Higher Whitehead products in moment-angle complexes joint with Semyon Abramyan

Taras Panov
Lomonosov Moscow State University

Conference "Algebra and Geometry"

$$
\text { Jaroslavl, 30-31 July } 2019
$$

Polyhedral products and moment-angle complexes

$(\boldsymbol{X}, \boldsymbol{A})=\left\{\left(X_{1}, A_{1}\right), \ldots,\left(X_{m}, A_{m}\right)\right\}$ a sequence of pairs of pointed cell complexes, $p t \in A_{i} \subset X_{i}$.
\mathcal{K} a simplicial complex on $[m]=\{1,2, \ldots, m\}, \quad \varnothing \in \mathcal{K}$.
Given $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[m]$, set

$$
(\boldsymbol{X}, \boldsymbol{A})^{\prime}=Y_{1} \times \cdots \times Y_{m} \quad \text { where } Y_{i}= \begin{cases}X_{i} & \text { if } i \in I, \\ A_{i} & \text { if } i \notin I .\end{cases}
$$

The \mathcal{K}-polyhedral product of $(\boldsymbol{X}, \boldsymbol{A})$ is

$$
(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}(\boldsymbol{X}, \boldsymbol{A})^{\prime}=\bigcup_{I \in \mathcal{K}}\left(\prod_{i \in I} x_{i} \times \prod_{j \notin I} A_{j}\right) \subset X_{1} \times \cdots \times X_{m} .
$$

Notation: $(X, A)^{\mathcal{K}}=(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}}$ when all $\left(X_{i}, A_{i}\right)=(X, A)$;
$\boldsymbol{X}^{\mathcal{K}}=(\boldsymbol{X}, p t)^{\mathcal{K}}, X^{\mathcal{K}}=(X, p t)^{\mathcal{K}}$.

The moment-angle complex

$$
\mathcal{Z}_{\mathcal{K}}=\left(D^{2}, S^{1}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(\prod_{i \in I} D^{2} \times \prod_{j \notin I} S^{1}\right)
$$

$\mathcal{Z}_{\mathcal{K}}$ is an $(m+n)$-dimensional manifold when $|\mathcal{K}| \cong S^{n-1}$.

$$
\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(\mathbb{C} P^{\infty}\right)^{\prime} \subset\left(\mathbb{C} P^{\infty}\right)^{m}=B T^{m}
$$

is sometimes called the Davis-Januszkiewicz space.

Have a homotopy fibration

$$
\mathcal{Z}_{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{m}
$$

Example

$\mathcal{K}=\bullet \bullet \quad \mathcal{Z}_{\mathcal{K}}=\left(D^{2} \times S^{1}\right) \cup\left(S^{1} \times D^{2}\right) \cong S^{3}$,

$$
S^{3}=\operatorname{hofibre}\left(\mathbb{C} P^{\infty} \vee \mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)
$$

There exists a homotopy fibration

which splits after looping:

$$
\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \simeq \Omega \mathcal{Z}_{\mathcal{K}} \times T^{m}
$$

Warning: this is not an H-space splitting!

Proposition

There exists an exact sequence of Hopf algebras (over a base ring \mathbf{k})

$$
\mathbf{k} \longrightarrow H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right) \longrightarrow H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right) \xrightarrow{\mathrm{Ab}} \Lambda\left[u_{1}, \ldots, u_{m}\right] \longrightarrow 0
$$

where $\Lambda\left[u_{1}, \ldots, u_{m}\right]$ denotes the exterior algebra and $\operatorname{deg} u_{i}=1$.

The face ring (the Stanley-Reisner ring) of \mathcal{K} is given by

$$
\mathbf{k}[\mathcal{K}]=\mathbf{k}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i_{1}} \cdots v_{i_{k}}=0 \quad \text { if }\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}\right)
$$

where $\operatorname{deg} v_{i}=2$.

