Holomorphic foliations on complex moment-angle manifolds

based on joint works with Hiroaki Ishida, Roman Krutowski, Yuri Ustinovsky and Misha Verbitsky

Taras Panov

Moscow University

FDIS 2019 SJTU, Shanghai, China, 7–11 May 2019

Symplectic reduction and moment-angle manifolds

An *m*-torus T^m acts on \mathbb{C}^m coordinatewise. This is a Hamiltonian torus action with respect to $\omega = i \sum_{k=1}^m dz_k \wedge d\bar{z}_k$, with the moment map

$$\mu\colon \mathbb{C}^m\to \mathbb{R}^m=\mathrm{Lie}(T^m)^*, \qquad (z_1,\ldots,z_m)\mapsto (|z_1|^2,\ldots,|z_m|^2).$$

A Hamiltonian toric manifold M^{2n} is the symplectic quotient $\mathbb{C}^m//K$ by an (m-n)-dimensional subtorus $K \subset T^m$. It has a residual Hamiltonian action of $T^m/K \cong T^n$.

In more detail, the moment map for the K-action on \mathbb{C}^m is the composite

$$\mu_{\mathsf{K}}\colon \mathbb{C}^m \xrightarrow{\mu} \mathbb{R}^m \to \mathfrak{k}^*.$$

Take a regular value $\delta \in \mathfrak{k}^* \cong \mathbb{R}^{m-n}$. Then $M^{2n} = \mu_K^{-1}(\delta)/K$. It has a symplectic form ω' satisfying $p^*\omega' = i^*\omega$, where $p \colon \mu_K^{-1}(\delta) \to M^{2n}$ and $i \colon \mu_K^{-1}(\delta) \hookrightarrow \mathbb{C}^m$.

We refer to
$$\mathcal{Z} := \mu_{\mathcal{K}}^{-1}(\delta)$$
 as a (polytopal) moment-angle manifold.

It can be written as an intersection of (m - n) Hermitian quadrics in \mathbb{C}^m :

$$\mathcal{Z} = \Big\{ (z_1,\ldots,z_m) \in \mathbb{C}^m \colon \sum_{k=1}^m \gamma_{jk} |z_k|^2 = \delta_j, \qquad j=1,\ldots,m-n \Big\}.$$

The quotient $\mathcal{Z}/T^m = M^{2n}/T^n$ is a convex polytope in $\operatorname{Lie}(T^n)^* \subset \mathbb{R}^m$ (the moment polytope) given by

$$P = \Big\{ (y_1, \ldots, y_m) \in \mathbb{R}^m_{\geq} \colon \sum_{k=1}^m \gamma_{jk} y_k = \delta_j, \qquad j = 1, \ldots, m - n \Big\}.$$

Its facet normals $\mathbf{a}_1, \ldots, \mathbf{a}_m$ form the Gale dual configuration to $\gamma_1, \ldots, \gamma_m \in \mathfrak{k}^*$. They satisfy the Delzant condition: $\{\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}\}$ is a lattice basis whenever the facets F_{i_1}, \ldots, F_{i_n} intersect at a vertex.

Now consider an arbitrary (not necessarily rational) polytope

$$P = \{ \mathbf{x} \in \mathbb{R}^n \colon \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \}.$$

Define an affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(\mathbf{x}) = (\langle \mathbf{a}_1, \mathbf{x} \rangle + b_1, \dots, \langle \mathbf{a}_m, \mathbf{x} \rangle + b_m).$$

Then $i_P(P)$ is the intersection of an *n*-plane with $\mathbb{R}^m_{\geq} = \{\mathbf{y} = (y_1, \dots, y_m) : y_i \geq 0\}.$

Define the space \mathcal{Z}_P from the diagram

$$\begin{array}{cccc} \mathcal{Z}_{P} & \stackrel{i_{Z}}{\longrightarrow} & \mathbb{C}^{m} & & (z_{1}, \dots, z_{m}) \\ \downarrow & & \downarrow^{\mu} & & \downarrow \\ P & \stackrel{i_{P}}{\longrightarrow} & \mathbb{R}_{\geq}^{m} & & (|z_{1}|^{2}, \dots, |z_{m}|^{2}) \end{array}$$

 \mathcal{Z}_P has a T^m -action, $\mathcal{Z}_P/T^m = P$, and i_Z is a T^m -equivariant inclusion.

