Higher Whitehead products in moment-angle complexes joint with Semyon Abramyan

Taras Panov

Lomonosov Moscow State University

The 46th Symposium on Transformation Groups Osaka Prefecture University I-site Namba, Osaka, Japan 30 October–1 November 2019

Polyhedral products and moment-angle complexes

 $(X, A) = \{(X_1, A_1), \dots, (X_m, A_m)\}$ a sequence of pairs of pointed cell complexes, $pt \in A_i \subset X_i$.

 $\mathcal K$ a simplicial complex on $[m] = \{1, 2, \dots, m\}, \qquad arnothing \in \mathcal K.$

Given
$$I = \{i_1, \ldots, i_k\} \subset [m]$$
, set
 $(\boldsymbol{X}, \boldsymbol{A})^I = Y_1 \times \cdots \times Y_m$ where $Y_i = \begin{cases} X_i & \text{if } i \in I, \\ A_i & \text{if } i \notin I. \end{cases}$

The \mathcal{K} -polyhedral product of $(\boldsymbol{X}, \boldsymbol{A})$ is

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I} = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} X_i \times \prod_{j \notin I} A_j \right) \subset X_1 \times \cdots \times X_m.$$

Notation: $(X, A)^{\mathcal{K}} = (X, A)^{\mathcal{K}}$ when all $(X_i, A_i) = (X, A)$; $X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}, X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}.$

Taras Panov (MSU)

The moment-angle complex

$$\mathcal{Z}_{\mathcal{K}} = (D^2, S^1)^{\mathcal{K}} = igcup_{I \in \mathcal{K}} \Bigl(\prod_{i \in I} D^2 imes \prod_{j \notin I} S^1 \Bigr)$$

 $\mathcal{Z}_{\mathcal{K}}$ is an (m+n)-dimensional manifold when $|\mathcal{K}|\cong S^{n-1}$.

$$(\mathbb{C}P^{\infty})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{C}P^{\infty})^{I} \subset (\mathbb{C}P^{\infty})^{m} = BT^{m}$$

is sometimes called the Davis-Januszkiewicz space.

Have a homotopy fibration

$$\mathcal{Z}_{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{C}P^{\infty})^m$$

Example

$$S^3 = ext{hofibre}(\mathbb{C}P^\infty \vee \mathbb{C}P^\infty o \mathbb{C}P^\infty imes \mathbb{C}P^\infty)$$

Taras Panov (MSU)

There exists a homotopy fibration

which splits after looping:

$$\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}} \simeq \Omega \mathcal{Z}_{\mathcal{K}} \times T^{m}$$

Warning: this is not an *H*-space splitting!

Proposition

There exists an exact sequence of Hopf algebras (over a base ring **k**)

$$\mathbf{k} \longrightarrow H_*(\Omega \mathcal{Z}_{\mathcal{K}}) \longrightarrow H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}) \xrightarrow{\operatorname{Ab}} \Lambda[u_1, \ldots, u_m] \longrightarrow 0$$

where $\Lambda[u_1, \ldots, u_m]$ denotes the exterior algebra and deg $u_i = 1$.

The face ring (the Stanley-Reisner ring) of \mathcal{K} is given by

$$\mathbf{k}[\mathcal{K}] = \mathbf{k}[v_1, \dots, v_m] / (v_{i_1} \cdots v_{i_k} = 0 \quad \text{if } \{i_1, \dots, i_k\} \notin \mathcal{K})$$

where deg $v_i = 2$.

Theorem (Buchstaber-P)

$$\begin{aligned} H^*((\mathbb{C}P^{\infty})^{\mathcal{K}}) &\cong \mathbf{k}[\mathcal{K}] \\ H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}) &\cong \operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k}) & \mathbf{k} \text{ is a field} \\ H^*(\mathcal{Z}_{\mathcal{K}}) &\cong \operatorname{Tor}_{\mathbf{k}[v_1, \dots, v_m]}(\mathbf{k}[\mathcal{K}], \mathbf{k}) \\ &\cong H(\Lambda[u_1, \dots, u_m] \otimes \mathbf{k}[\mathcal{K}], d), \quad du_i = v_i, dv_i = 0 \\ &\cong \bigoplus_{I \subset [m]} \widetilde{H}^{*-|I|-1}(\mathcal{K}_I) & \mathcal{K}_I = \mathcal{K}|_I \end{aligned}$$