Theorem (Buchstaber-P)

$$
\begin{array}{rlr}
H^{*}\left(\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right) & \cong \mathbf{k}[\mathcal{K}] & \\
H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right) & \cong \operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k}) & \mathbf{k} \text { is a field } \\
H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) & \cong \operatorname{Tor}_{\mathbf{k}\left[v_{1}, \ldots, v_{m}\right]}(\mathbf{k}[\mathcal{K}], \mathbf{k}) & \\
& \cong H\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbf{k}[\mathcal{K}], d\right), & d u_{i}=v_{i}, d v_{i}=0 \\
& \cong \bigoplus_{I \subset[m]} \widetilde{H}^{*-|I|-1}\left(\mathcal{K}_{l}\right) & \mathcal{K}_{I}=\left.\mathcal{K}\right|_{I}
\end{array}
$$

Problems

- identifying the homotopy type of the moment-angle complex $\mathcal{Z}_{\mathcal{K}}$;
- describing the multiplication and higher Massey products in the Tor-algebra $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)=\operatorname{Tor}_{\mathbf{k}\left[v_{1}, \ldots, v_{m}\right]}(\mathbf{k}[\mathcal{K}], \mathbf{k})$ of the face ring $\mathbf{k}[\mathcal{K}] ;$
- describing the Yoneda algebra $\operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k})$ in terms of generators and relations;
- describing the structure of the Pontryagin algebra $H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$ and its commutator subalgebra $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)$ via iterated and higher Whitehead (Samelson) products;
- identifying the homotopy type of the loop spaces $\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}$ and $\Omega \mathcal{Z}_{\mathcal{K}}$.

The case of a flag complex

A missing face of \mathcal{K} is a subset $I \subset[m]$ such that $I \notin \mathcal{K}$, but every proper subset of I is a simplex of \mathcal{K}.
\mathcal{K} is a flag complex if one of the following equivalent conditions holds:

- each missing face has two vertices;
- any set of vertices of \mathcal{K} which are pairwise connected by edges spans a simplex;
- $\mathbf{k}[\mathcal{K}]$ is a quadratic algebra (a quotient of a tensor algebra by an ideal generated by quadratic monomials).
$\{$ flag complexes on $[m]\} \stackrel{1-1}{\longleftrightarrow}$ \{simple graphs on $[m]\}$

\mathcal{K}	\rightarrow	\mathcal{K}^{1}	(one-skeleton)
$\mathcal{K}(\Gamma)$	\leftarrow		Γ

where $\mathcal{K}(\Gamma)$ is the clique complex of Γ.

Theorem

For any flag complex \mathcal{K}, there is an isomorphism
$\left.H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)\right) \cong T\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle /\left(\lambda_{i}^{2}=0, \lambda_{i} \lambda_{j}+\lambda_{j} \lambda_{i}=0\right.$ for $\left.\{i, j\} \in \mathcal{K}\right)$ where $T\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle$ is the free algebra on m generators of degree 1 .

Proof. By Adams, $H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right) \cong \operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k})$. By Fröberg, $\mathbf{k}[\mathcal{K}]$ is Koszul, so $\operatorname{Ext}_{\mathbf{k}[\mathcal{K}]}(\mathbf{k}, \mathbf{k})$ is its quadratic dual, written above.

Remember the exact sequence of Hopf algebras

$$
\mathbf{k} \longrightarrow H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right) \longrightarrow H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right) \xrightarrow{\mathrm{Ab}} \Lambda\left[u_{1}, \ldots, u_{m}\right] \longrightarrow 0
$$

Proposition

For any flag complex \mathcal{K}, the Poincaré series of $H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)$ is given by

$$
P\left(H_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right) ; t\right)=\frac{1}{(1+t)^{m-n}\left(1-h_{1} t+\cdots+(-1)^{n} h_{n} t^{n}\right)},
$$

where $\boldsymbol{h}(\mathcal{K})=\left(h_{0}, h_{1} \ldots, h_{n}\right)$ is the h-vector of \mathcal{K}.

