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Elements of the theory of formal group laws

R a commutative ring with unit.
A formal power series F (u, v) ∈ R[[u, v ]] is called a (commutative
one-dimensional) formal group law over R if it satis�es

(a) F (u, 0) = u, F (0, v) = v ;

(b) F (F (u, v),w) = F (u,F (v ,w));

(c) F (u, v) = F (v , u).

The original example of a formal group law over a �eld k is provided by the
expansion near the unit of the multiplication map G × G → G in a
one-dimensional algebraic group over k. This also explains the terminology.

A formal group law F over R is linearisable if there exists a coordinate
change u 7→ gF (u) = u +

∑
i>1 giu

i+1 ∈ R[[u]] such that

gF (F (u, v)) = gF (u) + gF (v).
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Theorem

Every formal group law F is linearisable over R ⊗Q.

Proof.

Consider the series ω(u) = ∂F (u,w)
∂w

∣∣
w=0

. Applying ∂
∂w

∣∣
w=0

to both sides of
the identity F (F (u, v),w) = F (u,F (v ,w)) we obtain

ω(F (u, v)) =
∂F (F (u, v),w)

∂w

∣∣∣
w=0

=
∂F (u,F (v ,w))

∂F (v ,w)
·
∂F (v ,w)

∂w

∣∣∣
w=0

=
∂F (u, v)

∂v
ω(v).

We therefore have dv
ω(v) = dF (u,v)

ω(F (u,v)) , where u is a parameter. Set

g(u) =

∫ u

0

dv

ω(v)
.

Integrating the identity dv
ω(v) = dF (u,v)

ω(F (u,v)) we obtain

g(w) =

∫ w

0

dv

ω(v)
=

∫ w

0

dF (u, v)

ω(F (u, v))
=

∫ F (u,w)

u

dt

ω(t)
= g(F (u,w))− g(u),

so that g is a linearisation of F .

Taras Panov (Moscow University) Lecture 2. Formal Groups and Genera 2�6 July 2018 3 / 34



A series gF (u) = u +
∑

i>1 giu
i+1 satisfying gF (F (u, v)) = gF (u) + gF (v)

is called the logarithm of the formal group law F . Its functional inverse
series fF (t) ∈ R ⊗Q[[t]] is the exponential of F , so we have
F (u, v) = fF (gF (u) + gF (v)) over R ⊗Q.

If R does not have torsion (i.e. R → R ⊗Q is monomorphic), then a
formal group law is fully determined by its logarithm.

Example

The multiplicative formal group law is the series

F (u, v) = (1 + u)(1 + v)− 1 = u + v + uv .

There is a 1-parameter graded extension given by

Fβ(u, v) = u + v − βuv , deg β = −2,

with coe�cients in Z[β]. Its exponential and logarithm are given by

f (x) =
1− e−βx

β
, g(u) = − ln(1− βu)

β
∈ Q[β].
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Example

Another classical example comes from the theory of elliptic functions.
There is a unique meromorphic function f (x) with f (0) = 0 and f ′(0) = 1
satisfying the di�erential equation

(f ′(x))2 = 1− 2δf 2(x) + εf 4(x)

with δ, ε ∈ C. This function provides a uniformisation for the Jacobi model
y2 = 1− 2δx2 + εx4 of an elliptic curve. When the discriminant

∆ = ε(δ2 − ε)

is nonzero, the elliptic curve is nondegenerate, and f (x) is a doubly
periodic function known as the Jacobi elliptic sine and denoted by sn(x).
Its inverse is given by the elliptic integral

g(u) =

∫ u

0

dt√
1− 2δt2 + εt4

.
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Example

There is the following Euler's expression for the addition formula for sn(x):

Fell(u, v) = sn(x + y) =
u
√
1− 2δv2 + εv4 + v

√
1− 2δu2 + εu4

1− εu2v2
,

where u = sn x , v = sn y . It de�nes the elliptic formal group law, with
exponential sn(x) and logarithm g(u) as above.

Viewing δ, ε as formal parameters with deg δ = −4, deg ε = −8, we obtain
the universal elliptic formal group law over the ring Z[1

2
][δ, ε].

