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An algebraic torus is a commutative complex algebraic group isomorphic to
a product (C×)n of copies of the multiplicative group C× = C \ {0}. It
contains a compact torus T n as a Lie (but not algebraic) subgroup.

A toric variety is a normal complex algebraic variety V containing an
algebraic torus (C×)n as a Zariski open subset in such a way that the
natural action of (C×)n on itself extends to an action on V .

It follows that (C×)n acts on V with a dense orbit. Toric varieties originally
appeared as equivariant compacti�cations of an algebraic torus, although
non-compact (e.g., a�ne) examples are now of equal importance.

Example

The algebraic torus (C×)n and the a�ne space Cn are the simplest
examples of toric varieties. A compact example is given by the projective
space CPn on which the torus acts in homogeneous coordinates as

(t1, . . . , tn) · (z0 : z1 : . . . : zn) = (z0 : t1z1 : . . . : tnzn).
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Polyhedral cones

A convex polyhedral cone generated by a1, . . . , ak ∈ Rn:

σ = R>〈a1, . . . , ak〉 = {µ1a1 + · · ·+ µkak : µi ∈ R>}.

Given a cone σ, can choose a minimal generating set a1, . . . ak .
It is de�ned up to multiplication of vectors by positive constants.

A cone is rational if its generators ai can be chosen from the integer lattice
Zn ⊂ Rn.
Then assume that each ai ∈ Zn is primitive, i. e. it is the smallest lattice
vector in the ray de�ned by it.

A cone is strongly convex if it does not contain a line.
A cone is simplicial if it is generated by part of a basis of Rn.
A cone is regular if it is generated by part of a basis of Zn.
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Fans

A fan is a �nite collection Σ = {σ1, . . . , σs} of strongly convex cones in
some Rn such that

every face of a cone in Σ belongs to Σ, and

the intersection of any two cones in Σ is a face of each.

A fan Σ is rational (respectively, simplicial, regular) if every cone in Σ is
rational (respectively, simplicial, regular).

A fan Σ = {σ1, . . . , σs} is called complete if σ1 ∪ · · · ∪ σs = Rn.
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Algebraic geometry of toric varieties is translated completely into the
language of combinatorial and convex geometry.
Namely, there is a bijective correspondence between rational fans in
n-dimensional space and complex n-dimensional toric varieties.

Under this correspondence,

cones ←→ a�ne varieties

complete fans ←→ complete (compact) varieties

normal fans of polytopes←→ projective varieties

regular fans ←→ nonsingular varieties

simplicial fans ←→ orbifolds

N a lattice of rank n (isomorphic to Zn),

NR = N ⊗Z R ∼= Rn its ambient n-dimensional real vector space.

C×N = N ⊗Z C× ∼= (C×)n the algebraic torus.

All cones and fans are assumed to be rational.
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A�ne toric varieties

Given a cone σ ⊂ NR, its dual cone is

σv =
{
x ∈ N∗R : 〈u, x〉 > 0 for all u ∈ σ}.

We have (σv)v = σ, and σv is strongly convex i� dimσ = n.

Sσ := σv ∩ N∗ a �nitely generated semigroup (with respect to addition).

Aσ = C[Sσ] the semigroup ring of Sσ.
It is a commutative �nitely generated C-algebra, with a C-vector space
basis {χu : u ∈ Sσ}, and multiplication χu · χu′ = χu+u

′
, so χ0 is the unit.

Vσ := Spec(Aσ) the a�ne toric variety corresponding to σ,
Aσ = C[Vσ] is the algebra of regular functions on Vσ.
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Example

Let N = Zn and σ = R>〈e1, . . . , ek〉, where 0 6 k 6 n.

Then Sσ = σv ∩ N∗ is generated by e∗1, . . . , e
∗
k and ±e∗k+1, . . . ,±e∗n, and

Aσ ∼= C[x1, . . . , xk , xk+1, x
−1
k+1, . . . , xn, x

−1
n ],

where xi := χe
∗
i . The corresponding a�ne variety is

Vσ ∼= C× · · · × C× C× × · · · × C× = Ck × (C×)n−k .

In particular, for k = n we obtain Vσ = Cn,
and for k = 0 (i. e. σ = {0}) we obtain Vσ = (C×)n, the torus.
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By choosing a multiplicative generator set in Aσ we represent it as

Aσ = C[x1, . . . , xr ]/I;

then the variety Vσ is the common zero set of polynomials from the ideal I.