- \bullet identifying the homotopy type of the moment-angle complex $\mathcal{Z}_{\mathcal{K}};$
- describing the multiplication and higher Massey products in the Tor-algebra H^{*}(Z_K) = Tor_{k[v1,...,vm]}(k[K], k) of the face ring k[K];
- \bullet describing the Yoneda algebra ${\rm Ext}_{k[\mathcal{K}]}(k,k)$ in terms of generators and relations;
- describing the structure of the Pontryagin algebra H_{*}(Ω(CP[∞])^K) and its commutator subalgebra H_{*}(ΩZ_K) via iterated and higher Whitehead (Samelson) products;
- identifying the homotopy type of the loop spaces $\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}$ and $\Omega\mathcal{Z}_{\mathcal{K}}$.

The case of a flag complex

A missing face of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but every proper subset of I is a simplex of \mathcal{K} .

 ${\cal K}$ is a flag complex if one of the following equivalent conditions holds:

- each missing face has two vertices;
- \bullet any set of vertices of ${\cal K}$ which are pairwise connected by edges spans a simplex;
- k[K] is a quadratic algebra (a quotient of a tensor algebra by an ideal generated by quadratic monomials).

$$\begin{array}{ccc} \{ \text{flag complexes on } [m] \} & \stackrel{1-1}{\longleftrightarrow} & \{ \text{simple graphs on } [m] \} \\ & \mathcal{K} & \to & \mathcal{K}^1 & (\text{one-skeleton}) \\ & \mathcal{K}(\Gamma) & \leftarrow & \Gamma \\ & \mathcal{K}(\Gamma) \text{ is the clique complex of } \Gamma. \end{array}$$

where

Theorem

For any flag complex \mathcal{K} , there is an isomorphism $H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}) \cong T\langle \lambda_1, \ldots, \lambda_m \rangle / (\lambda_i^2 = 0, \ \lambda_i \lambda_j + \lambda_j \lambda_i = 0 \text{ for } \{i, j\} \in \mathcal{K})$ where $T\langle \lambda_1, \ldots, \lambda_m \rangle$ is the free algebra on m generators of degree 1.

Proof. By Adams, $H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}) \cong \operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k})$. By Fröberg, $\mathbf{k}[\mathcal{K}]$ is Koszul, so $\operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k})$ is its quadratic dual, written above.

Remember the exact sequence of Hopf algebras

$$\mathbf{k} \longrightarrow H_*(\Omega \mathcal{Z}_{\mathcal{K}}) \longrightarrow H_*(\Omega(\mathbb{C}P^\infty)^{\mathcal{K}}) \stackrel{\operatorname{Ab}}{\longrightarrow} \Lambda[u_1, \dots, u_m] \longrightarrow 0$$

Proposition

For any flag complex \mathcal{K} , the Poincaré series of $H_*(\Omega Z_{\mathcal{K}})$ is given by $P(H_*(\Omega Z_{\mathcal{K}}); t) = \frac{1}{(1+t)^{m-n}(1-h_1t+\cdots+(-1)^nh_nt^n)},$

where $h(\mathcal{K}) = (h_0, h_1 \dots, h_n)$ is the h-vector of \mathcal{K} .

The *i*th coordinate map

$$\mu_i\colon (D^2,S^1)\to S^2\cong \mathbb{C}P^1\hookrightarrow (\mathbb{C}P^\infty)^{\vee m}\hookrightarrow (\mathbb{C}P^\infty)^{\mathcal{K}}.$$

Here the second map is the inclusion of the *i*-th summand in the wedge. The third map is induced by the embedding of m disjoint points into \mathcal{K} .

The Whitehead product $[\mu_i, \mu_j]$ of μ_i and μ_j is the homotopy class of

$$S^3\cong\partial D^4\cong\partial(D^2 imes D^2)\cong(D^2 imes S^1)\cup(S^1 imes D^2)\xrightarrow{[\mu_i,\mu_j]}(\mathbb{C}P^\infty)^\mathcal{K}$$

where

$$[\mu_i,\mu_j](x,y) = egin{cases} \mu_i(x) & ext{for } (x,y) \in D^2 imes S^1; \ \mu_j(y) & ext{for } (x,y) \in S^1 imes D^2. \end{cases}$$

