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Elements of the theory of formal group laws

R a commutative ring with unit.

A formal power series F(u,v) € R[[u, v]] is called a (commutative
one-dimensional) formal group law over R if it satisfies

(a) F(u,0) =u, F(O,v) = v;

(b) F(F(u,v),w) = F(u, F(v,w));

(c) F(u,v)= F(v,u).

<

The original example of a formal group law over a field k is provided by the
expansion near the unit of the multiplication map G x G — G in a
one-dimensional algebraic group over k. This also explains the terminology.

A formal group law F over R is linearisable if there exists a coordinate
change v gr(u) = u+ Yo, giu'™ € R[[u]] such that

gr(F(u,v)) = gr(u) + gr(v).
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Every formal group law F is linearisable over R @ Q.

Consider the series w(u) = W'w:@ Applying 2|, _, to both sides of
the identity F(F(u,v),w) = F(u, F(v,w)) we obtain
8F(F u, v) w) 8F(u F(v,w)) 0F(v,w) OF (u, v)
w(F(u,v)) = ‘ OF (v, w) ow ‘w o v (V).

We therefore have w‘zz) = w‘z,i((zz))) where u is a parameter. Set

Y dv
)= [ —.
g(u) /0 (V)
Integrating the identity W‘Z‘\’/) = w‘z’;((zz))) we obtain

w) = Wi— WidF(u,v) = F(un)i— uw))—g(u
g(w) = / = / s = / 5 = &(F(w.w) ~ &(w)

so that g is a linearisation of F. O
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A series gr(u) = u + Yy g+ satisfying ge(F(u, v)) = gr(s) + g (v)
is called the logarithm of the formal group law F. Its functional inverse
series fr(t) € R ® Q|[t]] is the exponential of F, so we have

F(u, v) = fr(gr(u) + gr(v)) over R® Q.

If R does not have torsion (i.e. R — R ® Q is monomorphic), then a
formal group law is fully determined by its logarithm.

The multiplicative formal group law is the series

Fluv)=(1+u)(1+v)—1=u+ v+ uv.
There is a 1-parameter graded extension given by
Fg(u,v) =u+v —PBuv, degf = -2,
with coefficients in Z[53]. Its exponential and logarithm are given by

In(1 — Bu)

_ e Bx
)= ——. &w=-——7cal
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Example

Another classical example comes from the theory of elliptic functions.
There is a unique meromorphic function f(x) with f(0) =0 and f'(0) =1
satisfying the differential equation

(f'(x))? =1 —26f%(x) + ef*(x)

with §,¢ € C. This function provides a uniformisation for the Jacobi model
y? =1 —26x% + ex* of an elliptic curve. When the discriminant

A=¢(62—¢)

is nonzero, the elliptic curve is nondegenerate, and f(x) is a doubly
periodic function known as the Jacobi elliptic sine and denoted by sn(x).
Its inverse is given by the elliptic integral

(u)_/“ dt
3 o V1I_—26t2 +ct?
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Example

There is the following Euler’s expression for the addition formula for sn(x):

uv1 —26v2 + ev? + vv1 — 2602 + eu?
1 — ecu?v?

Fen(u,v) =sn(x+y) = ,
where u =snx, v =sny. It defines the elliptic formal group law, with
exponential sn(x) and logarithm g(u) as above.

Viewing d, ¢ as formal parameters with degd = —4, dege = —8, we obtain
the universal elliptic formal group law over the ring Z[3][5, €].
Degeneration € = 0 gives the addition formula for f(x) = %, while

degeneration ¢ = 42 gives the addition formula for f(x) = %.
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Given a ring homomorphism r: R — R’ and a f.gl. F = Zk,ak,ukv’ over
R, we obtain a f.g.l. r(F):=3, ,r(ax)u“v' € R'[[u, v]] over R

A formal group law F over a ring A is universal if for any f.g.l. F over any
ring R there exists a unique homomorphism r: A — R such that F = r(F).