4 / 30

Proposition

If P is a simple polytope (more generally, if the presentation of P by inequalities is generic), then Z_P is a smooth manifold of dimension m + n.

Proof.

Write $i_P(\mathbb{R}^n)$ by m-n linear equations in $(y_1, \ldots, y_m) \in \mathbb{R}^m$. Replace y_k by $|z_k|^2$ to obtain a presentation of \mathcal{Z}_P by quadrics.

 \mathcal{Z}_P : polytopal moment-angle manifold corresponding to P.

When P is a Delzant (in particular, rational) polytope, Z_P is the level set $\mu_K^{-1}(\delta)$ of the moment map for a subtorus $K \subset T^m$ given by

$$K = \operatorname{Ker}(q \colon T^m \to T^n), \quad q \colon \mathbb{R}^m \to \mathbb{R}^n, \quad \mathbf{e}_i \mapsto \mathbf{a}_i.$$

The moment-angle complex (as a polyhedral product)

 \mathcal{K} an abstract simplicial complex on the set $[m] = \{1, 2, ..., m\}$ $I = \{i_1, ..., i_k\} \in \mathcal{K}$ a simplex; always assume $\emptyset \in \mathcal{K}$.

Consider the unit *m*-dimensional polydisc:

$$\mathbb{D}^m = \{(z_1,...,z_m) \in \mathbb{C}^m : |z_i|^2 \leqslant 1 \text{ for } i = 1,...,m\}.$$

The moment-angle complex is

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} \mathbb{D} \times \prod_{i \notin I} \mathbb{S} \right) \subset \mathbb{D}^m,$$

where ${\mathbb S}$ is the boundary of the unit disk ${\mathbb D}.$

 $\mathcal{Z}_{\mathcal{K}}$ has a natural action of the torus T^m . When \mathcal{K} is simplicial subdivision of a sphere (e.g., the boundary of a simplicial polytope), $\mathcal{Z}_{\mathcal{K}}$ is a topological manifold, called the moment-angle manifold.

Taras Panov (Moscow University)

Example

1. Let
$$\mathcal{K} = \bigwedge$$
 (the boundary of a triangle). Then
 $\mathcal{Z}_{\mathcal{K}} = (\mathbb{D} \times \mathbb{D} \times \mathbb{S}) \cup (\mathbb{D} \times \mathbb{S} \times \mathbb{D}) \cup (\mathbb{S} \times \mathbb{D} \times \mathbb{D}) = \partial(\mathbb{D}^{3}) \cong S^{5}.$
2. Let $\mathcal{K} = \bigwedge$ (the boundary of a square). Then $\mathcal{Z}_{\mathcal{K}} \cong S^{3} \times S^{3}.$
3. Let $\mathcal{K} = \bigwedge$ Then $\mathcal{Z}_{\mathcal{K}} \cong (S^{3} \times S^{4}) \# \cdots \# (S^{3} \times S^{4})$ (5 times).
4. Let $\mathcal{K} = \bullet$ (three disjoint points). Then
 $\mathcal{Z}_{\mathcal{K}} = (\mathbb{D} \times \mathbb{S} \times \mathbb{S}) \cup (\mathbb{S} \times \mathbb{D} \times \mathbb{S}) \cup (\mathbb{S} \times \mathbb{S} \times \mathbb{D}) \simeq S^{3} \vee S^{3} \vee S^{3} \vee S^{4} \vee S^{4}$

(not a manifold).

We define an open submanifold $U(\mathcal{K}) \subset \mathbb{C}^m$ in a similar way:

$$U(\mathcal{K}) := igcup_{I \in \mathcal{K}} \Big(\prod_{i \in I} \mathbb{C} imes \prod_{i \notin I} \mathbb{C}^{ imes} \Big), \qquad \mathbb{C}^{ imes} = \mathbb{C} \setminus \{0\}.$$

 $U(\mathcal{K})$ is a toric variety with the corresponding fan given by

$$\Sigma_{\mathcal{K}} = \{ \mathbb{R}_{\geq} \langle \mathbf{e}_i \colon i \in I \rangle \colon I \in \mathcal{K} \},\$$

where \mathbf{e}_i denotes the *i*-th standard basis vector of \mathbb{R}^m .