Degeneration ε = 0 gives the addition formula for f (x) = sin
√
2δx√
2δ

, while

degeneration ε = δ2 gives the addition formula for f (x) = tanh
√
δx√

δ
.
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Given a ring homomorphism r : R → R ′ and a f.g.l. F =
∑

k,l aklu
kv l over

R , we obtain a f.g.l. r(F ) :=
∑

k,l r(akl)u
kv l ∈ R ′[[u, v ]] over R ′.

A formal group law F over a ring A is universal if for any f.g.l. F over any
ring R there exists a unique homomorphism r : A→ R such that F = r(F).

Proposition

A universal formal group law F(u, v) = u + v +
∑

k>1,l>1 aklu
kv l exists,

and its coe�cient ring is the quotient

A = Z[ akl : k > 1, l > 1]/I, deg akl = −2(k + l − 1),

of the graded polynomial ring by the graded `associativity ideal' I,
generated by the coe�cients of the formal power series

F(F(u, v),w)−F(u,F(v ,w)).

Furthermore, F is unique: if F ′ is another universal formal group law over

A′, then there is an isomorphism r : A→ A′ such that F ′ = r(F).
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Note that the de�nition of a formal group law does not assume any grading
of the coe�cient ring; however, the coe�cient ring of the universal formal
group law turns out to be naturally graded.

Natural grading: deg u = deg v = 2, deg akl = −2(k + l − 1);
then the whole expression

F(u, v) = u + v +
∑

k>1,l>1

aklu
kv l

is homogeneous of degree 2.

Theorem (Lazard)

The coe�cient ring A of the universal formal group law F is isomorphic to

the graded polynomial ring Z[a1, a2, . . .] on an in�nite number of

generators, deg ai = −2i .
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Construction (geometric cobordisms)

For any cell complex X , have H2(X ) = [X ,CP∞]. Since CP∞ = MU(1),
every element x ∈ H2(X ) determines a cobordism class ux ∈ U2(X ), a
geometric cobordism. Hence, H2(X ) ⊂ U2(X ) (a subset, not a subgroup!)

When X is a manifold, each ux ∈ U2(X ) corresponds to a submanifold
M ⊂ X of codimension 2 with a complex structure on the normal bundle.

Indeed, x ∈ H2(X ) corresponds to a homotopy class of fx : X → CP∞.
May assume fx(X ) is transverse to a hyperplane H ⊂ CPN ⊂ CP∞. Then
Mx = f −1x (H) is a codimension-2 submanifold in X .
A homotopy of fx gives a cobordism of Mx → X .

Conversely, given an embedding i : M ⊂ X as above, the composite
X → Th(ν)→ MU(1) = CP∞ of the Pontryagin�Thom collapse map and
the classifying map for ν de�nes an element xM ∈ H2(X ), and therefore a
geometric cobordism.

If X is oriented, then i∗〈M〉 ∈ H∗(X ) is Poincar�e dual to xM ∈ H2(X ).
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Ring generators for ΩU

As we have seen, the characteristic number sn vanishes on decomposable
elements of ΩU . Furthermore, this characteristic number detects
indecomposables that may be chosen as polynomial generators:

Theorem

A bordism class [M] ∈ ΩU
2n may be chosen as a polynomial generator an of

the ring ΩU if and only if

sn[M] =

{
±1 if n 6= pk − 1 for any prime p;

±p if n = pk − 1 for some prime p.

There is no universal description of manifolds representing the polynomial
generators an ∈ ΩU . On the other hand, there is a particularly nice family
of manifolds whose bordism classes generate the whole ring ΩU . This
family is redundant though, so there are algebraic relations between their
bordism classes.
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Construction (Milnor hypersurfaces)

The Milnor hypersurface in CP i × CP j (0 6 i 6 j) is

Hij = {(z0 : · · · : zi )× (w0 : · · · : wj) ∈ CP i ×CP j : z0w0 + · · ·+ ziwi = 0}

Note that H0j
∼= CP j−1.