Proposition

/

A universal formal group law F(u,v) = u+ v+ > ,o; /o1 aukv! exists,

and its coefficient ring is the quotient
A:Z[ak/ZkZl, /21]/1, degak,:—Q(k—i—l—l),

of the graded polynomial ring by the graded ‘associativity ideal’ Z,
generated by the coefficients of the formal power series
f(f(u7 V)7 W) - .F(U,]:(V, W))

Furthermore, F is unique: if F' is another universal formal group law over
A, then there is an isomorphism r: A — A’ such that F' = r(F).
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Note that the definition of a formal group law does not assume any grading
of the coefficient ring; however, the coefficient ring of the universal formal
group law turns out to be naturally graded.

Natural grading: degu =degv =2, degay = —2(k+ 1 —1);
then the whole expression

Flu,v)=u+v+ Z agukv!
k>1,1>1

is homogeneous of degree 2.

Theorem (Lazard)

The coefficient ring A of the universal formal group law F is isomorphic to
the graded polynomial ring Z[a1, az, . ..] on an infinite number of
generators, deg a; = —2i.
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Construction (geometric cobordisms)
For any cell complex X, have H?(X) = [X,CP*]. Since CP>* = MU(1),
every element x € H2(X) determines a cobordism class u, € U?(X), a

geometric cobordism. Hence, H?(X) C U?(X) (a subset, not a subgroup!)

When X is a manifold, each u, € U?(X) corresponds to a submanifold
M C X of codimension 2 with a complex structure on the normal bundle.

Indeed, x € H?(X) corresponds to a homotopy class of f.: X — CP>.
May assume f,(X) is transverse to a hyperplane H ¢ CPN c CP>. Then
M, = f71(H) is a codimension-2 submanifold in X.

A homotopy of f, gives a cobordism of M, — X.

Conversely, given an embedding i: M C X as above, the composite

X — Th(v) — MU(1) = CP of the Pontryagin—Thom collapse map and
the classifying map for v defines an element xy; € H?(X), and therefore a
geometric cobordism.

If X is oriented, then i,(M) € H,(X) is Poincaré dual to xpy € H?(X).
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Ring generators for 2Y

As we have seen, the characteristic number s, vanishes on decomposable
elements of 2V. Furthermore, this characteristic number detects
indecomposables that may be chosen as polynomial generators:

| \

Theorem
A bordism class [M] € 2 may be chosen as a polynomial generator a, of
the ring 2V if and only if

M] +1 if n # pX — 1 for any prime p;
S, =
" +p if n = pX — 1 for some prime p.

There is no universal description of manifolds representing the polynomial
generators a, € 2. On the other hand, there is a particularly nice family
of manifolds whose bordism classes generate the whole ring 2Y. This
family is redundant though, so there are algebraic relations between their
bordism classes.
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Construction (Milnor hypersurfaces)

The Milnor hypersurface in CP' x CP/ (0 < i < j)is

Hi={(zo: - :z)x(wo:--:w)) €ECP x CP/: zgwg + -+ ziw; = 0}
Note that Hp; = CPi—1,
More intrinsically, Hj; is a hyperplane section of the Segre embedding

o: CP' x CP/ — cpPUFTDUFD-T

(zo: - zi) X (wo i+t wj) = (Zowp : Zowy & -+ 1 ZWy & -+ 1 Ziwj),

Also, Hjj may be identified with the set of pairs (¢, ), where £ is a line in
C'*! and « is a hyperplane in C/*1 containing .

In particular, Hy = F/((C3), the flag manifold.

The projection H;; — CP’, (¢, ) — £, is a fibre bundle with fibre CP/~1.

V.
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Denote by p; and p, the projections of CP’ x CP/ onto its factors. Then
H*(CP' x CPY) = Z|x,y]/(x'Tt =0, y/T1 = 0)

where x = pici(77), y = p3c1(7), and 7 the tautological bundle.

Proposition

Hj; represents the geometric cobordism in CP' x CP/ corresponding
x +y € H*(CP" x CP/). In particular, the image of the fundamental class
(Hij) in Ho(i1j—1)(CP' x CP') is Poincaré dual to x + y.