Theorem

E.g.,
$$\mathcal{K} = \bigwedge^{\simeq}$$
 Then $U(\mathcal{K}) = \mathbb{C}^3 \setminus \{z_1 = z_2 = z_3 = 0\} \xrightarrow{\simeq} S^5 = \mathcal{Z}_{\mathcal{K}}.$

Taras Panov (Moscow University)

8 / 30

General approach: realise the deformation retraction $U(\mathcal{K}) \to \mathcal{Z}_{\mathcal{K}}$ as the orbit quotient map for a holomorphic, free and proper action of a complex-analytic subgroup $H \subset (\mathbb{C}^{\times})^m$, i. e. $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/H$. This will make $\mathcal{Z}_{\mathcal{K}}$ into a compact complex manifold.

Let \mathcal{K} be a sphere triangulation, i.e. $|\mathcal{K}| \cong S^{n-1}$. A realisation $|\mathcal{K}| \subset \mathbb{R}^n$ is starshaped if there is a point $\mathbf{x} \notin |\mathcal{K}|$ such that any ray from \mathbf{x} intersects $|\mathcal{K}|$ in exactly one point.

A convex triangulation \mathcal{K}_P is starshaped, but not vice versa!

 ${\cal K}$ has a starshaped realisation if and only if it is the underlying complex of a complete simplicial fan Σ .

 $\mathbf{a}_1,\ldots,\mathbf{a}_m\in\mathbb{R}^n$ the generators of the 1-dim cones of Σ . Define a map $q\colon\mathbb{R}^m o\mathbb{R}^n,\quad\mathbf{e}_i\mapsto\mathbf{a}_i.$

Set
$$\mathbb{R}^m_{>} = \{(y_1, \dots, y_m) \in \mathbb{R}^m : y_i > 0\}$$
 and define
 $R := \exp(\operatorname{Ker} q) = \{(y_1, \dots, y_m) \in \mathbb{R}^m_{>} : \prod_{i=1}^m y_i^{\langle \mathbf{a}_i, \mathbf{u} \rangle} = 1 \text{ for all } \mathbf{u} \in \mathbb{R}^n\},$

 $R \subset \mathbb{R}^m_>$ acts on $U(\mathcal{K}) \subset \mathbb{C}^m$ by coordinatewise multiplications.

Theorem

Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Then

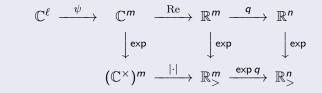
(a) the group $R \cong \mathbb{R}^{m-n}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K})/R$ is a smooth (m + n)-dimensional manifold;

(b) $U(\mathcal{K})/R$ is T^m -equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

Assume m - n is even and set $\ell = \frac{m - n}{2}$.

Choose a linear map $\psi \colon \mathbb{C}^{\ell} \to \mathbb{C}^{m}$ satisfying the two conditions: (a) $\operatorname{Re} \circ \psi \colon \mathbb{C}^{\ell} \to \mathbb{R}^{m}$ is a monomorphism; (b) $q \circ \operatorname{Re} \circ \psi = 0$.



here $|\cdot|$ denotes the map $(z_1, \ldots, z_m) \mapsto (|z_1|, \ldots, |z_m|)$. Now set

$${\mathcal H} = \exp \psi({\mathbb C}^\ell) = ig\{ig(e^{\langle \psi_1, {f w}
angle}, \dots, e^{\langle \psi_m, {f w}
angle} ig) \in ({\mathbb C}^ imes)^m ig\}$$

where $\mathbf{w} = (w_1, \ldots, w_\ell) \in \mathbb{C}^\ell$.

Then $H \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup of $(\mathbb{C}^{\times})^m$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Example (holomorphic tori)

Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have n = 0, m = 2, $\ell = 1$, and $q : \mathbb{R}^2 \to 0$ is a zero map.

