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Isolated fixed points

M a T*-manifold of dimension 2n with a T*-invariant stably tangentially
complex structure

or: TMa R 5 ¢

Assume that fixed points are isolated, i.e. the fixed point set M7 is finite.

v

p € MT a fixed point. Have a representation t,: TX — GL(/,C) in the
fibre {5 Then &, =11 @ --- @ v, @ V, where each t; is a non-trivial
one-dimensional complex T*-representations, and V is trivial.

In the corresponding coordinates (zi, ..., z,, v), an element
t = (™1 ..., e®™%k) € Tk acts by
t-(zi,...,2zp,v) = (e2”’<""1"">21, o TN v),

where © = (p1,..., k) € R¥ and w; € Hom(Tk,SY) =7k 1<j<n,
are the weights of the representation t,,.
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The isomorphism cr p: ToM @ R2U-n &p induces an orientation of the
tangent space 7,M, as both R?(U=") and ¢, = C' are canonically oriented.

Definition

For any fixed point p € M, the sign o(p) is +1 if the isomorphism

%Mmﬂ)nM@R2(l_n)i}&p:tl@...@tn@V&tl@...@tn

respects the canonical orientations, and —1 if it does not.

If M is an almost complex T*-manifold (i.e. / = n) then
ToM =11 @ --- @, and o(p) = 1 for every fixed point p.

We refer to

{wj(p), o(p): peMT, 1<j<n}
as the fixed point data of (M, cr).
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Each integer vector n = (ny, ..., nx) € Z* determines a line bundle

7" =7 @ @
over BTK = (CP>)k, where 1 is the tautological bundle over the jth
factor. Let

[n)(u) = ' (7")

denote the cobordism first Chern class of 7.
It is given by the power series

[n](u) = Fu(ul,. R Y ) N Uk) € Uz(BTk),
~— e

ny ny

where FU(UL e uk) = Fu(- 00 FU(FU(UL U2), U3), RN uk) is the iterated
substitution in the formal group law of geometric cobordisms. We have

[n](u) = (n,u) = muy + -+ nkug modulo decomposables.
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Localisation formulae

(M, c7) with the fixed point data {w;(p), o(p): p€ MT, 1 <j < n}.

The universal toric genus @: 2.7« — U*(BT¥) = Qu[[u, - .., ug]]-

Theorem

For any stably tangentially complex 2n-dimensional T*-manifold M with
isolated fixed points M, the equation

is satisfied in U=2"(BT*).

The summands on the right hand side of formally belong to the localised
ring STTU*(BTK) where S is the set of equivariant Euler classes of
nontrivial representations of Tk.
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Let ¢: 2y — R be a genus corresponding to f(x) = x+--- € R® Q[[x]].
The universal localisation theorem may be adapted to express (M) in
terms of the fixed point data:

Theorem

Let p: 2y — R be a genus with torsion-free R, and let M be a stably
tangentially complex 2n-dimensional T*-manifold with isolated fixed
points M. Then the equivariant genus @ (M) = (M) + - - - is given by

n 1
pT(M) = Y a(p)_Hlf(w(p)?X)),

peMT

where (W, X) = wix1 + - - - + wixx for w= (wi, ..., wg).

Proof. By definition, T = h, - ® where h,(u;) = f(x;). Now f(x) is the
exponential series of the f.g.I. wFy, i.e.

(pFu(ul, U2) = f(f_l(ul) aF f_l(U2)), hence, h(pFU(Ula U2) = f(Xl -+ X2).

It follows that hy,([w;(p)](u)) = F({w;(p), X)). O
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The augmentation genus ¢: 2y — Z corresponds to the series f(x) = x;
it vanishes on any M?" with n > 0. The localisation formula gives

< 1
2 Wl gy = °

pEMT

Let M = CP" on which T"*! acts homogeneous coordinatewise. There
are n+ 1 fixed points pg, ..., pp, each having a single nonzero coordinate.
So wj(pk) = ej — ey for 0 < j < n, j # k, and every o(px) is positive. We
obtain the classical identity

> 11,

kO_/gékJ

Taras Panov (Moscow University) Lecture 5. Localisation Techniques 2-6 July 2018 7 /24



Example
The universal toric genus of CP! (with the standard S!-action) is given by

1 1
qﬁ((CPl):D+E

in U72(CP>) where ii = [—1](u) is the inverse in the cobordism f.g.I.

A genus p: 2y — R is rigid on CP?! iff its defining series f(x) satisfies

11
fx) =)
in R ® Q[[x]]. The general analytic solution is given by
X
f(X) = m, where b(O) =1.

