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Polytopes and moment-angle manifolds

A convex polytope in R” is a bounded intersection of m halfspaces:
P = {x eR": (aj,x)+ b >0 fori= 1,...,m},

where a; € R" and b; € R.

Assume that F; = PN {x: (aj,x) + b; = 0} is a facet for each /.
F ={F,...,Fn} the set of facets of P.

Define an affine map

iPZRn%Rm, ip(x):((al,x>-|—b1,...,<am,x)+bm).

Then ip is injective, and ip(P) C R™ is the intersection of an
n-dimensional plane with RY = {y = (y1,...,¥m): yi > 0}.
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Define the space Zp from the diagram

Zp I—Z> cm (21,...,Zm)
| | |
p —* Ry (|z[2, ..., |zm[?)

Explicitly, Zp = p~1(ip(P)). It has a T™-action with the quotient
Zp/T™ = P,

P is simple if there are n = dim P facets meeting at each vertex. J

Proposition

If P is a simple polytope, then Zp is a smooth (m + n)-dim manifold.

Write ip(R™) by (m — n) linear equations in (y1,...,¥m) € R™. Replacing
each yy by |zx|? we obtain a presentation of Zp by Hermitian quadrics. [
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Zp is the moment-angle manifold (corresponding to P). |

Similarly, considering

Rp —— R™ (u1y...,um)
| | |
p —, Ro (,..., u2)

we obtain a real moment-angle manifold Rp.

| A\

Example

P={(x1,x) €R*: x>0, x 20, —y1x1 —y2x2 +1 > 0}, 71,72 > 0
(a 2-simplex). Then

Zp ={(z1, 22, 23) € C3: y1|z1|? + 72|z|* + |z3]> = 1} (a 5-sphere),
Rp = {(u1, tp, u3) € R3: y|u1]? + y2|ua|? + |us|® = 1} (a 2-sphere).
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Right-angled polytopes and hyperbolic manifolds

Let P be a polytope in n-dimensional Lobachevsky space IL." with right
angles between adjacent facets (a right-angled n-polytope).

Denote by G(P) the group generated by reflections in the facets of P.
It is a right-angled Coxeter group given by the presentation

G(P)= (g1, &m | & =1, gigj = gi&i if FiNF; # @),

where g; denotes the reflection in the facet F;.

The group G(P) acts on " discretely with finite isotropy subgroups and
with fundamental domain P.
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Lemma (A. Vesnin, 1987)

Consider an epimorphism p: G(P) — ZX, k > n. The subgroup

Ker ¢ C G(P) does not contain elements of finite order if and only if the
images of the reflections in any n facets of P that have a common vertex
are linearly independent in 7.

In this case the group Ker o acts freely on L.".

The quotient N = L"/Ker ¢ is a hyperbolic n-manifold. It is composed of
|ZX| = 2k copies of P and has a Riemannian metric of constant negative
curvature. Furthermore, the manifold N is aspherical (the Eilenberg-Mac
Lane space K(Ker p, 1)), as its universal cover " is contractible.
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Which combinatorial n-polytopes have right-angled realisations in IL."7?

In dim 3, there is a nice criterion going back to Pogorelov's work of 1967:
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Theorem (Pogorelov, Andreev)

A combinatorial 3-polytope P # A3 can be realised as a right-angled
polytope in I3 if and only if it is simple, and does not have 3- and 4-belts
of facets. Furthermore, such a realisation is unique up to isometry.

We refer to the class of combinatorial 3-polytope satisfying the conditions
above as a Pogorelov class P.

A Pogorelov polytope does not have triangular or quadrangular facets.
Every fullerene (a simple 3-polytope with only pentagonal and hexagonal
facets) is a Pogorelov polytope.

The conditions specifying Pogorelov polytopes also feature as the no-/A
and no-[] condition in Gromov's theory of hyperbolic groups.

Classification of right-angled polytopes in IL* is wide open.
There are no right-angled polytopes in L” for n > 5, [Nikulin, Vinberg].

Taras Panov (MSU) Hyperbolic manifolds and torus actions Kiev 26 Sep 2019 8/23



Given a right-angled polytope P, how to find an epimorphism
¢: G(P) — Z5 with Ker ¢ acting freely on L"?

One can consider the abelianisation: G(P) 2b, 75, with Kerab = G'(P),
the commutator subgroup.

The corresponding n-manifold ./ G’(P) is the real moment-angle manifold
R p, described as an intersection of quadrics in the beginning of this talk.