Let $\psi \colon \mathbb{C} \to \mathbb{C}^2$ be given by $z \mapsto (z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$H = \{(e^z, e^{\alpha z})\} \subset (\mathbb{C}^{\times})^2.$$

Condition (b) above is void, while (a) is equivalent to $\alpha \notin \mathbb{R}$. Then $\exp \psi \colon H \to (\mathbb{C}^{\times})^2$ is an embedding, and the quotient $(\mathbb{C}^{\times})^2/H$ is a complex torus $T_{\mathbb{C}}^2$ with parameter $\alpha \in \mathbb{C}$:

$$(\mathbb{C}^{\times})^2/H \cong \mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z}) = T^2_{\mathbb{C}}(\alpha).$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that n = 0, $m = 2\ell$), we can obtain any complex torus $T_{\mathbb{C}}^{2\ell}$ as the quotient $(\mathbb{C}^{\times})^{2\ell}/H$.

Theorem (P.-Ustinovsky)

Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Assume that $m - n = 2\ell$. Then

- (a) the holomorphic action of the group $H \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K})/H$ is a compact complex $(m \ell)$ -manifold;
- (b) there is a T^m -equivariant diffeomorphism $U(\mathcal{K})/H \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which T^m acts by holomorphic transformations.

Conversely, assume $\mathcal{Z}_{\mathcal{K}}$ admits a T^m -invariant complex structure. Then the T^m -action extends to a holomorphic action of $(\mathbb{C}^{\times})^m$ on $\mathcal{Z}_{\mathcal{K}}$. Have a complex-analytic subgroup of global stabilisers

$$H = \{g \in (\mathbb{C}^{\times})^m \colon g \cdot x = x \text{ for all } x \in \mathcal{Z}_{\mathcal{K}}\}.$$

 $\mathfrak{h} = \mathrm{Lie}(H)$ is a complex subalgebra of $\mathrm{Lie}(\mathbb{C}^{ imes})^m = \mathbb{C}^m$ and satisfies

- (a) the composite $\mathfrak{h} \hookrightarrow \mathbb{C}^m \xrightarrow{\operatorname{Re}} \mathbb{R}^m$ is injective;
- (b) the quotient map $q \colon \mathbb{R}^m \to \mathbb{R}^m / \operatorname{Re}(\mathfrak{h})$ sends the fan $\Sigma_{\mathcal{K}}$ to a complete fan $q(\Sigma_{\mathcal{K}})$ in $\mathbb{R}^m / \operatorname{Re}(\mathfrak{h})$.

Theorem (Ishida)

Every complex moment-angle manifold $\mathcal{Z}_{\mathcal{K}}$ is T^m -equivariantly biholomorphic to the quotient manifold $U(\mathcal{K})/H$.

Thus, $\mathcal{Z}_{\mathcal{K}}$ admits a complex structure if and only if \mathcal{K} is the underlying complex of a complete simplicial fan (i.e., a star-shaped sphere).

Taras Panov (Moscow University)

Holomorphic foliations

14 / 30

Example (Hopf manifold)

Let Σ be a complete fan in \mathbb{R}^n whose cones are generated by all proper subsets of n + 1 vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n, -\mathbf{e}_1 - \ldots - \mathbf{e}_n$.

Add one 'empty' 1-cone to make m - n even: m = n + 2, $\ell = 1$. Then $q: \mathbb{R}^{n+2} \to \mathbb{R}^n$ is given by the matrix $(\mathbf{0} \ I - \mathbf{1})$, where I is the unit $n \times n$ matrix, and $\mathbf{0}$, $\mathbf{1}$ are the *n*-columns of zeros and units respectively.

The underlying complex $\mathcal{K} = \partial \Delta^n$ with n + 1 vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^1 \times S^{2n+1}$, and $U(\mathcal{K}) = \mathbb{C}^{\times} \times (\mathbb{C}^{n+1} \setminus \{0\})$.

Take $\psi \colon \mathbb{C} \to \mathbb{C}^{n+2}$, $z \mapsto (z, \alpha z, \dots, \alpha z)$ for some $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{R}$. Then

$$H = \left\{ (e^z, e^{\alpha z}, \dots, e^{\alpha z}) \colon z \in \mathbb{C} \right\} \subset (\mathbb{C}^{\times})^{n+2},$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K})/H$:

$$\mathbb{C}^{\times} \times \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ (t, \mathbf{w}) \sim (e^{z}t, e^{\alpha z} \mathbf{w}) \right\} \cong \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ \mathbf{w} \sim e^{2\pi i \alpha} \mathbf{w} \right\},$$

where $t \in \mathbb{C}^{\times}$, $\mathbf{w} \in \mathbb{C}^{n+1} \setminus \{0\}$. The Hopf manifold.