More intrinsically, Hij is a hyperplane section of the Segre embedding

σ : CP i × CP j → CP(i+1)(j+1)−1,

(z0 : · · · : zi )× (w0 : · · · : wj) 7→ (z0w0 : z0w1 : · · · : zkwl : · · · : ziwj),

Also, Hij may be identi�ed with the set of pairs (`, α), where ` is a line in
Ci+1 and α is a hyperplane in Cj+1 containing `.
In particular, H22 = Fl(C3), the �ag manifold.
The projection Hij → CP i , (`, α) 7→ `, is a �bre bundle with �bre CP j−1.
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Denote by p1 and p2 the projections of CP i × CP j onto its factors. Then

H∗(CP i × CP j) = Z[x , y ]/(x i+1 = 0, y j+1 = 0)

where x = p∗1c1(η̄), y = p∗2c1(η̄), and η the tautological bundle.

Proposition

Hij represents the geometric cobordism in CP i × CP j corresponding

x + y ∈ H2(CP i × CP j). In particular, the image of the fundamental class

〈Hij〉 in H2(i+j−1)(CP i × CP j) is Poincar�e dual to x + y .

Proof.

We have x + y = c1(p∗1(η̄)⊗ p∗2(η̄)). The classifying map for p∗1(η̄)⊗ p∗2(η̄)
is the Segre embedding σ : CP i × CP j → CP(i+1)(j+1)−1 → CP∞.
The codimension-2 submanifold in CP i × CP j corresponding to x + y is
the preimage σ−1(H) of a generally positioned hyperplane in
CP(i+1)(j+1)−1. The Milnor hypersurface Hij is exactly σ

−1(H) for one
such hyperplane H.
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Lemma

si+j−1[Hij ] =

{
j if i = 0;

−
(i+j

i

)
if i > 1.

Proof.

The stably complex structure on H0j = CP j−1 comes from the isomorphism
T (CP j−1)⊕ C ∼= η̄ ⊕ · · · ⊕ η̄ (j summands) and x = c1(η̄), so have

sj−1[CP j−1] = jx j−1〈CP j−1〉 = j .

Denote by ν the normal bundle of ι : Hij ↪→ CP i × CP j . Then

T (Hij)⊕ ν = ι∗(T (CP i × CP j)).

We have si+j−1(ν) = ι∗(x + y)i+j−1 and
si+j−1(T (CP i × CP j)) = (i + 1)x i+j−1 + (j + 1)y i+j−1 = 0 for i > 1, so

si+j−1[Hij ] = −si+j−1(ν)〈Hij〉 = −ι∗(x + y)i+j−1〈Hij〉
= −(x + y)i+j〈CP i × CP j〉 = −

(i+j
i

)
.
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Theorem

The bordism classes {[Hij ], 0 6 i 6 j} generate the ring ΩU .

Proof.

g.c.d.
((n+1

i

)
, 1 6 i 6 n

)
=

{
p if n = pk − 1,

1 otherwise.

Now the previous calculation of si+j−1[Hij ] implies that a certain integer
linear combination of bordism classes [Hij ] with i + j = n + 1 has si+j−1
equal p or 1, as needed for the polynomial generator an.

Example

ΩU
2 = Z, generated by [CP1], as 1 = 21 − 1 and s1[CP1] = 2;

ΩU
4 = Z⊕ Z, generated by [CP1 × CP1] and [CP2], as 2 = 31 − 1

and s2[CP2] = 3;

[CP3] cannot be taken as the polynomial generator a3 ∈ ΩU
6 , since

s3[CP3] = 4, while s3(a3) = ±2. We have a3 = [H22] + [CP3].
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Formal group law of geometric cobordisms

The applications of formal group laws in cobordism theory build upon the
following fundamental construction due to Novikov.

Let X be a cell complex and u, v ∈ U2(X ) two geometric cobordisms
corresponding to elements x , y ∈ H2(X ) respectively. Denote by u +

H
v the

geometric cobordism corresponding to the cohomology class x + y .

Proposition

The following relation holds in U2(X ):

u +
H
v = FU(u, v) = u + v +

∑
k>1, l>1

αkl u
kv l ,

where the coe�cients αkl ∈ Ω
−2(k+l−1)
U do not depend on X . The series

FU(u, v) is a formal group law over the complex cobordism ring ΩU .
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Proof.

We �rst calculate on the universal example X = CP∞ × CP∞. Then

U∗(CP∞ × CP∞) = ΩU [[u, v ]],

where u, v are canonical geometric cobordisms given by the projections of
CP∞ × CP∞ onto its factors.
We therefore have the following relation in U2(CP∞ × CP∞):

u +
H
v =

∑
k,l>0

αkl u
kv l ,

where αkl ∈ Ω
−2(k+l−1)
U .