If P is a right-angled polytope in IL", then the real moment-angle manifold
Rp admits a hyperbolic structure as IL"/G'(P), where G'(P) is the
commutator subgroup of the corresponding right-angled Coxeter group.
The manifold Rp is composed of 2™ copies of P.
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A more econimical way to obtain a hyperbolic manifold is to consider
¢: G(P) — Z35. Such an epimorphism factors as G(P) _ab, 7y A 7,
where A is a linear map.

The subgroup Ker ¢ acts freely on L” if and only the A-images of any n
facets of P that meet at a vertex form a basis of Z7.
Such A is called a Z,-characteristic function.

Proposition

Any simple 3-polytope admits a characteristic function.

Given a 4-colouring of the facets of P, we assign to a facet of ith colour
the ith basis vector e; € Z3 for i = 1,2, 3 and the vector e; + es + e3 for
i = 4. The resulting map A: ZJ — 73 satisfies the required condition, as
any three of the four vectors ey, €5, €3, €1 + e> + e3 form a basis of Z3. [
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Definition (A. Vesnin, 1987)

N(P,A) =13/ Ker ¢ a hyperbolic 3-manifold of Lébell type.

It is composed of |Z3| = 8 copies of a right-angled 3-polytope P € P glued
along their facets;

the gluing is prescribed by the characteristic function A: ZJ — 7Z3.

In particular, one obtains a hyperbolic 3-manifold N(P, x) from any regular
4-colouring x: F — {1,2,3,4} of a right-angled 3-polytope P.

4

Lobell (1931) was first to consider hyperbolic 3-manifolds coming from
4-colourings of a family of right-angled polytopes starting from the
dodecahedron. )
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Example: Lobell polytopes Qx (“barrel” fullerenes)

For k > 5, let Qx be a simple 3-polytope with two “top” and “bottom”
k-gonal facets and 2k pentagonal facets forming two k-belts around the
top and bottom, so that Qi has 2k + 2 facets in total.

Note that Qs is a combinatorial dodecahedron, while Qs is a fullerene.

It is easy to see that Qx € P, so it admits a right-angled realisation in IL3. J
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Consider hyperbolic 3-manifolds N(Qx, x) corresponding to 4-colourings x
of Qx. For example, a dodecahedron Qs has a unique 4-colouring up to
equivalence, while Qg has four non-equivalent regular 4-colourings
(4-colourings are equivalent if they differ by a permutation of colours).

Conjecture (Vesnin, 1991)

Hyperbolic 3-manifolds N(Qx, x1) and N(Qx, x2) are diffeomorphic
(isometric) if and only if the 4-colourings x1 and x» are equivalent.

By 2009 the conjecture was verified for all k except 6,8 using deep results
on arithmetic groups (Margulis commensurator theorem).
However, it remained open for Qg and Qs.

Taras Panov (MSU) Hyperbolic manifolds and torus actions Kiev 26 Sep 2019 13 /23



Pairs (P, A) and (P’, A") are equivalent if P and P’ are combinatorially
equivalent, and A, A": ZT' — Z3 differ by an automorphism of ZJ.

Theorem (Buchstaber—Erokhovets—Masuda—P—Park)

Let N = N(P,A) and N' = N(P’, A") be two hyperbolic 3-manifolds of
Lébell type corresponding to right-angled 3-polytopes P and P'. Then the
following conditions are equivalent:

(a) there is a cohomology ring isomorphism
©: H*(N; Zy) =, H*(N'; Z);
(b) there is a diffeomorphism N = N’;
(c) there is an equivalence of Zy-characteristic pairs (P, A) ~ (P', A').

The difficult implication is (a)=-(c). Its proof builds upon the wealth of
cohomological techniques of toric topology.
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Specifying to Zj-characteristic functions A coming from colourings x we
obtain:

Theorem (Buchstaber—P)

Hyperbolic 3-manifolds N(P, x1) and N(P’, x2) corresponding to
right-angled polytopes P and P’ are diffeomorphic (isometric) if and only if
the 4-colourings x1 and x» are equivalent.

v

In particular, Vesnin’s conjecture holds for all Lébell polytopes Q. )
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Cohomology of moment-angle manifolds

The face ring (the Stanley—Reisner ring) of a simple polytope P
ZIP] :=Z]vi,...,vm]/(viy -+ vi, =0 for Fy N---NFix = @)

where deg v; = 2.