Define the Lie subalgebra and the corresponding Lie group

$$\mathfrak{k} = \operatorname{Re}(\mathfrak{h}) \subset \mathbb{R}^m = \operatorname{Lie}(T^m), \qquad K = \exp(\mathfrak{k}) \subset T^m.$$

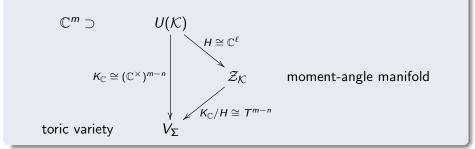
The restriction of the T^m -action on $U(\mathcal{K})/H$ to $K \subset T^m$ is almost free. We obtain a *holomorphic* foliation \mathcal{F} on $\mathcal{Z}_{\mathcal{K}}$ by the orbits of K.

If the subspace $\mathfrak{k} \subset \mathbb{R}^m$ is rational (i. e., generated by integer vectors), then K is a subtorus of T^m and the complete simplicial fan $\Sigma := q(\Sigma_{\mathcal{K}})$ is rational. The rational fan Σ defines a toric variety

$$V_{\Sigma} = \mathcal{Z}_{\mathcal{K}}/K = U(\mathcal{K})/K_{\mathbb{C}}.$$

The holomorphic foliation of $\mathcal{Z}_{\mathcal{K}}$ by the orbits of K becomes a holomorphic Seifert fibration over the toric orbifold V_{Σ} with fibres compact complex tori $\mathcal{K}_{\mathbb{C}}/H \cong T^{m-n}$ (see example above).

The rational case:



The non-rational case: Have $U(\mathcal{K}) \xrightarrow{H} Z_{\mathcal{K}}$, and a holomorphic foliation \mathcal{F} of $Z_{\mathcal{K}}$ by the orbits of $K \subset T^m$.

The holomorphic foliated manifold $(\mathcal{Z}_{\mathcal{K}}, \mathcal{F})$ is a model for 'non-commutative' toric varieties in the sense of [Katzarkov, Lupercio, Meersseman, Verjovsky] (arXiv:1308.2774) and [Ratiu, Zung] (arXiv:1705.11110).

Taras Panov (Moscow University)

In general, have a holomorphic foliation \mathcal{F} of $\mathcal{Z}_{\mathcal{K}}$ by the orbits of $\mathcal{K} \subset T^m$. $\mathcal{K}_{\mathbb{C}} \subset T^m_{\mathbb{C}} = (\mathbb{C}^{\times})^m, \quad \mathcal{K}_{\mathbb{C}}/\mathcal{H} = \mathcal{K}, \quad \mathfrak{k}_{\mathbb{C}} = \operatorname{Lie}(\mathcal{K}_{\mathbb{C}}) \cong \mathbb{C}^{m-n}.$

Given $I = \{i_1, \ldots, i_k\} \subset [m]$, consider

$$\Gamma_{I} = \mathfrak{k}_{\mathbb{C}} \cap \big(\mathbb{Z} \langle 2\pi i \mathbf{e}_{1}, \dots, 2\pi i \mathbf{e}_{m} \rangle + \mathbb{C}^{I} \big), \quad \Gamma := \Gamma_{\varnothing}.$$

Proposition

(a) Γ_I ⊂ C^m is a discrete subgroup whenever I ∈ K;
(b) given [z] = [(z₁,..., z_m)] ∈ U(K)/H = Z_K, set I = {i ∈ [m]: z_i = 0} ∈ K. Then the leaf (orbit) through [z] is K[z] ≅ ℓ/p(Γ_I),

where $p \colon \mathfrak{k}_{\mathbb{C}} \to \mathfrak{k}_{\mathbb{C}}/\mathfrak{h} = \mathfrak{k} \cong \mathbb{C}^{\ell}$.

The face ring (the Stanley–Reisner ring) of \mathcal{K} is

$$\mathbb{C}[\mathcal{K}] := \mathbb{C}[\mathbf{v}_1, ..., \mathbf{v}_m] / I_{\mathcal{K}} = \mathbb{C}[\mathbf{v}_1, ..., \mathbf{v}_m] / (\mathbf{v}_{i_1} \cdots \mathbf{v}_{i_k} : \{i_1, \ldots, i_k\} \notin \mathcal{K}),$$

where $\mathbb{C}[v_1, ..., v_m]$ is the polynomial algebra, deg $v_i = 2$, and $I_{\mathcal{K}}$ is the Stanley–Reisner ideal.