Whitehead products

The i th coordinate map

$$
\mu_{i}:\left(D^{2}, S^{1}\right) \rightarrow S^{2} \cong \mathbb{C} P^{1} \hookrightarrow\left(\mathbb{C} P^{\infty}\right)^{\vee m} \hookrightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

Here the second map is the inclusion of the i-th summand in the wedge. The third map is induced by the embedding of m disjoint points into \mathcal{K}.

The Whitehead product $\left[\mu_{i}, \mu_{j}\right.$] of μ_{i} and μ_{j} is the homotopy class of

$$
S^{3} \cong \partial D^{4} \cong \partial\left(D^{2} \times D^{2}\right) \cong\left(D^{2} \times S^{1}\right) \cup\left(S^{1} \times D^{2}\right) \xrightarrow{\left[\mu_{i}, \mu_{j}\right]}\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

where

$$
\left[\mu_{i}, \mu_{j}\right](x, y)= \begin{cases}\mu_{i}(x) & \text { for }(x, y) \in D^{2} \times S^{1} \\ \mu_{j}(y) & \text { for }(x, y) \in S^{1} \times D^{2}\end{cases}
$$

Every Whitehead product [μ_{i}, μ_{j}] becomes trivial after composing with the embedding $\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \hookrightarrow\left(\mathbb{C} P^{\infty}\right)^{m} \simeq K\left(\mathbb{Z}^{m}, 2\right)$. This implies that $\left[\mu_{i}, \mu_{j}\right]: S^{3} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}$ lifts to the fibre $\mathcal{Z}_{\mathcal{K}}$, as shown next:

$$
\begin{aligned}
& \mathcal{Z}_{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} \longrightarrow\left(\mathbb{C} P^{\infty}\right)^{m} \\
& \stackrel{\ddots}{ } \begin{array}{c}
\\
\\
\\
\\
S^{3}
\end{array}
\end{aligned}
$$

We use the same notation $\left[\mu_{i}, \mu_{j}\right]$ for a lifted map $S^{3} \rightarrow \mathcal{Z}_{\mathcal{K}}$. Such a lift can be chosen canonically as the inclusion of a subcomplex

$$
\left[\mu_{i}, \mu_{j}\right]: S^{3} \cong\left(D^{2} \times S^{1}\right) \cup\left(S^{1} \times D^{2}\right) \hookrightarrow \mathcal{Z}_{\mathcal{K}}
$$

The Whitehead product [μ_{i}, μ_{j}] is trivial if and only if the map $\left[\mu_{i}, \mu_{j}\right]: S^{3} \rightarrow \mathcal{Z}_{\mathcal{K}}$ can be extended to a map $D^{4} \cong D_{i}^{2} \times D_{j}^{2} \hookrightarrow \mathcal{Z}_{\mathcal{K}}$. This is equivalent to the condition that $\Delta(i, j)=\{i, j\}$ is a 1 -simplex of \mathcal{K}.

Higher Whitehead products are defined inductively as follows.
Assume that the $(n-1)$-fold product

$$
\left[\mu_{i_{1}}, \ldots, \widehat{\mu_{i_{k}}}, \ldots, \mu_{i_{n}}\right]: S^{2(n-1)-1} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

is trivial for any k. Then there exists a canonical extension

$$
\overline{\left[\mu_{i_{1}}, \ldots, \widehat{\mu_{i_{k}}}, \ldots, \mu_{i_{n}}\right]}: D_{i_{1}}^{2} \times \cdots \times D_{i_{k-1}}^{2} \times D_{i_{k+1}}^{2} \times \cdots \times D_{i_{n}}^{2} \hookrightarrow \mathcal{Z}_{\mathcal{K}} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}} .
$$