Theorem

There are ring isomorphisms

H*(ZP) = TOIZ[vl,A..,vm](Z[PLZ)

fi’H(/\[Ul,...,Um]@)Z[P],d) du,-:v,-,dv,-:0
= @ ) Pi=UF
1c{1,...,m} i€l
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(Quasi)toric manifolds and small covers

P a simple n-polytope, F = {Fi,..., Fy} the set of facets.

A characteristic function is map A: F — Z" such that A(Fy),..., A(F;,) is
a basis of Z" whenever Fj ..., F; intersect in a vertex.

A characteristic function defines a linear map A: Z7 = Z™ — 7" and a
homomorphism of tori A: T™ — T".

Proposition

The subgroup Ker A = T™~" acts freely on Zp.

M(P,A) = Zp/Ker A is a quasitoric manifold.
It is a smooth 2n-dimensional manifold with an action of the n-torus
T™/Ker A= T" and the quotient P.
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By considering Zs-characteristic functions A: Z — 775, we obtain small
covers of P as the quotients Rp/ Ker A.

A small cover N(P, A) is a smooth n-dimensional manifold with an action
of Z5 and the quotient P.

Proposition

In dimension 3, a real moment-angle manifold Rp and a small cover
N(P, A) admit a hyperbolic structure if and only if P is a Pogorelov
polytope.

Proof.

P is a Pogorelov polytope < dual K has no A and [

If P is a Pogorelov polytope, then Rp and N(P, A) are hyperbolic.
If IC has a A\, then R =2 S? retracts off Rp, so Rp cannot be hyperbolic
(as it has m # 0).

If K has a O, then Rg = T? retracts off Rp, which is impossible for a
hyperbolic manifold. Ol
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Theorem (Danilov—Jurkiewicz, Davis—Januszkiewicz)

Let M = M(P, A) be a quasitoric manifold over a simple n-polytope P.
The cohomology ring H*(M; Z) is generated by the 2-dimensional classes
[vi] dual to the characteristic submanifolds M;, i =1,...,m, and is given
by

H*(M;Z) =2 Z|w, . ..,vm]/Z, degv; =2,

where T is the ideal generated by elements of two kinds:
(@) viy---vj, where FyN---NF, = inP;

m

(b) > (A(F;), x)v; for any x € Z".
i=1

The Zj-cohomology ring H*(N; Z;) of a small cover N = N(P, A) has the
same description, with generators v; of degree 1.
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Theorem (Buchstaber-Erokhovets-Masuda-P-Park)
Let M = M(P,A) and M' = M(P', A") be quasitoric 6-manifolds, where P
is a Pogorelov 3-polytope. The following conditions are equivalent:

(a) There is a ring isomorphism ¢: H*(M;Z) = H*(M"; Z);

(b) There is a diffeomorphism M = M';

(c) There is an equivalence of characteristic pairs (P, A) ~ (P', A").
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|dea of proof (for both theorems).

We need to prove that a ring iso ¢: H*(N;Z) = H*(N’; Z) implies an
equivalence (P, A) ~ (P, A').
An iso ¢: H*(N;Z3) = H*(N’; Z3) implies an iso
w: H*(M; Zy) = H*(M'; Z3) (as every Zy-characteristic function of a
3-polytope lifts to a Z-characteristic function!)
An iso @: H*(M: Zs) = Za[P]/Tx —> Zo[P'))Tn = H*(M'; Zz) implies
an iso

V1 H*(Zp; L) = Torg, v, ... vml/ 71 (Z2[P)/ s Z2)

= Torz, [vs,...vml/ Ty (Z2lP')) Tnr, Z2) = H*(Zpr; Z)

Pogorelov’s conditions imply that i) maps the set of canonical generators
{[uivj] € H3(Z2p): F; N F; = @} bijectively to the corresponding set for
ZP/.

This implies that ¢ maps the set {[v;] € H?>(M)} bijectively to the
corresponding set for M’, giving an equivalence (P, A) ~ (P’, A’).

O
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Cohomological rigidity

Problem
Let M = M(P,A) and M" = M(P', A") be quasitoric manifolds with
isomorphic integer cohomology rings. Are they homeomorphic?

v

Our result gives a positive answer in the case of quasitoric 6-manifolds over
Pogorelov polytopes.

4

Proposition

6-dimensional quasitoric manifolds M and M’ are diffeomorphic if there is
an isomorphism @: H*(M;Z) — H*(M’;Z) preserving the first
Pontryagin class, i.e. o(p1(M)) = p1(M’).

We have p1(M) = vZ +--- + v2 € H*(M). However, we were not able to
establish the invariance of p;(M) directly...
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