Proof
We have x +y = c1(p5(7) @ p5(77)). The classifying map for pj(77) ® p3(7)
is the Segre embedding o: CP' x CP/ — CPU+DU+-1 _y Cpoo,

The codimension-2 submanifold in CP’ x CP’ corresponding to x + y is
the preimage o0 ~!(H) of a generally positioned hyperplane in
CPU+GFT)=1 The Milnor hypersurface Hj; is exactly o~ 1(H) for one
such hyperplane H. Ol
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j if i=0;
sivj—1[Hij] = {_("rf) if i>1.

Proof.

The stably complex structure on Hy; = CP/~! comes from the isomorphism
T(CPIY)aeCx=2i®-- @i (j summands) and x = ¢1(7), so have

| A\

§A[CPIY = i (CPITY) = |
Denote by v the normal bundle of ¢: Hj; < CP" x CP/. Then
T(Hj) @ v = (T(CP' x CPY)).
We have s;yj_1(v) = t*(x +y) ! and
Sitj—1(T(CP x CPI)) = (i + 1)x™H7 L 4 (j+ 1)y =0fori>1,s0
sij-1[Hj] = =sitj-1(v)(Hz) = —*(x + y)™ 71 {Hy)
= —(x+y)H(CP xCPy =-(*). O
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The bordism classes {[H;;],0 < i < j} generate the ring V.

p ifn=pk—1,

g.c.d.((”fl), 1<i g n) = {1

Now the previous calculation of s;1;_1[Hj;] implies that a certain integer
linear combination of bordism classes [Hj;] with i +j = n+1 has s;; ;1
equal p or 1, as needed for the polynomial generator a,. Ol

otherwise.

Example
o Y =7, generated by [CP!], as 1 = 2! — 1 and 5 [CP'] = 2;
o Y =7 @7, generated by [CP! x CP'] and [CP?], as2 =3 —1
and 5[CP?] = 3;
o [CP3] cannot be taken as the polynomial generator a3 € 02, since
s3[CP3] = 4, while s3(a3) = +2. We have a3 = [Ha] + [CP3].
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Formal group law of geometric cobordisms

The applications of formal group laws in cobordism theory build upon the
following fundamental construction due to Novikov.

Let X be a cell complex and u, v € U?(X) two geometric cobordisms
corresponding to elements x,y € H2(X) respectively. Denote by u +, v the
geometric cobordism corresponding to the cohomology class x + y.

Proposition
The following relation holds in U?(X):

u+,v="Fyluv)=u+v+ Z g kv,
k>1,1>1

.. —2(k+I—1) .

where the coefficients ayy € §2, do not depend on X. The series

Fu(u, v) is a formal group law over the complex cobordism ring (2.
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We first calculate on the universal example X = CP> x CP*°. Then

U*(CP> x CP™®) = 2y][u, v]],

where u, v are canonical geometric cobordisms given by the projections of
CP>° x CP* onto its factors.
We therefore have the following relation in U?(CP>° x CP>):

u+,v= E HK
k,I>0

where oy, € 9_2(k+l b,

Now let the geometric cobordisms u, v € U2(X) be given by maps

fu, i X — CP* respectively. Then u = (f, x £,)*(u), v=(f, x £,)*(v)
and v+, v = (f, x f,)*(u+,v), where f, x f,: X = CP> x CP*.
Applying the 2y-module map (f, x f,)* to the above expression gives the
required formula. O
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The series u +,,v = Fy(u, v) is called the formal group law of geometric
cobordisms, or simply the formal group law of complex cobordism.

By definition, the geometric cobordism u € U?(X) is the first Conner—Floyd
Chern class ¢/ (&) of the complex line bundle ¢ over X obtained by pulling
back the conjugate tautological bundle along the map f,: X — CP°.

It follows that the formal group law of geometric cobordisms gives an
expression of ¢/ (¢ ®n) € U(X) in terms of the classes u = ¢(¢) and
v = ¢(n) of the factors:

C1U(£ ®77) = FU(”? V)'
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Theorem (Buchstaber)
Zipo[Hij]UiVj
(Zr>O[CPr]ur) (ZS>O[CPS]VS) ’

where Hj; (0 < i < j) are Milnor hypersurfaces and H;; = Hj;.