Now let the geometric cobordisms u, v ∈ U2(X ) be given by maps
fu, fv : X → CP∞ respectively. Then u = (fu × fv )∗(u), v = (fu × fv )∗(v)
and u +

H
v = (fu × fv )∗(u +

H
v), where fu × fv : X → CP∞ × CP∞.

Applying the ΩU -module map (fu × fv )∗ to the above expression gives the
required formula.
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The series u +
H
v = FU(u, v) is called the formal group law of geometric

cobordisms, or simply the formal group law of complex cobordism.

By de�nition, the geometric cobordism u ∈ U2(X ) is the �rst Conner�Floyd
Chern class cU1 (ξ) of the complex line bundle ξ over X obtained by pulling
back the conjugate tautological bundle along the map fu : X → CP∞.

It follows that the formal group law of geometric cobordisms gives an
expression of cU1 (ξ ⊗ η) ∈ U2(X ) in terms of the classes u = cU1 (ξ) and
v = cU1 (η) of the factors:

cU1 (ξ ⊗ η) = FU(u, v).
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Theorem (Buchstaber)

FU(u, v) =

∑
i ,j>0[Hij ]u

iv j(∑
r>0[CP r ]ur

)(∑
s>0[CPs ]v s

) ,
where Hij (0 6 i 6 j) are Milnor hypersurfaces and Hji = Hij .

Proof.

Consider the Poincar�e�Atiyah duality map
D : U2(CP i × CP j)→ U2(i+j)−2(CP i × CP j) and the augmentation

ε : U∗(CP i × CP j)→ U∗(pt) = ΩU .
The composite εD : U2(CP i × CP j)→ ΩU

2(i+j)−2 takes geometric

cobordisms to the bordism classes of the corresponding submanifolds.
In particular, εD(u +

H
v) = [Hij ], εD(ukv l) = [CP i−k ][CP j−l ]. Applying

εD to u +
H
v = FU(u, v) we get [Hij ] =

∑
k, l αkl [CP i−k ][CP j−l ].Therefore,

∑
i ,j

[Hij ]u
iv j =

(∑
k, l

αklu
kv l
)(∑

i>k

[CP i−k ]ui−k
)(∑

j>l

[CP j−l ]v j−l
)
.
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Corollary

The coe�cients of the formal group law of geometric cobordisms generate

the complex cobordism ring ΩU .

Theorem (Mishchenko)

The logarithm of the formal group law of geometric cobordisms is given by

gU(u) = u +
∑
k>1

[CPk ]
uk+1

k + 1
∈ ΩU ⊗Q[[u]].

Proof.

dgU(u)

du
=

1
∂FU(u,v)

∂v

∣∣∣
v=0

=
1 +

∑
k>0[CPk ]uk

1 +
∑

i>0([Hi1]− [CP1][CP i−1])ui
.

Now [Hi1] = [CP1][CP i−1] (by calculating the Chern numbers), which

gives dgU(u)
du = 1 +

∑
k>0[CPk ]uk .
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Theorem (Quillen)

The formal group law FU of geometric cobordisms is universal.

Proof.

Let F be the universal formal group law over a ring A. Then there is a
homomorphism r : A→ ΩU which takes F to FU .

The series F , viewed as a f.g.l. over the ring A⊗Q, has the universality
property for all f.g.l. over Q-algebras. Writing the logarithm of F as∑

bk
uk+1

k+1
we obtain that A⊗Q = Q[b1, b2, . . .].

By Mishchenko's formula for the logarithm, r(bk) = [CPk ] ∈ ΩU . Since
ΩU ⊗Q ∼= Q[[CP1], [CP2], . . .], this implies that r ⊗Q is an isomorphism.

By Lazard's Theorem the ring A does not have torsion, so r is a
monomorphism. On the other hand, Buchstaber's formula for FU(u, v)
implies that the image r(A) contains the bordism classes [Hij ] ∈ ΩU ,
0 6 i 6 j . Since these classes generate the whole ring ΩU , the map r is
onto and thus an isomorphism.
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Hirzebruch genera (complex case)

Every homomorphism ϕ : ΩU → R from the complex bordism ring to a
commutative ring R with unit can be regarded as a multiplicative
characteristic of manifolds which is an invariant of bordism classes. Such a
homomorphism is called a (complex) R-genus.

