left(S^{1}\right)^{\mathcal{K}}\right) \cong \pi_{i}\left(\mathcal{L}_{\mathcal{K}}\right)$ for $i \geqslant 2$.
(1) $\pi_{1}\left(\mathcal{L}_{\mathcal{K}}\right)$ is isomorphic to the commutator subgroup $R A_{\mathcal{K}}^{\prime}$.

Corollary

Let $R C_{\mathcal{K}}$ be a right-angled Coxeter group.
(1) $\pi_{1}\left(\left(\mathbb{R} P^{\infty}\right)^{\mathcal{K}}\right) \cong R C_{\mathcal{K}}$.
(2) Both $\left(\mathbb{R} P^{\infty}\right)^{\mathcal{K}}$ and $\mathcal{R}_{\mathcal{K}}=\left(D^{1}, S^{0}\right)^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.
(3) $\pi_{i}\left(\left(\mathbb{R} P^{\infty}\right)^{\mathcal{K}}\right) \cong \pi_{i}\left(\mathcal{R}_{\mathcal{K}}\right)$ for $i \geqslant 2$.
(1) $\pi_{1}\left(\mathcal{R}_{\mathcal{K}}\right)$ is isomorphic to the commutator subgroup $R C_{\mathcal{K}}^{\prime}$.

Example

Let \mathcal{K} be an m-cycle (the boundary of an m-gon).
A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}}=\left(D^{1}, S^{0}\right)^{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4) 2^{m-3}+1$.
(This observation goes back to a 1938 work of Coxeter.)
Therefore, the commutator subgroup of the corresponding right-angled Coxeter group $R C_{\mathcal{K}}$ is a surface group.

Similarly, when $|\mathcal{K}| \cong S^{2}$ (which is equivalent to \mathcal{K} being the boundary of a 3-dimensional simplicial polytope), $\mathcal{R}_{\mathcal{K}}$ is a 3-dimensional manifold. Therefore, the commutator subgroup of the corresponding $R C_{\mathcal{K}}$ is a 3-manifold group.

3. Commutator subgroups and subalgebras

First consider the case $G_{i}=S^{1}$. The homotopy fibration

$$
\left(D^{2}, S^{1}\right)^{\mathcal{K}}=\mathcal{Z}_{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{m}
$$

splits after looping:

$$
\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \simeq \Omega \mathcal{Z}_{\mathcal{K}} \times T^{m}
$$

Warning: this is not an H-space splitting!

Proposition

There exists an exact sequence of Hopf algebras (over a base ring \mathbf{k})

$$
\mathbf{k} \longrightarrow H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right) \longrightarrow H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right) \xrightarrow{\mathrm{Ab}} \Lambda\left[u_{1}, \ldots, u_{m}\right] \longrightarrow 0
$$

where $\Lambda\left[u_{1}, \ldots, u_{m}\right]$ denotes the exterior algebra and $\operatorname{deg} u_{i}=1$.

Here, $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)$ is the commutator subalgebra of a largely non-commutative algebra $H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$.

Consider the graph product Lie algebra

$$
L_{\mathcal{K}}=F L\left\langle u_{1}, \ldots, u_{m}\right\rangle /\left(\left[u_{i}, u_{i}\right]=0,\left[u_{i}, u_{j}\right]=0 \text { for }\{i, j\} \in \mathcal{K}\right),
$$

where $F L\left\langle u_{1}, \ldots, u_{m}\right\rangle$ is the free graded Lie algebra, $\operatorname{deg} u_{i}=1$, and $[a, b]=-(-1)^{|a||b|}[b, a]$ denotes the graded Lie bracket.
We can write $L_{\mathcal{K}}=\operatorname{colim}_{l \mid \mathcal{K}}^{\text {GLA }} C L\left\langle u_{i}: i \in I\right\rangle$, where $C L$ denotes the trivial graded Lie algebra and the colimit taken in the category of graded Lie algebras. (Similar to $R C_{\mathcal{K}}=\operatorname{colim}_{l \in \mathcal{K}}^{\text {GRP }}\left(\mathbb{Z}_{2}\right)^{\prime}$.)
The universal enveloping algebra of $L_{\mathcal{K}}$ is the quotient of the free associative algebra $T\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle$ by the same relations.