Fu(u,v) =

Proof.

Consider the Poincaré—Atiyah duality map

D: U*(CP" x CP/) — Uy(ij)—2(CP" x CP/) and the augmentation
e: U,(CP" x CPJ) = U,(pt) = 12Y.

The composite eD: U2(CP' x CP/) — “(22U(i+j)72 takes geometric
cobordisms to the bordism classes of the corresponding submanifolds.
In particular, eD(u +,v) = [H;], eD(u*v!) = [CP=¥][CP/~"]. Applying
eD to u+,v = Fy(u,v) we get [Hy] = >, ; au[CP¥][CP/~']. Therefore,

> [Hglu'v = (Z akIUkVI) (Z[(Cpi_k]ui_k) (Z[@Pj_’]vf_’). O
i k1 i>k j>1
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Corollary

The coefficients of the formal group law of geometric cobordisms generate
the complex cobordism ring (2.

Theorem (Mishchenko)

The logarithm of the formal group law of geometric cobordisms is given by

uk+1

k+1

gu(u) =u+) [CPY

k>1

€ 2y @ Q[[u]].

Proof.

dgu(u) 1 B 1+ Zk>O[CPk]uk
du 8F%(‘7,v) 1 + Zi>0([Hi1] = [CPI][(CP’;l])U"'
v=0
Now [H;1] = [CP!][CP'~!] (by calculating the Chern numbers), which
gives dggiflu) =1+ ,-0[CPXuk. O

V.
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Theorem (Quillen)

The formal group law Fy of geometric cobordisms is universal.

Proof

Let F be the universal formal group law over a ring A. Then there is a
homomorphism r: A — (2 which takes F to Fy.

The series F, viewed as a f.g.|. over the ring A® Q, has the universality
property for all f.g.l. over Q-algebras. Writing the logarithm of F as

+1
> bk izt we obtain that A® Q = Q[br, by, .. .].

By Mishchenko's formula for the logarithm, r(by) = [CPK] € £2y. Since
Ny ® Q = Q[[CP],[CP?],.. ], this implies that r ® Q is an isomorphism.

By Lazard’s Theorem the ring A does not have torsion, so r is a
monomorphism. On the other hand, Buchstaber's formula for Fy(u, v)
implies that the image r(A) contains the bordism classes [H;;] € {2y,

0 <7 <. Since these classes generate the whole ring {2y, the map r is
onto and thus an isomorphism. O
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Hirzebruch genera (complex case)

Every homomorphism ¢: 2V — R from the complex bordism ring to a
commutative ring R with unit can be regarded as a multiplicative
characteristic of manifolds which is an invariant of bordism classes. Such a
homomorphism is called a (complex) R-genus.

Assume that the ring R does not have additive torsion. Then every
R-genus ¢ is fully determined by the corresponding homomorphism

Y ®Q — R® Q, which we shall also denote by ¢. A construction due to
Hirzebruch describes homomorphisms ¢: 2V ® Q — R ® Q by means of
universal R-valued characteristic classes of special type.
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Consider the evaluation homomorphism e: 2V — H,(BU) for tangential
characteristic numbers. Then e is a monomorphism, and
e®Q: NY®Q — H.(BU;Q) is an isomorphism.

It follows that every homomorphism ¢: 2V @ Q — R ® Q can be
interpreted as an element of Homq(H.(BU;Q), R ® Q) = H*(BU; Q) ® R,
or as a sequence of polynomials {Ki(c1,...,¢;), i = 0}, deg K; = 2i.

The fact that o is a ring homomorphism imposes certain conditions on the
sequence {K;}. These conditions may be described as follows: an identity

l+a+o+=Q+qg+c+-)-14+¢ +c+--+)
implies the identity

ZK,,(cl,...,c,,):ZK;(C{,...,, ZK s )

n=>0 i=0 j=0

A sequence K = {Ki(c1,...,¢i),i = 0} with Ky = 1 satisfying the
identities above is called a multiplicative Hirzebruch sequence.
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Proposition

A multiplicative sequence K is completely determined by the series
Q) =1+ aqx+ g2’ + - € R®Q[X]],

where x = ¢, and q; = K;(1,0,...,0); moreover, every series Q(x) as
above determines a multiplicative sequence.