Every Whitehead product $[\mu_i, \mu_j]$ becomes trivial after composing with the embedding $(\mathbb{C}P^{\infty})^{\mathcal{K}} \hookrightarrow (\mathbb{C}P^{\infty})^m \simeq \mathcal{K}(\mathbb{Z}^m, 2)$. This implies that $[\mu_i, \mu_j]: S^3 \to (\mathbb{C}P^{\infty})^{\mathcal{K}}$ lifts to the fibre $\mathcal{Z}_{\mathcal{K}}$, as shown next:

We use the same notation $[\mu_i, \mu_j]$ for a lifted map $S^3 \to \mathcal{Z}_{\mathcal{K}}$. Such a lift can be chosen canonically as the inclusion of a subcomplex

$$[\mu_i, \mu_j]$$
: $S^3 \cong (D^2 \times S^1) \cup (S^1 \times D^2) \hookrightarrow \mathcal{Z}_{\mathcal{K}}.$

The Whitehead product $[\mu_i, \mu_j]$ is trivial if and only if the map $[\mu_i, \mu_j]: S^3 \to \mathcal{Z}_{\mathcal{K}}$ can be extended to a map $D^4 \cong D_i^2 \times D_j^2 \hookrightarrow \mathcal{Z}_{\mathcal{K}}$. This is equivalent to the condition that $\Delta(i, j) = \{i, j\}$ is a 1-simplex of \mathcal{K} .

Taras Panov (MSU)

Higher Whitehead products

Higher Whitehead products are defined inductively as follows. Assume that the (n-1)-fold product

$$[\mu_{i_1},\ldots,\widehat{\mu_{i_k}},\ldots,\mu_{i_n}]\colon S^{2(n-1)-1}\to (\mathbb{C}P^\infty)^{\mathcal{K}}$$

is trivial for any k. Then there exists a canonical extension

$$\overline{[\mu_{i_1},\ldots,\widehat{\mu_{i_k}},\ldots,\mu_{i_n}]}\colon D^2_{i_1}\times\cdots\times D^2_{i_{k-1}}\times D^2_{i_{k+1}}\times\cdots\times D^2_{i_n}\hookrightarrow \mathcal{Z}_{\mathcal{K}}\to (\mathbb{C}P^\infty)^{\mathcal{K}}.$$

The *n*-fold product $[\mu_{i_1},\ldots,\mu_{i_n}]$ the homotopy class of the map

$$S^{2n-1} \cong \partial(D_{i_1}^2 \times \cdots \times D_{i_n}^2) \cong \bigcup_{k=1}^n (D_{i_1}^2 \times \cdots \times S_{i_k}^1 \times \cdots \times D_{i_n}^2) \to (\mathbb{C}P^\infty)^{\mathcal{K}}$$

given by

$$\begin{split} & [\mu_{i_1}, \dots, \mu_{i_n}](x_1, \dots, x_n) \\ & = \overline{[\mu_{i_1}, \dots, \widehat{\mu}_{i_k}, \dots, \mu_{i_n}]}(x_1, \dots, \widehat{x}_k, \dots, x_n) \quad \text{if} \ x_k \in S^1_{i_k}. \end{split}$$

Example

 $[\mu_{i_1},\ldots,\mu_{i_p}]$ is defined in $\pi_{2p-1}((\mathbb{C}P^{\infty})^{\mathcal{K}})$ iff $\partial \Delta(i_1,\ldots,i_p) \subset \mathcal{K}$, and $[\mu_{i_1},\ldots,\mu_{i_p}]$ is trivial iff $\Delta(i_1,\ldots,i_p) \subset \mathcal{K}$.

We consider general iterated higher Whitehead products. For example,

$$\mu_1, \mu_2, [\mu_3, \mu_4, \mu_5], [\mu_6, \mu_{13}, [\mu_7, \mu_8, \mu_9], \mu_{10}], [\mu_{11}, \mu_{12}]$$

Nested products have the form

$$w = \left[\dots \left[[\mu_{i_{11}}, \dots, \mu_{i_{1p_1}}], \mu_{i_{21}}, \dots, \mu_{i_{2p_2}} \right] \dots, \mu_{i_{np_n}} \right] \colon S^{d(w)} \to (\mathbb{C}P^{\infty})^{\mathcal{K}}$$

Any iterated higher Whitehead product lifts to a map $S^{d(w)} \to \mathcal{Z}_{\mathcal{K}}$. We say that a simplicial complex \mathcal{K} realises a higher iterated Whitehead product w if w is a nontrivial element of $\pi_*(\mathcal{Z}_{\mathcal{K}})$.