Theorem

There is an injective homomorphism of Hopf algebras
$T\left\langle u_{1}, \ldots, u_{m}\right\rangle /\left(u_{i}^{2}=0, u_{i} u_{j}+u_{j} u_{i}=0\right.$ for $\left.\{i, j\} \in \mathcal{K}\right) \hookrightarrow H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$ which is an isomorphism if and only if \mathcal{K} is flag.

Now consider the case of discrete G_{i} (e.g., $G_{i}=\mathbb{Z}_{2}$). The homotopy fibration

$$
(E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}} \longrightarrow(B \boldsymbol{G})^{\mathcal{K}} \longrightarrow \prod_{k=1}^{m} B G_{k}
$$

gives rise to a short exact sequence of groups

$$
1 \longrightarrow \pi_{1}\left((E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}\right) \longrightarrow \boldsymbol{G}^{\mathcal{K}} \longrightarrow \prod_{k=1}^{m} G_{k} \longrightarrow 1
$$

so

$$
\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right)=\pi_{1}\left((E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}\right)
$$

In the case of right-angled Artin or Coxeter groups (or when each G_{i} is abelian), the group above is the commutator subgroup $\left(G^{\mathcal{K}}\right)^{\prime}$.

Theorem (Grbić-P-Theriault-Wu, 2012)

Assume that \mathcal{K} is flag. The commutator subalgebra $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)$ is generated by $\sum_{I \subset[m]} \operatorname{dim} \widetilde{H}^{0}\left(\mathcal{K}_{l}\right)$ iterated commutators of the form

$$
\left[u_{j}, u_{i}\right], \quad\left[u_{k_{1}},\left[u_{j}, u_{i}\right]\right], \quad \cdots, \quad\left[u_{k_{1}},\left[u_{k_{2}}, \cdots\left[u_{k_{m-2}},\left[u_{j}, u_{i}\right]\right] \cdots\right]\right]
$$

where $k_{1}<k_{2}<\cdots<k_{p}<j>i, k_{s} \neq i$ for any s, and i is the smallest vertex in a connected component not containing j of the subcomplex $\mathcal{K}_{\left\{k_{1}, \ldots, k_{p}, j, i\right\}}$. Furthermore, this multiplicative generating set is minimal, that is, the commutators above form a basis in the submodule of indecomposables in $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)$.

Theorem (P-Veryovkin, 2016)

The commutator subgroup $R C_{\mathcal{K}}^{\prime}=\pi_{1}\left(\mathcal{R}_{\mathcal{K}}\right)=H_{*}\left(\Omega \mathcal{R}_{\mathcal{K}}\right)$ has a minimal generator set consisting of $\sum_{J \subset[m]} \operatorname{rank} H_{0}\left(\mathcal{K}_{J}\right)$ iterated commutators

$$
\left(g_{j}, g_{i}\right), \quad\left(g_{k_{1}},\left(g_{j}, g_{i}\right)\right), \quad \ldots, \quad\left(g_{k_{1}},\left(g_{k_{2}}, \cdots\left(g_{k_{m-2}},\left(g_{j}, g_{i}\right)\right) \cdots\right)\right),
$$

with the same condition on the indices as in the previous theorem.
4. When the commutator subgroup is free?

A graph Γ is called chordal (in other terminology, triangulated) if each of its cycles with $\geqslant 4$ vertices has a chord.

By a result of Fulkerson-Gross, a graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex i, the lesser neighbours of i form a complete subgraph. (A perfect elimination order.)

Theorem (Grbić-P-Theriault-Wu, 2012)

Let \mathcal{K} be a flag complex and \mathbf{k} a field. The following conditions are equivalent:
(1) $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}} ; \mathbf{k}\right)$ is a free associative algebra;
(2) $\mathcal{Z}_{\mathcal{K}}$ has homotopy type of a wedge of spheres;
(3) \mathcal{K}^{1} is a chordal graph.

Theorem (P-Veryovkin, 2016)

Let \mathcal{K} be a flag complex. The following conditions are equivalent:
(1) $\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right)$ is a free group;
(2) $(E G, G)^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
(3) \mathcal{K}^{1} is a chordal graph.

Proof

$(2) \Rightarrow(1)$ Because $\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right)=\pi_{1}\left((E \boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}\right)$.
$(3) \Rightarrow(2)$ Use induction and perfect elimination order.
$(1) \Rightarrow(3)$ Assume that \mathcal{K}^{1} is not chordal. Then, for each chordless cycle of length $\geqslant 4$, one can find a subgroup in $\operatorname{Ker}\left(G^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right)$ which is a surface group. Hence, $\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right)$ is not a free group.