Example

Let σ = R>〈e2, 2e1 − e2〉 in R2.
The two vectors do not span Z2, so the cone is not regular.

Then σv = R>〈e∗1, e∗1 + 2e∗2〉. The semigroup Sσ is generated by e∗1,
e∗1 + e∗2 and e∗1 + 2e∗2, with one relation among them.Therefore,

Aσ = C[x , xy , xy2] ∼= C[u, v ,w ]/(v2 − uw)

and Vσ is a quadratic cone (a singular variety).
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Toric varieties from fans

If τ is a face of σ, then σv ⊂ τ v, and the inclusion of algebras
C[Sσ]→ C[Sτ ] induces an inclusion Vτ → Vσ of a Zariski open subset.

This allows us to glue the a�ne varieties Vσ corresponding to all cones σ
in a fan Σ into a toric variety VΣ = colimσ∈Σ Vσ.

Here is the crucial point: the fact that the cones σ patch into a fan Σ
guarantees that the variety VΣ obtained by gluing the pieces Vσ is
Hausdor� in the usual topology. In algebraic geometry, the Hausdor�ness is
replaced by the related notion of separatedness: a variety V is separated if
the image of the diagonal map ∆ : V → V × V is Zariski closed.

Lemma

If Σ = {σ} is a fan, then the variety VΣ = colimσ∈Σ Vσ is separated.
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The torus action

The variety Vσ carries an algebraic action of the torus C×N = N ⊗Z C×

C×N × Vσ → Vσ, (t, x) 7→ t · x
which is de�ned as follows.

A point t ∈ C×N gives a homomorphism

N∗ → C×, u = (u1, . . . , un) 7→ t(u) = tu11 · · · t
un
n .

Points of Vσ correspond to algebra morphisms Aσ → C, or to semigroup

homomorphisms Sσ → Cm, where Cm = C× ∪ {0} is the multiplicative
semigroup of complex numbers.

Then de�ne t · x as the point in Vσ corresponding to the semigroup
homomorphism Sσ → Cm given by

u 7→ t(u)x(u).
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The morphism of algebras dual to the action C×N × Vσ → Vσ is given by

Aσ → C[N∗]⊗ Aσ, χu 7→ χu ⊗ χu for u ∈ Sσ.

If σ = {0}, then we obtain the multiplication in the algebraic group C×N .

The actions on the varieties Vσ are compatible with the inclusions of open
sets Vτ → Vσ corresponding to the inclusions of faces τ ⊂ σ.
Therefore, for each fan Σ we obtain a C×N -action on the variety VΣ, which
extends the C×N -action on itself.
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Example (complex projective plane CP2)

Σ has three maximal cones:

σ0 = R>〈e1, e2〉, σ1 = R>〈e2,−e1 − e2〉, σ2 = R>〈−e1 − e2, e1〉,

see Figure (a). Then each Vσi is C2, with coordinates

(x , y) for σ0, (x−1, x−1y) for σ1, (y−1, xy−1) for σ2.

These three a�ne charts glue together into VΣ = CP2 with homogeneous
coordinates [z0 : z1 : z2], x = z1/z0, y = z2/z0.
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Example (Hirzebruch surfaces)

Fix k ∈ Z and consider the complete fan in R2 with the four
two-dimensional cones generated by

(e1, e2), (e1,−e2), (−e1 + ke2,−e2), (−e1 + ke2, e2),

see Figure (b). Tthe corresponding toric variety Fk is the projectivisation
CP(C⊕O(k)) of the sum of a trivial line bundle C and the kth power
O(k) = η̄⊗k of the conjugate tautological line bundle η̄ over CP1. These
2-dimensional complex varieties Fk are known as Hirzebruch surfaces.
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Orbits and invariant subvarieties

A toric variety VΣ is a disjoint union of its orbits by the action of the
algebraic torus C×N .
There is one such orbit Oσ for each cone σ ∈ Σ, and we have
Oσ ∼= (C×)n−k if dimσ = k .
In particular, n-dimensional cones correspond to �xed points, and the apex
(the zero cone) corresponds to the dense orbit C×N .