Assume that the ring R does not have additive torsion. Then every
R-genus ϕ is fully determined by the corresponding homomorphism
ΩU ⊗Q→ R ⊗Q, which we shall also denote by ϕ. A construction due to
Hirzebruch describes homomorphisms ϕ : ΩU ⊗Q→ R ⊗Q by means of
universal R-valued characteristic classes of special type.
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Consider the evaluation homomorphism e : ΩU → H∗(BU) for tangential
characteristic numbers. Then e is a monomorphism, and
e ⊗Q : ΩU ⊗Q→ H∗(BU;Q) is an isomorphism.

It follows that every homomorphism ϕ : ΩU ⊗Q→ R ⊗Q can be
interpreted as an element of HomQ(H∗(BU;Q),R ⊗Q) = H∗(BU;Q)⊗ R,
or as a sequence of polynomials {Ki (c1, . . . , ci ), i > 0}, degKi = 2i .

The fact that ϕ is a ring homomorphism imposes certain conditions on the
sequence {Ki}. These conditions may be described as follows: an identity

1 + c1 + c2 + · · · = (1 + c ′1 + c ′2 + · · · ) · (1 + c ′′1 + c ′′2 + · · · )

implies the identity∑
n>0

Kn(c1, . . . , cn) =
∑
i>0

Ki (c
′
1, . . . , c

′
i ) ·
∑
j>0

Kj(c
′′
1 , . . . , c

′′
j ).

A sequence K = {Ki (c1, . . . , ci ), i > 0} with K0 = 1 satisfying the
identities above is called a multiplicative Hirzebruch sequence.

Taras Panov (Moscow University) Lecture 2. Formal Groups and Genera 2�6 July 2018 22 / 34



Proposition

A multiplicative sequence K is completely determined by the series

Q(x) = 1 + q1x + q2x
2 + · · · ∈ R ⊗Q[[x ]],

where x = c1, and qi = Ki (1, 0, . . . , 0); moreover, every series Q(x) as

above determines a multiplicative sequence.

Proof.

Indeed, by considering the identity

1 + c1 + · · ·+ cn = (1 + x1) · · · (1 + xn)

we obtain from the multiplicative property that

Q(x1) · · ·Q(xn) = 1 + K1(c1) + K2(c1, c2) + · · ·
+ Kn(c1, . . . , cn) + Kn+1(c1, . . . , cn, 0) + · · · .
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Along with Q(x) it is convenient to consider the series
f (x) ∈ R ⊗Q[[x ]] = x + · · · given by the identity Q(x) = x

f (x) .

Given a genus ϕ : ΩU ⊗Q→ R ⊗Q, the corresponding Hirzebruch
sequence satis�es

Kn(c1, . . . , cn) = degree-2n part of
n∏

i=1

xi
f (xi )

∈ R ⊗Q[[c1, . . . , cn]].

We regard
∏n

i=1
xi

f (xi )
as a universal characteristic class of complex n-plane

bundles. Then the value of ϕ on an 2n-dimensional stably complex
manifold M is given by

ϕ[M] =
( n∏
i=1

xi
f (xi )

(TM)
)
〈M〉.

The Hirzebruch genus corresponding to a series f (x) = x + · · · ∈ R ⊗Q[[x ]]
is the homomorphism ϕ : ΩU → R ⊗Q given by the formula above.
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Theorem

For every genus ϕ : ΩU → R , the exponential of the formal group law

ϕ(FU) is the series f (x) ∈ R ⊗Q[[x ]] corresponding to ϕ.

This can be proved either directly, by appealing to the construction of
geometric cobordisms, or indirectly, by calculating the values of ϕ on
projective spaces and comparing to the formula for the logarithm of the
formal group law.

Example

The universal genus maps a stably complex manifold M to its bordism class
[M] ∈ ΩU and therefore corresponds to the identity homomorphism
ϕU : ΩU → ΩU .
Its corresponding series fU(x) is the exponential of the universal formal
group law of geometric cobordisms.
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Example

We take R = Z in these examples.