In particular, the Todd genus td corresponding to f(x) = 1 — e satisfies
the equation with ¢ = 1. So td is T-rigid on CP!. In fact td is fibre
multiplicative with respect to CP" by a result of Hirzebruch.
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Example

We can also consider the S'-action on M = CP! with trivial stably

complex structure.
It has two fixed points of signs 1 and —1, both with weights 1. Then

1 1

which expresses the fact that M bounds equivariantly.
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Another classical application of the localisation formula is the
Atiyah—Hirzebruch formula expressing the x,-genus of a complex
S'-manifold in terms of the fixed point data.

We discuss a generalisation of this formula due to Krichever. It refers to
the x, b-genus corresponding to the series

e?X — bx
f(x) = Sebx _ paax € Qla, b].

Particular cases are
o the top Chern number ¢,[M] (a = b = 1);
o the signature L[M] = sign(M) (a = =—-1);
@ Todd genus td(M) (a=0, b= — )
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Given a T*-manifold M, choose a circle subgroup in T* defined by a
primitive vector v € Zk:

S(v) = {(e™1%, ... e¥¥) e TK: p e R},

We have M5(*) = MT for a generic circle S(v). The weights of the
tangential representation of S(v) at p are (wj(p),v), 1 <j < n.

If the fixed points MT are isolated and M3(*) = MT  then

(wj(p),v) #0 forl<j<nandanype M.

Define the index ind, p as the number of negative weights at p, i.e.

ind, p=#{j: (wj(p),v) < 0}.
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Theorem (generalised Atiyah—Hirzebruch formula)

The xa b-genus is T*-rigid.
Furthermore, the x, p-genus of a stably tangentially complex
2n-dimensional T*-manifold M with finite M is given by

Xa,b(M) = Z o'(p)(_a)indyp(_b)nfindup

pEMT

for any v C ZK satisfying M>") = MT .

Proof. The localisation formula gives

EpM) = 3" a(p) H"’e

peEMT

WJ(,,) _ pealwi(p)w)x
— eb<wj(p)7V>X ’

This expression belongs to Z|a, b][[x]] (that is, it is non-singular at zero)
and its constant term is x, p(M).
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Proof (continued). Denote w; = (w;(p),v) and e@=P)X = g; then previous

the expression becomes
n

st _ a—bgqg“
Xap(M)= > U(p)Hiqwj T
peEMT J=1

Now we let g — co. Then each factor above has limit —b if w; > 0 and
limit —a if w; < 0. Therefore,

lim Xf,lb(/\/’): Z o(p)(—a)ndv P(—p)n-indvp,

g—o0 e
Similarly, letting g — 0 we get
||m Xflb(M) = Z U(p)(_a)"finduP(_b)indup.
qg—0" "%
peEMT

To finish the proof, one needs to show that Xilb(M) is constant in g; then
it coincides with either of the limits above. This is done by showing that
Xilb(M), as a meromorphic function in g € C, does not have poles. O
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Quasitoric manifolds (after Davis and Januszkiewicz)

2n-dimensional manifolds M with an action of the torus T" satisfying
@ the T"-action is locally standard (locally looks like the standard
T"-representation in C");
@ there is a projection 7: M — P onto a simple n-polytope P whose
fibres are T"-orbits.

Examples include projective smooth toric varieties and compact symplectic
2n-manifolds M with Hamiltonian actions of T"

In their turn, quasitoric manifolds are examples of torus manifolds of
Hattori-Masuda.

Quasitoric manifolds M provide a vast source of examples of stably
complex T"-manifolds with isolated fixed points, for which calculations
with the fixed point data and Hirzebruch genera can be made explicit.
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Every quasitoric M is determined by the characteristic pair (P, A), where
P is a simple n-polytope with m facets Fq, ..., Fp,
A is an integral n X m matrix.

The columns \; of A determine circle subgroups in T" fixing pointwise the
facial (characteristic) submanifolds 7= *(F;) Cc M, i=1,...,m.

Given a fixed point p = F;, N ... N Fj, denote
aj,,...,aj, the inward-pointing normals to the facets Fj ,..., F;
wj (p),...,wj,(p) the conjugate basis to Aj;,..., \; .

Proposition

e o(p) = sign(det(a;,,...,a;,)det(\;,..., \;,))
o the weight vectors at p are w;,(p), ..., w;,(p).
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The following result can be proved by application of the localisation
formula for quasitoric manifolds:

Theorem (Musin)

The 2-parameter genus X, p is universal for Tk-rigid genera.
In particular, any T*-rigid rational genus is X, for some rational
parameters a, b.