Corollary

Let $R A_{\mathcal{K}}$ and $R C_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K}.
(a) The commutator subgroup $R A_{\mathcal{K}}^{\prime}$ is free iff \mathcal{K}^{1} is a chordal graph.
(b) The commutator subgroup $R C_{\mathcal{K}}^{\prime}$ is free iff \mathcal{K}^{1} is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.
The difference between (a) and (b) is that the commutator subgroup $R A_{\mathcal{K}}^{\prime}$ is infinitely generated, unless $R A_{\mathcal{K}}=\mathbb{Z}^{m}$, while the commutator subgroup $R C_{\mathcal{K}}^{\prime}$ is finitely generated.

Example

Let $\mathcal{K}={ }_{1} \bullet \bullet_{2} \bullet_{4}$
Then the commutator subgroup $R C_{\mathcal{K}}^{\prime}$ is free with the following basis:

$$
\begin{gathered}
\left(g_{3}, g_{1}\right),\left(g_{4}, g_{1}\right),\left(g_{4}, g_{2}\right),\left(g_{4}, g_{3}\right), \\
\left(g_{2},\left(g_{4}, g_{1}\right)\right),\left(g_{3},\left(g_{4}, g_{1}\right)\right),\left(g_{1},\left(g_{4}, g_{3}\right)\right),\left(g_{3},\left(g_{4}, g_{2}\right)\right), \\
\left(g_{2},\left(g_{3},\left(g_{4}, g_{1}\right)\right)\right)
\end{gathered}
$$

Example

Let \mathcal{K} be an m-cycle with $m \geqslant 4$ vertices.
Then \mathcal{K}^{1} is not a chordal graph, so the group $R C_{\mathcal{K}}^{\prime}$ is not free. In fact, $\mathcal{R}_{\mathcal{K}}$ is an orientable surface of genus $(m-4) 2^{m-3}+1$, so $R C_{\mathcal{K}}^{\prime} \cong \pi_{1}\left(\mathcal{R}_{\mathcal{K}}\right)$ is a one-relator group.

5. One-relator groups

Theorem (Grbić-Ilyasova-P-Simmons, 2020)
Let \mathcal{K} be a flag complex. The following conditions are equivalent:
(1) $\pi_{1}\left(\mathcal{R}_{\mathcal{K}}\right)=R C_{\mathcal{K}}^{\prime}$ is a one-relator group;
(2) $H_{2}\left(\mathcal{R}_{\mathcal{K}}\right)=\mathbb{Z}$;

- $\mathcal{K}=C_{p}$ or $\mathcal{K}=C_{p} * \Delta^{q}$ for $p \geqslant 4$ and $q \geqslant 0$, where C_{p} is a p-cycle, Δ^{q} is a q-simplex, and $*$ denotes the join of simplicial complexes.

Theorem (Grbić-Hyasova-P-Simmons, 2020)

Let \mathcal{K} be a flag complex. The following conditions are equivalent:
(1) $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)$ is a one-relator algebra;
(e $H_{2-j, 2 j}\left(\mathcal{Z}_{\mathcal{K}}\right)= \begin{cases}\mathbb{Z} & \text { if } j=p \text { for some } p, 4 \leqslant p \leqslant m \\ 0 & \text { otherwise; }\end{cases}$

- $\mathcal{K}=C_{p}$ or $\mathcal{K}=C_{p} * \Delta^{q}$ for $p \geqslant 4$ and $q \geqslant 0$.

References

[1] T. Panov, N. Ray and R. Vogt. Colimits, Stanley-Reiner algebras, and loop spaces, in: "Categorical Decomposition Techniques in Algebraic Topology" (G. Arone et al eds.), Progress in Mathematics, vol. 215, Birkhauser, Basel, 2004, pp. 261-291; arXiv:math.AT/0202081.
[2] J. Grbić, T. Panov, S. Theriault and J. Wu. The homotopy types of moment-angle complexes for flag complexes. Trans. of the Amer. Math. Soc. 368 (2016), no. 9, 6663-6682; arXiv:1211.0873.
[3] T. Panov and Ya. Veryovkin. Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups. Sb. Math. 207 (2016), no. 11, 1582-1600; arXiv:1603.06902.
[4] J. Grbić, M. Ilyasova, T. Panov and G. Simmons. One-relator groups and algebras related to polyhedral products. Preprint (2020); arXiv:2002.11476.