The n-fold product $\left[\mu_{i_{1}}, \ldots, \mu_{i_{n}}\right]$ the homotopy class of the map

$$
S^{2 n-1} \cong \partial\left(D_{i_{1}}^{2} \times \cdots \times D_{i_{n}}^{2}\right) \cong \bigcup_{k=1}^{n}\left(D_{i_{1}}^{2} \times \cdots \times S_{i_{k}}^{1} \times \cdots \times D_{i_{n}}^{2}\right) \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

given by

$$
\begin{aligned}
& {\left[\mu_{i_{1}}, \ldots, \mu_{i_{n}}\right]\left(x_{1}, \ldots, x_{n}\right)} \\
& \quad=\overline{\left[\mu_{i_{1}}, \ldots, \widehat{\mu}_{i_{k}}, \ldots, \mu_{i_{n}}\right]}\left(x_{1}, \ldots, \widehat{x}_{k}, \ldots, x_{n}\right) \quad \text { if } x_{k} \in S_{i_{k}}^{1} .
\end{aligned}
$$

Example

[$\mu_{i_{1}}, \ldots, \mu_{i_{p}}$] is defined in $\pi_{2 p-1}\left(\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$ iff $\partial \Delta\left(i_{1}, \ldots, i_{p}\right) \subset \mathcal{K}$, and $\left[\mu_{i_{1}}, \ldots, \mu_{i_{p}}\right]$ is trivial iff $\Delta\left(i_{1}, \ldots, i_{p}\right) \subset \mathcal{K}$.

We consider general iterated higher Whitehead products. For example,

$$
\left[\mu_{1}, \mu_{2},\left[\mu_{3}, \mu_{4}, \mu_{5}\right],\left[\mu_{6}, \mu_{13},\left[\mu_{7}, \mu_{8}, \mu_{9}\right], \mu_{10}\right],\left[\mu_{11}, \mu_{12}\right]\right] .
$$

Nested products have the form

$$
w=\left[\ldots\left[\left[\mu_{i_{11}}, \ldots, \mu_{i_{1 p_{1}}}\right], \mu_{i_{21}}, \ldots, \mu_{i_{2 p_{2}}}\right] \ldots, \mu_{i_{n p_{n}}}\right]: S^{d(w)} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

Any iterated higher Whitehead product lifts to a map $S^{d(w)} \rightarrow \mathcal{Z}_{\mathcal{K}}$. We say that a simplicial complex \mathcal{K} realises a higher iterated Whitehead product w if w is a nontrivial element of $\pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$.

For example, the complex $\partial \Delta\left(i_{1}, \ldots, i_{p}\right)$ realises the single (non-iterated) higher Whitehead product $\left[\mu_{i_{1}}, \ldots, \mu_{i_{p}}\right]$.

Have adjoints of the coordinate maps

$$
\bar{\mu}_{i}: S^{1} \rightarrow \Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

and Samelson products

$$
\left[\bar{\mu}_{i}, \bar{\mu}_{j}\right]: S^{2} \rightarrow \Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}
$$

Theorem

For any simplicial complex \mathcal{K}, there is an injective homomorphism
$T\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle /\left(\lambda_{i}^{2}=0, \lambda_{i} \lambda_{j}+\lambda_{j} \lambda_{i}=0\right.$ for $\left.\left.\{i, j\} \in \mathcal{K}\right) \hookrightarrow H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)\right)$
which becomes an isomorphism when \mathcal{K} is a flag complex. Here $\lambda_{i} \in H_{1}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$ is the Hurewicz image of $\bar{\mu}_{i} \in \pi_{1}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$, and the graded commutator $\lambda_{i} \lambda_{j}+\lambda_{j} \lambda_{i}$ is the Hurewicz image of the Samelson product $\left[\bar{\mu}_{i}, \bar{\mu}_{j}\right] \in \pi_{2}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$.

When \mathcal{K} is not a flag complex, higher Whitehead (Samelson) products appear in $\pi_{*}\left(\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)\left(\right.$ resp. in $\pi_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$ and lift to $\pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ (resp. to $\left.\pi_{*}\left(\Omega \mathcal{Z}_{\mathcal{K}}\right)\right)$.