The orbit closure Oσ is a closed irreducible C×N -invariant subvariety of Vσ,
and it is itself a toric variety.
In fact, Oσ consists of those orbits Oτ for which τ contains σ as a face.
Any irreducible invariant subvariety of VΣ can be obtained in this way.
In particular, irreducible invariant divisors D1, . . . ,Dm of VΣ correspond to
edges of Σ.
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Polytopes and normal fans

P a convex polytope with vertices in the lattice N∗ (a lattice polytope):

P = {x ∈ N∗R : 〈ai , x〉+ bi > 0 for i = 1, . . . ,m}
where bi ∈ Z and ai ∈ N is the primitive normal to the facet

Fi = {x ∈ P : 〈ai , x〉+ bi = 0}, i = 1, . . . ,m.

Given a face Q ⊂ P , de�ne the cone

σQ = {u ∈ NR : 〈u, x ′〉 6 〈u, x〉 for all x ′ ∈ Q and x ∈ P}.
The dual cone σvQ is the `polyhedral angle' at the face Q; it is generated by
all vectors x − x ′ pointing from x ′ ∈ Q to x ∈ P .

The cone σQ is generated by those ai which are normal to Q. Then

ΣP = {σQ : Q is a face of P}
is a complete fan ΣP in NR, called the normal fan of P .
If 0 ∈ intP , then ΣP consists of cones over the faces of the polar P∗.
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The normal fan ΣP has a maximal cone σv for each vertex v ∈ P . The
dual cone σ∗v is the `vertex cone' at v , generated by all vectors pointing
from v to other points of P .

The normal fan ΣP is simplicial if and only if P is simple, i. e. there are
precisely n = dimP facets meeting at each vertex of P .
In this case, the cones of ΣP are generated by those sets of normals
{ai1 , . . . , aik} for which the intersection of facets Fi1 ∩ · · · ∩Fik is nonempty.

The normal fan ΣP of a polytope P contains the information about the
normals to the facets (the generators ai of the edges of ΣP) and the
combinatorial structure of P (which sets of vectors ai span a cone of ΣP is
determined by which facets intersect at a face).
However the scalars bi in the presentation of P by inequalities are lost. Not
every complete fan can be obtained by `forgetting the numbers bi ' from a
presentation of a polytope by inequalities, i. e. not every complete fan is a
normal fan. This is fails even for regular fans.
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Projective toric varieties

Given a lattice polytope P ⊂ N∗R, de�ne the toric variety VP = VΣP
.

Since the normal fan ΣP does not depend on the linear size of the
polytope, we may assume that for each vertex v the semigroup Sσv is
generated by the lattice points of the polytope (this can always be achieved
by replacing P by kP with su�ciently large k).

Since N∗ = HomZ(C×N ,C
×), the lattice points of the polytope P ⊂ N∗

de�ne an embedding

iP : C×N → (C×)|N
∗∩P|,

where |N∗ ∩ P| is the number of lattice points in P .

Proposition

The toric variety VP is identi�ed with the projective closure

iP(C×N) ⊂ CP |N∗∩P|.
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It follows that toric varieties VP arising from lattice polytopes P are
projective, i. e. can be de�ned by a set of homogeneous equations in a
projective space. The converse is also true: the fan corresponding to a
projective toric variety is the normal fan of a lattice polytope.

A polytope carries more geometric information than its normal fan:
di�erent lattice polytopes with the same normal fan Σ correspond to
di�erent projective embeddings of the toric variety VΣ.

If D1, . . . ,Dm are the invariant divisors corresponding to the facets of P ,
then DP = b1D1 + · · ·+ bmDm is an ample divisor on VP .
This means that, when k is su�ciently large, kDP is a hyperplane section
divisor for a projective embedding VP ⊂ CP r .
The space of sections H0(VP , kDP) of (the line bundle corresponding
to) kDP has basis corresponding to the lattice points in kP .
The embedding of VP into the projectivisation of H0(VP , kDP) is exactly
the projective embedding described above.
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Cohomology of toric manifolds

A toric manifold is a smooth complete (compact) toric variety. Toric
manifolds VΣ correspond to complete regular fans Σ. Projective toric
manifolds VP correspond to lattice polytopes P whose normal fans are
regular.

The cohomology of a toric manifold VΣ can be calculated e�ectively from
the fan Σ. The Betti numbers are determined by the combinatorics of Σ
only, while the ring structure of H∗(VΣ) depends on the geometric data.
The latter consist of the primitive generators a1, . . . , am of one-dimensional
cones (edges) of Σ.
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fi = fi (Σ) the number of (i + 1)-dimensional cones of Σ.