Proposition

The T^m -equivariant cohomology is given by

$$H^*_{T^m}(\mathcal{Z}_{\mathcal{K}}) = H^*_{T^m}(U(\mathcal{K})) \cong \mathbb{C}[\mathcal{K}].$$

The toric variety V_{Σ} is Kähler (equivalently, projective) if and only if Σ is the normal fan of lattice (Delzant) polytope *P*.

Theorem (Danilov)

The Dolbeault cohomology of V_{Σ} is given by

$$\mathcal{H}^{*,*}_{\bar{\partial}}(V_{\Sigma}) \cong \mathbb{C}[v_1,...,v_m]/(I_{\mathcal{K}}+J_{\Sigma}),$$

where $v_i \in H^{1,1}_{\bar{\partial}}(V_{\Sigma})$, $I_{\mathcal{K}}$ is the Stanley–Reisner ideal, J_{Σ} is the ideal generated by the linear forms $\sum_{k=1}^{m} \langle \mathbf{a}_k, \mathbf{u} \rangle v_k$, $\mathbf{a}_k = q(\mathbf{e}_k)$ are the generators of 1-dim cones of Σ , $\mathbf{u} \in (\mathbb{R}^m/\mathfrak{k})^*$.

The nonzero Hodge numbers are given by $h^{p,p}(V_{\Sigma}) = h_p$, where $h(\Sigma) = (h_0, h_1, \dots, h_n)$ is the *h*-vector of Σ .

Theorem (Buchstaber-P.)

The de Rham cohomology ring of $\mathcal{Z}_{\mathcal{K}}$ is given by

$$\begin{aligned} H^*(\mathcal{Z}_{\mathcal{K}}) &\cong \operatorname{Tor}_{\mathbb{C}[v_1,\ldots,v_m]}(\mathbb{C}[\mathcal{K}],\mathbb{C}) \\ &\cong H(\Lambda[u_1,\ldots,u_m] \otimes \mathbb{C}[\mathcal{K}],d) \qquad du_i = v_i, \ dv_i = 0 \\ &\cong H(\Lambda[t_1,\ldots,t_{m-n}] \otimes H^*(V_{\Sigma}),d) \qquad \Lambda[t_1,\ldots,t_{m-n}] = H^*(\mathcal{K}) \\ &\cong \bigoplus_{I \subset [m]} \widetilde{H}^{*-|I|-1}(\mathcal{K}_I). \end{aligned}$$

Theorem (P.-Ustinovsky)

Let Σ be a rational fan, $\mathcal{Z}_{\mathcal{K}} \xrightarrow{\mathcal{K}} V_{\Sigma}$ a holomorphic torus fibration. Then the Dolbeault cohomology ring of $\mathcal{Z}_{\mathcal{K}}$ is given by

$$H^{*,*}_{\bar{\partial}}(\mathcal{Z}_{\mathcal{K}}) \cong H\big(\Lambda[\xi_1,...,\xi_\ell,\eta_1,...,\eta_\ell] \otimes H^{*,*}_{\bar{\partial}}(V_{\Sigma}),d\big),$$

where $\Lambda[\xi_1, ..., \xi_\ell, \eta_1, ..., \eta_\ell] = H^{*,*}_{\overline{\partial}}(K), \ \xi_j \in H^{1,0}_{\overline{\partial}}(K), \ \eta_j \in H^{0,1}_{\overline{\partial}}(K),$ $dv_j = d\eta_j = 0, \ d\xi_j = c(\xi_j),$ $c \colon H^{1,0}_{\overline{\partial}}(K) \to H^{1,1}_{\overline{\partial}}(V_{\Sigma})$ is the first Chern class map.

Corollary

- (a) The Borel spectral sequence of the holomorphic fibration $\mathcal{Z}_{\mathcal{K}} \xrightarrow{\mathcal{K}} V_{\Sigma}$ (converging to Dolbeault cohomology of $\mathcal{Z}_{\mathcal{K}}$) collapses at the E_3 page;
- (b) The Frölicher spectral sequence (with E₁ = H^{*,*}_∂(Z_K), converging to H^{*}(Z_K)) collapses at E₂.