Lifts $S^{P} \rightarrow \mathcal{Z}_{\mathcal{K}}$ of higher iterated Whitehead products of the μ_{i} provide an important family of spherical classes in $H_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$. We may ask the following question:

Question

Assume that $\mathcal{Z}_{\mathcal{K}}$ is homotopy equivalent to a wedge of spheres. Is it true that all wedge summands are represented by lifts $S^{p} \rightarrow \mathcal{Z}_{\mathcal{K}}$ of higher iterated Whitehead products of the canonical maps $\left.\mu_{i}: S^{2} \rightarrow\left(\mathbb{C} P^{\infty}\right)^{\mathcal{K}}\right)$?

This is the case for many important classes of simplicial complexes: flag, shifted, shellable, totally fillable. However, in general the answer in negative. A counterexample was found by S. Abramyan in 2018.

Substitution of simplicial complexes

Let \mathcal{K} be a simplicial complex on the set $\left[m\right.$], and let $\mathcal{K}_{1}, \ldots, \mathcal{K}_{m}$ be a set of m simplicial complexes. We refer to the simplicial complex

$$
\begin{aligned}
& \mathcal{K}\left(\mathcal{K}_{1}, \ldots, \mathcal{K}_{m}\right) \\
& \quad=\left\{I_{j_{1}} \sqcup \cdots \sqcup I_{j_{k}} \mid I_{j,} \in \mathcal{K}_{j l}, I=1, \ldots, k \quad \text { and } \quad\left\{j_{1}, \ldots, j_{k}\right\} \in \mathcal{K}\right\}
\end{aligned}
$$

as the substitution of $\mathcal{K}_{1}, \ldots, \mathcal{K}_{m}$ into \mathcal{K}.

Substitution complex $\partial \Delta(\partial \Delta(1,2,3), 4,5)$

Next we describe inductively the canonical simplicial complex $\partial \Delta_{w}$ associated with a general iterated higher Whitehead product w.

Start with the boundary of simplex $\partial \Delta\left(i_{1}, \ldots, i_{m}\right)$, corresponding to a single higher Whitehead product $\left[\mu_{i_{1}}, \ldots, \mu_{i_{m}}\right]$.
Now write a general iterated higher Whitehead product recursively as

$$
w=\left[w_{1}, \ldots, w_{q}, \mu_{i_{1}}, \ldots, \mu_{i_{p}}\right] \in \pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

where w_{1}, \ldots, w_{q} are nontrivial general iterated higher Whitehead products, $q \geq 0$.

Assign to w the substitution complex

$$
\partial \Delta_{w} \stackrel{\text { def }}{=} \partial \Delta\left(\partial \Delta_{w_{1}}, \ldots, \partial \Delta_{w_{q}}, i_{1}, \ldots, i_{p}\right) .
$$

Proposition

The complex $\partial \Delta_{w}$ is homotopy equivalent to a wedge of spheres.

Realisation of higher Whitehead products

Recall that a simplicial complex \mathcal{K} realises a higher iterated Whitehead product w if w is a nontrivial element of $\pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$.

For example, the complex $\mathcal{K}=\partial \Delta\left(i_{1}, \ldots, i_{p}\right)$ realises the single (non-iterated) higher Whitehead product $\left[\mu_{i_{1}}, \ldots, \mu_{i_{p}}\right] \in \pi_{2 p+1}\left(\mathcal{Z}_{\mathcal{K}}\right)=\pi_{2 p+1}\left(S^{2 p+1}\right)$.

Theorem (Abramyan-P)

Let w_{1}, \ldots, w_{q} be nontrivial iterated higher Whitehead products. The substitution complex $\partial \Delta_{w}$ realises the iterated higher Whitehead product

$$
w=\left[w_{1}, \ldots, w_{q}, \mu_{i_{1}}, \ldots, \mu_{i_{p}}\right] .
$$

For a particular configuration of brackets, a more precise statement holds.