Proof.
Indeed, by considering the identity

l+a+4+en=0+x) (14 xp)

we obtain from the multiplicative property that

Q(x1) - Q(xn) =14 Ki(c1) + Ko(cr, ) + - -
+Kn(C17...7Cn)+Kn+1(C1,...,Cn’O)—|-... X

\

23 / 34

Taras Panov (Moscow University) Lecture 2. Formal Groups and Genera 2—6 July 2018



Along with Q(x) it is convenient to consider the series
f(x) € R®Q[[x]] = x+--- given by the identity Q(x) = 7

Given a genus ¢: 2Y ® Q - R® Q, the corresponding Hirzebruch
sequence satisfies
Xi

f(xi)

Kn(ci, ..., cn) = degree-2n part of H € R®Q|[ct, ..., -
i=1

N x : .
We regard [/, ooy @s @ universal characteristic class of complex n-plane
bundles. Then the value of ¢ on an 2n-dimensional stably complex

manifold M is given by

o = (1 oy (TM) M)
i=1 \!

The Hirzebruch genus corresponding to a series f(x) = x+--- € R Q[[x]]
is the homomorphism ¢: 2V — R ® Q given by the formula above.
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Theorem

For every genus ¢: 2Y — R, the exponential of the formal group law
©(Fuy) is the series f(x) € R® Q[[x]] corresponding to .

This can be proved either directly, by appealing to the construction of
geometric cobordisms, or indirectly, by calculating the values of © on
projective spaces and comparing to the formula for the logarithm of the
formal group law.

The universal genus maps a stably complex manifold M to its bordism class
[M] € 2Y and therefore corresponds to the identity homomorphism

@Yy VU 5 Y.

Its corresponding series fiy(x) is the exponential of the universal formal
group law of geometric cobordisms.
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Example
We take R = Z in these examples.

1. The top Chern genus is given by c[M] = c,[M] for [M] € £2Y. We have
Q(x) =1+ x and f(x) = 175 Note that c[M] is the Euler characteristic
of M if [M] is the cobordism class of an almost complex manifold M.

2. The L-genus L[M] corresponds to the series f(x) = tanh(x). The
L-genus coincides with the signature sign(M) of the manifold by the
classical result of Hirzebruch. This can be seen by observing that
sign(CP?k) = 1 and sign(CP?*1) = 0 and calculating the functional
inverse series g(u) (the logarithm).

3. The Todd genus td[M] corresponds to the series f(x) =1 — e *. The
associated formal group law is given by F(u,v) = u+ v — uv, so the Todd
genus is integral on any complex bordism class.

The logarithm is given by —In(1 —u) =3, “Tk which implies

td[CPX] =1 for any k. The Q-series is

Q(x) = 1_);7 Zk>0( 1)kBk k.
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Example

4. Another important example from the original work of Hirzebruch is given
by the x,-genus. It corresponds to the series

1— e_X(1+}’)

0= e

where y is a parameter. Setting y = —1, y =0 and y = 1 we get ¢,[M],
the Todd genus td[M] and the L-genus L[M] = sign(M) respectively.

When working with graded rings, it is convenient to consider the
2-parameter homogeneous genus corresponding to

edX — ebx

aebx — peax’

f(x) = dega =degb = —2.

It is called the x, ,-genus.
One gets the original x,-genus by setting a=y, b= —1.
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Complex oriented theories

A multiplicative generalised cohomology theory X — h*(X) is complex
oriented if it has a choice of Euler class for every complex vector bundle.
Such a choice is determined by a choice of an element ¢f' € h?(CP>)
which restricts to 1 under the composite map

W (CP®) — R*(CPY) = K(pt).

cl' is called the universal first Chern class in the theory h*.

For a complex line bundle £ over X classified by a map f: X — BU(1), the
first Chern class is defined by cf'(¢&) = f*(cf') € h?(X).