The complex structure on $\mathcal{Z}_{\mathcal{K}}$ is determined by two pieces of data:

- a complete simplicial fan Σ with generators $\mathbf{a}_1, \ldots, \mathbf{a}_m$;
- an ℓ -dimensional holomorphic subgroup $H \subset (\mathbb{C}^{\times})^m$.

If this data is generic (in particular, the fan Σ is not rational), then there is no holomorphic principal torus fibration $\mathcal{Z}_{\mathcal{K}} \to V_{\Sigma}$ over a toric variety V_{Σ} .

Instead, there is a holomorphic ℓ -dimensional *foliation* \mathcal{F} , which sometimes admits a transverse Kähler form $\omega_{\mathcal{F}}$. This form can be used to describe submanifolds and analytic subsets in $\mathcal{Z}_{\mathcal{K}}$.

A (1,1)-form ω_F on the complex manifold $\mathcal{Z}_{\mathcal{K}}$ is transverse Kähler with respect to the foliation \mathcal{F} if

(a) $\omega_{\mathcal{F}}$ is closed, i.e. $d\omega_{\mathcal{F}} = 0$;

(b) $\omega_{\mathcal{F}}$ is nonnegative and the zero space of $\omega_{\mathcal{F}}$ is the tangent space of \mathcal{F} .

A complete simplicial fan Σ in \mathbb{R}^n is weakly normal if there exists a (not necessarily simple) *n*-dimensional polytope *P* such that Σ is a simplicial subdivision of the normal fan Σ_P .

Theorem (P.–Ustinovsky–Verbitsky)

Assume that Σ is a weakly normal fan. Then there exists an exact (1,1)-form $\omega_{\mathcal{F}}$ on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/H$ which is transverse Kähler for the foliation \mathcal{F} on the dense open subset $(\mathbb{C}^{\times})^m/H \subset U(\mathcal{K})/H$.

If there is a transverse Kähler form defined on the whole of $\mathcal{Z}_{\mathcal{K}}$, then Σ is a normal fan of a simple polytope [Ishida], and $\mathcal{Z}_{\mathcal{K}}$ can be written as an intersection of Hermitian quadrics as in the beginning of the talk.

Taras Panov (Moscow University)

Holomorphic foliations

24 / 30

For each $J \subset [m]$, the coordinate submanifold of $\mathcal{Z}_{\mathcal{K}}$ is

$$\mathcal{Z}_{\mathcal{K}_J} = \{(z_1, \ldots, z_m) \in \mathcal{Z}_{\mathcal{K}} \colon z_i = 0 \quad \text{for } i \notin J\}.$$

The closure of any $(\mathbb{C}^{\times})^m$ -orbit of $U(\mathcal{K})$ has the form $U(\mathcal{K}_J)$ for some $J \subset [m]$ (in particular, the dense orbit corresponds to J = [m]). Similarly, the closure of any $(\mathbb{C}^{\times})^m/C$ -orbit of $\mathcal{Z}_{\mathcal{K}} \cong U(\mathcal{K})/C$ has the form $\mathcal{Z}_{\mathcal{K}_J}$.

Theorem (P.–Ustinovsky–Verbitsky)

Assume that the data defining a complex structure on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$ is generic. Then any divisor of $\mathcal{Z}_{\mathcal{K}}$ is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible analytic subset $Y \subset \mathcal{Z}_{\mathcal{K}}$ of positive dimension is a coordinate submanifold.

Corollary

Under generic assumptions, there are no non-constant meromorphic functions on $\mathcal{Z}_{\mathcal{K}}$ (i. e. the algebraic dimension of $\mathcal{Z}_{\mathcal{K}}$ is zero).

Taras Panov (Moscow University)

Basic cohomology

M a manifold with an action of a connected Lie group *G*, $\mathfrak{g} = \operatorname{Lie} G$.

$$\Omega(M)_{\mathrm{bas},\,\mathsf{G}} = \{\omega \in \Omega(M) \colon \iota_{\xi}\omega = \mathsf{L}_{\xi}\omega = \mathsf{0} \text{ for any } \xi \in \mathfrak{g}\},$$

 $H^*_{\text{bas, }G}(M) = H(\Omega(M)_{\text{bas, }G}, d)$ the basic cohomology of M.