Proof. We have already seen that x, p is rigid. To see that any Tk-rigid
genus is X, » we solve the functional equation arising from the localisation
formula for one particular example of T*-manifold; the general solution will
produce the required form of the series f(x).
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Proof (continued). We consider the quasitoric manifold M = CP? with a
nonstandard stably complex structure corresponding to the characteristic

matrix
1 0 1
A= <0 1 —1>

It has three fixed points vq, v», v3 with
the signs o(v1) = -1, o(w) =1, o(vz) =1
and the weights {(L,0), (1, 1)}, {(0,~1), (1, 1)}, {(0,1),(1,0)}.

Plugging these data into the localisation formula we obtain that a genus ¢
is rigid on M iff its defining series f(x) satisfies the equation

1 1 1

_ + + = c.
fa)fa+x)  f(—=x)f(a+x) f(a)f(x)
Interchanging x; and x» gives
1 1 1
— + + = @,

f(x)f(x1 + x2) f(—x1)f(x1 + x2) f(x2)f(x1)
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Proof (continued). Subtraction yields

(ﬂ;)+f0in>fw:¥m)::<ﬂ;)+fbiﬂ>f&j¥wf

It follows that
1 1 o 1 o 1
TR - ™ e T YT

for some constant ¢’. Substituting in the original equation gives

( 1 +1_C,> R S
f(Xl) f(XQ) f(Xl +X2) - f(Xl)f(Xg) ’

which rearranges to

f(x1) + f(x2) — 'f(xa)f(x2)

1-— Cf(Xl)f(X2) ’
So f is the exponential series of the formal group law F, p(u, v)
corresponding to X, p, With ¢’ = —a — b and ¢ = ab.

f(Xl -+ X2) =
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Given a stably tangentially complex T*-manifold (M, c) with the fixed

point data {w;(p), o(p): p€ MT, 1 <j < n}, we refer to

1
2 oW st = ¢

peEMT J=1 J

as the rigidity equation corresponding to M.

Its solutions f(x) provide Hirzebruch genera which are rigid (or fibre
multiplicative) on the particular M.
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For example, the rigidity equation for the nonstandard CP? described
above is

1 1 1

e a) | A—aioa e | i) |

eaxiebx

—eb—poa+ corresponding to the

Its general solution is given by f(x) =
Xa,b-8eNus.

On the other hand, the rigidity equation for the standard CP? is
1 1 1
- -
f(Xl)f(Xl -+ X2) f(—Xl = X2)f(—X2) f(—Xl)f(Xz)

Alongside with f(x) = o

aebx —peax’

by Buchstaber and Bunkova.

= C.

it has other analytic solutions, described
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Homogeneous spaces of compact Lie groups provide another source of
concrete examples of manifolds with torus actions and isolated fixed points.
They often admit invariant almost complex structures, including integrable
ones, which can be classified by the methods of representation theory.
Particular examples of great importance for topology include complex and
quaternionic projective spaces, the Cayley plane, Grassmann and flag
manifolds.

Example

S® = G,/SU(3) admits a Gy-invariant complex structure.

The action of the maximal torus T2 has 2 fixed points with the

corresponding weights given by (e1, ez, —e; — e2) and

(—ei1, —e2, e1 + e3). The resulting rigidity equation is therefore
1 1

ool s o) ) el e
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The Krichever genus

When ¢ # 0, the general solution of the rigidity equation
1 . 1 B
FOa)f()f(—x1 —x)  f(=x1)f(—x)f(x1 + x2)

eax o(z—x)

is given by f(x) = o2) where ®(x, z) = 5000 (D)% js the
Baker—Akhiezer function of the elliptic curve y?> = 4x> — gox — g3, 0(2) is
the Weierstrass sigma-function, {(z) = (Ino(2)), p(z) = —(Ino(2))".

ax

The Krichever genus is the Hirzebruch genus corresponding f(x) = %.

The universal Krichever genus ¢k depends on 4 parameters
a, p(2), 9'(2), g, viewed as formal variables.

v

The universal elliptic e genus is obtained by setting o = ©/(z) = 0 in k.
Another particular case is x p.
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Rigidity on SU-manifolds

An SU-manifold is a stably complex manifold M with ¢;(M) = 0.
An example is given by S® with the almost complex structure as above.

Krichever proved that the genus ¢ is rigid on SU-manifolds.

(In the oriented category, the rigidity of the elliptic genus on spin manifolds
is due to Bott and Taubes.)

We therefore obtain

Theorem (Buchstaber-P-Ray)

Assume that a genus ¢ is rigid on SU-manifolds and ¢(S%) # 0. Then
» = @k Is the Krichever genus.
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