If Σ = ΣP is the normal fan of an n-dimensional polytope P , then
fi is the number of (n − i − 1)-dimensional faces of P .

f−1 = 1,
f0 is the number of edges of Σ (facets of P),
fn−1 is the number of maximal cones of Σ (vertices of P).

f (Σ) = (f0, f1, . . . , fn−1) the f -vector of Σ.

The h-vector h(Σ) = (h0, h1 . . . , hn) is de�ned from the identity

h0t
n + h1t

n−1 + · · ·+ hn = (t − 1)n + f0(t − 1)n−1 + · · ·+ fn−1.

Taras Panov (Moscow University) Lecture 1. Toric Varieties 27�30 August 2018 20 / 27



Theorem (Danilov�Jurkiewicz)

Let VΣ be the toric manifold corresponding to a complete regular fan Σ
in NR. The cohomology ring of VΣ is given by

H∗(VΣ) ∼= Z[v1, . . . , vm]/I,

where v1, . . . , vm ∈ H2(VΣ) are the cohomology classes dual to the

invariant divisors corresponding to the one-dimensional cones of Σ,

and I is the ideal generated by elements of the following two types:

(a) vi1 · · · vik , where ai1 , . . . , aik do not span a cone of Σ;

(b)
m∑
j=1

〈aj ,u〉vj , for any u ∈ N∗.

The homology groups of VΣ vanish in odd dimensions, and are free abelian

in even dimensions, with ranks given by

b2i (VΣ) = hi ,

where hi , i = 0, 1, . . . , n, are the components of the h-vector of Σ.
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To obtain an explicit presentation of the ring H∗(VΣ) we choose a basis of
N write the coordinates of ai in the columns of the integer n ×m-matrix

Λ =

a11 · · · a1m
...

. . .
...

an1 · · · anm


Then the n linear forms aj1v1 + · · ·+ ajmvm corresponding to the rows of Λ
vanish in H∗(V ;Z).

Example (complex projective space CPn)

The corresponding polytope is an n-simplex P = ∆n, and

Λ =

1 0 0 −1

0
. . . 0

...
0 0 1 −1


The cohomology ring H∗(CPn) is given by

Z[v1, . . . , vn+1]/(v1 · · · vn+1, v1 − vn+1, . . . , vn − vn+1) ∼= Z[v ]/(vn+1)
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The Danilov�Jurkiewicz Theorem remains valid for complete simplicial fans
and corresponding toric orbifolds if the integer coe�cients are replaced by
the rationals. The integral cohomology of toric orbifolds often has torsion,
and the integer ring structure is subtle even in the simplest case of
weighted projective spaces.

The cohomology ring of a toric manifold VΣ is generated by
two-dimensional classes. This is the �rst property to check if one wishes to
determine whether a given algebraic variety or smooth manifold has a
structure of a toric manifold. For instance, this rules out �ag varieties and
Grassmannians di�erent from projective spaces.
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Theorem (Hard Lefschetz Theorem for toric orbifolds)

Let P be a lattice simple polytope, VP the corresponding projective toric

variety with ample divisor b1D1 + · · ·+ bmDm, and

ω = b1v1 + · · ·+ bmvm ∈ H2(VP ;C) the corresponding cohomology class.

Then the maps

Hn−i (VP ;C)
ωi

−→ Hn+i (VP ;C)

are isomorphisms for all i = 1, . . . , n.

If VP is smooth, then it is K�ahler, and ω is the class of the K�ahler 2-form.
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Question

How to characterise the f -vectors (or h-vectors) for simplicial polytopes,

simplicial fans or triangulated spheres?

Theorem (Billera�Lee, Stanley)

The following conditions are necessary and su�cient for a collection

(f0, f1, . . . , fn−1) to be the f -vector of a simplicial polytope:

(a) hi = hn−i for i = 0, . . . , n;

(b) h0 6 h1 6 h2 6 · · · 6 h[n/2];

(c) . . . (a restriction on the growth of hi ).

Stanley's argument: realise the dual simple polytope as a lattice polytope
P and consider the projective toric variety VP . We have

dimH2i (VP ,Q) = hi .

Then (a) is Poincar�e duality, while (b) and (c) follow from the Hard
Lefschetz Theorem.
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Conjecture (McMullen)

Is it true that the same conditions (a)�(c) characterise the f -vectors of

triangulated spheres?

This is open even for complete simplicial fans (star-shaped spheres).
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