For example, the complex $\partial \Delta(i_1, \ldots, i_p)$ realises the single (non-iterated) higher Whitehead product $[\mu_{i_1}, \ldots, \mu_{i_p}]$.

Have adjoints of the coordinate maps

$$\overline{\mu}_i\colon S^1\to \Omega(\mathbb{C}P^\infty)^{\mathcal{K}}$$

and Samelson products

$$[\overline{\mu}_i,\overline{\mu}_j]\colon S^2 o \Omega(\mathbb{C}P^\infty)^\mathcal{K}.$$

Theorem

For any simplicial complex \mathcal{K} , there is an injective homomorphism

$$T\langle \lambda_1, \dots, \lambda_m \rangle / (\lambda_i^2 = 0, \ \lambda_i \lambda_j + \lambda_j \lambda_i = 0 \text{ for } \{i, j\} \in \mathcal{K}) \hookrightarrow H_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}}))$$

which becomes an isomorphism when $\mathcal K$ is a flag complex.

Here $\lambda_i \in H_1(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$ is the Hurewicz image of $\overline{\mu}_i \in \pi_1(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$, and the graded commutator $\lambda_i\lambda_j + \lambda_j\lambda_i$ is the Hurewicz image of the Samelson product $[\overline{\mu}_i, \overline{\mu}_j] \in \pi_2(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$. When \mathcal{K} is not a flag complex, higher Whitehead (Samelson) products appear in $\pi_*((\mathbb{C}P^{\infty})^{\mathcal{K}})$ (resp. in $\pi_*(\Omega(\mathbb{C}P^{\infty})^{\mathcal{K}})$ and lift to $\pi_*(\mathcal{Z}_{\mathcal{K}})$ (resp. to $\pi_*(\Omega\mathcal{Z}_{\mathcal{K}})$).

Lifts $S^p \to \mathcal{Z}_{\mathcal{K}}$ of higher iterated Whitehead products of the μ_i provide an important family of spherical classes in $H_*(\mathcal{Z}_{\mathcal{K}})$. We may ask the following question:

Question

Assume that $\mathcal{Z}_{\mathcal{K}}$ is homotopy equivalent to a wedge of spheres. Is it true that all wedge summands are represented by lifts $S^{p} \to \mathcal{Z}_{\mathcal{K}}$ of higher iterated Whitehead products of the canonical maps $\mu_{i} \colon S^{2} \to (\mathbb{C}P^{\infty})^{\mathcal{K}})$?

This is the case for many important classes of simplicial complexes: flag, shifted, shellable, totally fillable. However, in general the answer in negative. A counterexample was found by S. Abramyan in 2018.

Substitution of simplicial complexes

Let \mathcal{K} be a simplicial complex on the set [m], and let $\mathcal{K}_1, \ldots, \mathcal{K}_m$ be a set of m simplicial complexes. We refer to the simplicial complex

$$\mathcal{K}(\mathcal{K}_1,\ldots,\mathcal{K}_m) = \{I_{j_1} \sqcup \cdots \sqcup I_{j_k} \mid I_{j_l} \in \mathcal{K}_{j_l}, \ l = 1,\ldots,k \text{ and } \{j_1,\ldots,j_k\} \in \mathcal{K}\}$$

as the substitution of $\mathcal{K}_1, \ldots, \mathcal{K}_m$ into \mathcal{K} .

Substitution complex $\partial \Delta(\partial \Delta(1,2,3),4,5)$

Next we describe inductively the canonical simplicial complex $\partial \Delta_w$ associated with a general iterated higher Whitehead product w.

Start with the boundary of simplex $\partial \Delta(i_1, \ldots, i_m)$, corresponding to a single higher Whitehead product $[\mu_{i_1}, \ldots, \mu_{i_m}]$. Now write a general iterated higher Whitehead product recursively as

$$\mathbf{w} = [\mathbf{w}_1, \ldots, \mathbf{w}_q, \mu_{i_1}, \ldots, \mu_{i_p}] \in \pi_*(\mathcal{Z}_{\mathcal{K}}),$$

where w_1, \ldots, w_q are nontrivial general iterated higher Whitehead products, $q \ge 0$.

Assign to w the substitution complex

$$\partial \Delta_{w} \stackrel{\text{def}}{=} \partial \Delta (\partial \Delta_{w_{1}}, \ldots, \partial \Delta_{w_{q}}, i_{1}, \ldots, i_{p}).$$

Proposition

The complex $\partial \Delta_w$ is homotopy equivalent to a wedge of spheres.