Theorem (Abramyan-P)

Let $w_{j}=\left[\mu_{j_{1}}, \ldots, \mu_{j_{p_{j}}}\right], j=1, \ldots, q$, be nontrivial single higher Whitehead products. Consider an iterated higher Whitehead product

$$
w=\left[w_{1}, \ldots, w_{q}, \mu_{i_{1}}, \ldots, \mu_{i_{p}}\right]
$$

Then the product w is
(a) defined in $\pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ if and only if \mathcal{K} contains $\partial \Delta_{w}=\partial \Delta\left(\partial \Delta_{w_{1}}, \ldots, \partial \Delta_{w_{q}}, i_{1}, \ldots, i_{p}\right)$ as a subcomplex, where $\partial \Delta_{w_{j}}=\partial \Delta\left(j_{1}, \ldots, j_{p_{j}}\right), j=1, \ldots, q ;$
(b) trivial in $\pi_{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ if and only if \mathcal{K} contains a subcomplex

$$
\Delta\left(\partial \Delta_{w_{1}}, \ldots, \partial \Delta_{w_{q}}, i_{1}, \ldots, i_{p}\right)=\partial \Delta_{w_{1}} * \cdots * \partial \Delta_{w_{q}} * \Delta\left(i_{1}, \ldots, i_{p}\right)
$$

Note that assertion (a) implies that $\partial \Delta_{w}$ is the smallest simplicial complex realising the Whitehead product w.

Example

Take $w=\left[\left[\mu_{1}, \mu_{2}, \mu_{3}\right], \mu_{4}, \mu_{5}\right]$.
For the existence of w it is necessary that the brackets $\left[\left[\mu_{1}, \mu_{2}, \mu_{3}\right], \mu_{4}\right],\left[\left[\mu_{1}, \mu_{2}, \mu_{3}\right], \mu_{5}\right]$ and $\left[\mu_{4}, \mu_{5}\right]$ vanish. This implies that \mathcal{K} contains subcomplexes $\partial \Delta(1,2,3) * \Delta(4), \partial \Delta(1,2,3) * \Delta(5)$ and $\Delta(4,5)$. Hence, \mathcal{K} contains the complex $\partial \Delta(\partial \Delta(1,2,3), 4,5)$ shown right.
Therefore, the latter is the smallest complex realising the Whitehead bracket $w=\left[\left[\mu_{1}, \mu_{2}, \mu_{3}\right], \mu_{4}, \mu_{5}\right]$.

For $\mathcal{K}=\partial \Delta(\partial \Delta(1,2,3), 4,5)$, we have $\mathcal{Z}_{\mathcal{K}} \simeq\left(S^{5}\right)^{\vee 4} \vee\left(S^{6}\right)^{\vee 3} \vee S^{7} \vee S^{8}$, and each sphere is a Whitehead product.
For example, S^{7} corresponds to $w=\left[\left[\left[\mu_{3}, \mu_{4}, \mu_{5}\right], \mu_{1}\right], \mu_{2}\right]$, and S^{8} corresponds to $w=\left[\left[\mu_{1}, \mu_{2}, \mu_{3}\right], \mu_{4}, \mu_{5}\right]$.

References

[1] Taras Panov and Nigel Ray. Categorical aspects of toric topology. In "Toric Topology" (M. Harada et al, eds.). Contemp. Math., vol .460, AMS, Providence, RI, 2008, pp. 293-322
[2] Victor Buchstaber and Taras Panov. Toric Topology. Mathematical Surveys and Monographs, vol. 204, Amer. Math. Soc., Providence, RI, 2015.
[3] Jelena Grbic, Taras Panov, Stephen Theriault and Jie Wu. The homotopy types of moment-angle complexes for flag complexes. Trans. of the Amer. Math. Soc. 368 (2016), no. 9, 6663-6682.
[4] Semyon Abramyan and Taras Panov. Higher Whitehead products in moment-angle complexes and substitution of simplicial complexes. Proceedings Steklov Inst. Math. 305 (2019); arXiv: 1901.07918.