 $S(\mathfrak{g}^*)$ the symmetric algebra on \mathfrak{g}^* with generators of degree 2. The Cartan model is

$$\mathcal{C}_{\mathfrak{g}}(\Omega(M)) = ((S(\mathfrak{g}^*) \otimes \Omega(M))^{\mathfrak{g}}, d_{\mathfrak{g}}),$$

where $(S(\mathfrak{g}^*) \otimes \Omega(M))^{\mathfrak{g}}$ denotes the \mathfrak{g} -invariant subalgebra. An element $\omega \in C_{\mathfrak{g}}(\Omega(M))$ is a " \mathfrak{g} -equivariant polynomial map from \mathfrak{g} to $\Omega(M)$ ". The differential $d_{\mathfrak{g}}$ is given by

$$d_{\mathfrak{g}}(\omega)(\xi) = d(\omega(\xi)) - \iota_{\xi}(\omega(\xi)).$$

Theorem

$$H^*_{\mathrm{bas}, G}(M) \cong H(\mathcal{C}_{\mathfrak{g}}(\Omega(M)), d_{\mathfrak{g}}).$$

If in addition G is a compact, then

 $H^*_{\mathrm{bas}, G}(M) \cong H^*_G(M) = H^*(EG \times_G M)$ the equivariant cohomology.

Now consider $\mathcal{Z}_{\mathcal{K}}$ with the action of K (a holomorphic foliation \mathcal{F}).

Theorem (Ishida–Krutowski–P.)

There is an isomorphism of algebras:

$$H^*_{\mathrm{bas}, K}(\mathcal{Z}_{\mathcal{K}}) \cong \mathbb{C}[v_1, ..., v_m]/(I_{\mathcal{K}} + J_{\Sigma}),$$

where $I_{\mathcal{K}}$ is the Stanley–Reisner ideal of \mathcal{K} , generated by the monomials

$$v_{i_1}\cdots v_{i_k}$$
 with $\{i_1,\ldots,i_k\}\notin \mathcal{K},$

and $J_{\boldsymbol{\Sigma}}$ is the ideal generated by the linear forms

$$\sum_{i=1}^m \langle \mathbf{a}_i, \mathbf{u} \rangle v_i \quad \text{with } \mathbf{u} \in (\mathbb{R}^m/\mathfrak{k})^*.$$

This settles a conjecture by [Battaglia and Zaffran] (arXiv:1108.1637).

If K is a compact torus (the fan Σ is rational), then we get

$$H^*_{\mathrm{bas},\,K}(\mathcal{Z}_{\mathcal{K}}) = H^*(\mathcal{Z}_{\mathcal{K}}/K) = H^*(V_{\Sigma})$$

and the result above turns into the well-known description of the cohomology of toric manifolds, due to [Danilov and Jurkiewicz].

Idea of proof of the theorem.

Let $\mathfrak{t} = \operatorname{Lie}(T^m) \cong \mathbb{R}^m$ and consider the Cartan model

$$\mathcal{C}_{\mathfrak{t}}(\varOmega(\mathcal{Z}_{\mathcal{K}})) = \left((\mathcal{S}(\mathfrak{t}^*) \otimes \varOmega(\mathcal{Z}_{\mathcal{K}}))^{\mathcal{T}^m}, d_{\mathfrak{t}}
ight).$$

Then

$$H(\mathcal{C}_{t}(\Omega(\mathcal{Z}_{\mathcal{K}}))) = H^{*}_{T^{m}}(\mathcal{Z}_{\mathcal{K}}) = \mathbb{C}[v_{1}, ..., v_{m}]/I_{\mathcal{K}}.$$

Key lemma: the dga $C_t(\Omega(\mathcal{Z}_{\mathcal{K}}))$ is formal (quasi-isomorphic to its cohomology).

- Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. 12 (2012), no. 1, 149–172.
- [2] Taras Panov, Yuri Ustinovsky and Misha Verbitsky. *Complex geometry of moment-angle manifolds*. Math. Zeitschrift 284 (2016), no. 1, 309–333.
- [3] Hiroaki Ishida, Roman Krutowski and Taras Panov. *Basic cohomology* of canonical holomorphic foliations on complex moment-angle manifolds. arXiv:1811.12038.