Examples of complex oriented theories include ordinary cohomology,
complex K-theory and complex cobordism.
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Given two complex line bundles &, 1 over X with u = c(¢) and v = ¢/ (n),

Fh(u7 V) = C1h(§ ® 77)

is a formal group law over h*(pt), as in the case of complex cobordism.
The f.g.l. Fj is classified by a ring map 2y = U*(pt) — h*(pt) (a genus),
which extends to a transformation of cohomology theories U*(X) — h*(X).

Therefore, a complex oriented cohomology theory h* defines a formal group
law Fp, and the corresponding genus 2y — h*(pt).

On the other hand, given a genus ¢: 2y — R, one may try to define a
cohomology theory by setting h7,(X) = U*(X) ®q, R.

The functor X — h7(X) is homotopy invariant and has the excision
property. However, tensoring with R may fail to preserve exact sequences.
A criterion for h7,(X) to be a cohomology theory is given next.
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Define the n-th power in Fy as [n](u) = Fy([n — 1](u), u) and [0](u) = 0.
For each prime p, write
[P](U):,DU—}---'—|—t1up—{—-~~+t,,upn—}—--- ,

where t; € _(262(""_1).

Theorem (Landweber Exact Functor Theorem)

In order that U.(X) ®q, R be a homology theory, it suffices that for each
prime p, the sequence p,ti,...,t,,... of elements in 2y be R-regular.
That is, it is required that the multiplication by p on R, and by t, on
R/(pR + -+ ta—1R) for n > 1, be injective.

If the condition above is satisfied for the homomorphism 2V — h,(pt)
coming from a complex oriented homology theory h,, the theory h, is
called Landweber exact. In this case, the canonical transformation

U(X) @y he(pt) — he(X)

is an equivalence of homology theories.
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Example

1. The Thom homomorphism U* — H* gives rise to the augmentation
genus e: {2y — 7 sending each element of nonzero degree in {2 to zero.
It corresponds to the series f(x) = x.

The ordinary cohomology theory H* is not Landweber exact, because
e(t1) = 0 and hence the multiplication by t; is zero on Z/pZ. Indeed, it is
known that the identity U.(X) ®0, Z = H.(X) does not hold in general.

On the other hand, the rational cohomology theory H*(X; Q) is Landweber
exact; we have U,(X) ®p, Q = H.(X;Q). The reason is that Q/pQ = 0.

2. The Todd genus td: 2y — 7Z defines a {2y-module structure on 7,
which we denote by Z.4 for emphasis.
The p-th power in the corresponding formal group law is given by

[Pla(u) =1—-(1—-uv)P =pu+---+ uP,

so t; acts identically on Zyq/pZiq. Hence, Landweber’s Theorem applies,
and we get a cohomology theory U*(X) ®gq, Zid.
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Example

On the other hand, there is a natural transformation
pe: UM (X) = K*(X)

from complex cobordism to complex K-theory (graded mod 2), due to
Conner and Floyd. Since pc: 2y — K*(pt) is the same as the Todd
genus, the above transformation factors through a transformation

fic: US(X) ®0, Zya — K*(X)

which is an equivalence by the uniqueness theorem for cohomology theories.

We therefore obtain the celebrated result of Conner and Floyd which states
that complex cobordism determines complex K-theory.
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Example

We can also obtain Z-graded K-theory (which remembers the dimension of
complex line bundles) by a similar procedure.

Then we have K*(pt) = Z[3, 37!] where 8 = 1 — 7] as the Bott element in
K°(CP) = K—2(pt), deg B = —2.

We view Z[3, 371] as a graded £2y-module via the homomorphism
[M?"] s td[M?"]3". The corresponding formal group law has the p-th
power is given by

[pls(u) = pu+ -+ -+ BP7LuP.
Landweber’'s Theorem applies because the multiplication by 5P~ is an

isomorphism Z,[8, 371 — Z,[B, 7], and Z,[B8, 371]/(BP~L) = 0. We
therefore obtain an equivalence of cohomology theories

U*(X) ®q, ZI8, 7] = K*(X).

The conclusion is that both Z,- and Z-graded versions of complex
K-theory are Landweber exact.
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