Taras Panov (MSU)

Recall that a simplicial complex \mathcal{K} realises a higher iterated Whitehead product w if w is a nontrivial element of $\pi_*(\mathcal{Z}_{\mathcal{K}})$.

For example, the complex $\mathcal{K} = \partial \Delta(i_1, \ldots, i_p)$ realises the single (non-iterated) higher Whitehead product $[\mu_{i_1}, \ldots, \mu_{i_p}] \in \pi_{2p+1}(\mathcal{Z}_{\mathcal{K}}) = \pi_{2p+1}(S^{2p+1}).$

Theorem (Abramyan-P)

Let w_1, \ldots, w_q be nontrivial iterated higher Whitehead products. The substitution complex $\partial \Delta_w$ realises the iterated higher Whitehead product

$$w = [w_1, \ldots, w_q, \mu_{i_1}, \ldots, \mu_{i_p}].$$

Theorem (Abramyan-P)

Let $w_j = [\mu_{j_1}, \ldots, \mu_{j_{p_j}}]$, $j = 1, \ldots, q$, be nontrivial single higher Whitehead products. Consider an iterated higher Whitehead product

$$w = [w_1, \ldots, w_q, \mu_{i_1}, \ldots, \mu_{i_p}].$$

Then the product w is

(a) defined in
$$\pi_*(\mathcal{Z}_{\mathcal{K}})$$
 if and only if \mathcal{K} contains
 $\partial \Delta_w = \partial \Delta(\partial \Delta_{w_1}, \dots, \partial \Delta_{w_q}, i_1, \dots, i_p)$ as a subcomplex, where
 $\partial \Delta_{w_j} = \partial \Delta(j_1, \dots, j_{p_j}), j = 1, \dots, q;$

(b) trivial in $\pi_*(\mathcal{Z}_{\mathcal{K}})$ if and only if \mathcal{K} contains a subcomplex

$$\Delta(\partial \Delta_{w_1},\ldots,\partial \Delta_{w_q},i_1,\ldots,i_p)=\partial \Delta_{w_1}*\cdots*\partial \Delta_{w_q}*\Delta(i_1,\ldots,i_p).$$

Note that assertion (a) implies that $\partial \Delta_w$ is the smallest simplicial complex realising the Whitehead product w.

Taras Panov (MSU)

Higher Whitehead products

Example

Take $w = [[\mu_1, \mu_2, \mu_3], \mu_4, \mu_5]$. For the existence of w it is necessary that the brackets $[[\mu_1, \mu_2, \mu_3], \mu_4]$, $[[\mu_1, \mu_2, \mu_3], \mu_5]$ and $[\mu_4, \mu_5]$ vanish. This implies that \mathcal{K} contains subcomplexes $\partial \Delta(1, 2, 3) * \Delta(4)$, $\partial \Delta(1, 2, 3) * \Delta(5)$ and $\Delta(4, 5)$. Hence, \mathcal{K} contains the complex $\partial \Delta(\partial \Delta(1, 2, 3), 4, 5)$ shown right.

Therefore, the latter is the smallest complex realising the Whitehead bracket $w = [[\mu_1, \mu_2, \mu_3], \mu_4, \mu_5].$

For example, S^7 corresponds to $w = \left[\left[[\mu_3, \mu_4, \mu_5], \mu_1\right], \mu_2\right]$, and S^8 corresponds to $w = \left[[\mu_1, \mu_2, \mu_3], \mu_4, \mu_5\right]$.

- Taras Panov and Nigel Ray. Categorical aspects of toric topology. In "Toric Topology" (M. Harada et al, eds.). Contemp. Math., vol .460, AMS, Providence, RI, 2008, pp. 293–322
- [2] Victor Buchstaber and Taras Panov. *Toric Topology.* Mathematical Surveys and Monographs, vol. 204, Amer. Math. Soc., Providence, RI, 2015.
- [3] Jelena Grbic, Taras Panov, Stephen Theriault and Jie Wu. The homotopy types of moment-angle complexes for flag complexes. Trans. of the Amer. Math. Soc. 368 (2016), no. 9, 6663-6682.
- [4] Semyon Abramyan and Taras Panov. Higher Whitehead products in moment-angle complexes and substitution of simplicial complexes. Proceedings Steklov Inst. Math. 305 (2019); arXiv: 1901.07918.