1. The top Chern genus is given by c[M] = cn[M] for [M] ∈ ΩU
2n. We have

Q(x) = 1 + x and f (x) = x
1+x . Note that c[M] is the Euler characteristic

of M if [M] is the cobordism class of an almost complex manifold M.

2. The L-genus L[M] corresponds to the series f (x) = tanh(x). The
L-genus coincides with the signature sign(M) of the manifold by the
classical result of Hirzebruch. This can be seen by observing that
sign(CP2k) = 1 and sign(CP2k+1) = 0 and calculating the functional
inverse series g(u) (the logarithm).

3. The Todd genus td[M] corresponds to the series f (x) = 1− e−x . The
associated formal group law is given by F (u, v) = u + v − uv , so the Todd
genus is integral on any complex bordism class.
The logarithm is given by − ln(1− u) =

∑
k>1

uk

k , which implies

td[CPk ] = 1 for any k . The Q-series is

Q(x) = x
1−e−x =

∑
k>0(−1)k Bk

k! x
k .
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Example

4. Another important example from the original work of Hirzebruch is given
by the χy -genus. It corresponds to the series

f (x) =
1− e−x(1+y)

1 + ye−x(1+y)
,

where y is a parameter. Setting y = −1, y = 0 and y = 1 we get cn[M],
the Todd genus td[M] and the L-genus L[M] = sign(M) respectively.

When working with graded rings, it is convenient to consider the
2-parameter homogeneous genus corresponding to

f (x) =
eax − ebx

aebx − beax
, deg a = deg b = −2.

It is called the χa,b-genus.
One gets the original χy -genus by setting a = y , b = −1.

Taras Panov (Moscow University) Lecture 2. Formal Groups and Genera 2�6 July 2018 27 / 34



Complex oriented theories

A multiplicative generalised cohomology theory X 7→ h∗(X ) is complex
oriented if it has a choice of Euler class for every complex vector bundle.
Such a choice is determined by a choice of an element ch1 ∈ h̃2(CP∞)
which restricts to 1 under the composite map

h̃2(CP∞)→ h̃2(CP1) ∼= h0(pt).

ch1 is called the universal �rst Chern class in the theory h∗.
For a complex line bundle ξ over X classi�ed by a map f : X → BU(1), the
�rst Chern class is de�ned by ch1 (ξ) = f ∗(ch1 ) ∈ h̃2(X ).

Examples of complex oriented theories include ordinary cohomology,
complex K -theory and complex cobordism.
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Given two complex line bundles ξ, η over X with u = cU1 (ξ) and v = cU1 (η),

Fh(u, v) = ch1 (ξ ⊗ η)

is a formal group law over h∗(pt), as in the case of complex cobordism.
The f.g.l. Fh is classi�ed by a ring map ΩU = U∗(pt)→ h∗(pt) (a genus),
which extends to a transformation of cohomology theories U∗(X )→ h∗(X ).

Therefore, a complex oriented cohomology theory h∗ de�nes a formal group
law Fh and the corresponding genus ΩU → h∗(pt).

On the other hand, given a genus ϕ : ΩU → R , one may try to de�ne a
cohomology theory by setting h∗ϕ(X ) = U∗(X )⊗ΩU

R .

The functor X 7→ h∗ϕ(X ) is homotopy invariant and has the excision
property. However, tensoring with R may fail to preserve exact sequences.
A criterion for h∗ϕ(X ) to be a cohomology theory is given next.
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De�ne the n-th power in FU as [n](u) = FU([n − 1](u), u) and [0](u) = 0.
For each prime p, write

[p](u) = pu + · · ·+ t1u
p + · · ·+ tnu

pn + · · · ,

where ti ∈ Ω
−2(pn−1)
U .

Theorem (Landweber Exact Functor Theorem)

In order that U∗(X )⊗ΩU
R be a homology theory, it su�ces that for each

prime p, the sequence p, t1, . . . , tn, . . . of elements in ΩU be R-regular.

That is, it is required that the multiplication by p on R , and by tn on

R/(pR + · · ·+ tn−1R) for n > 1, be injective.

If the condition above is satis�ed for the homomorphism ΩU → h∗(pt)
coming from a complex oriented homology theory h∗, the theory h∗ is
called Landweber exact. In this case, the canonical transformation

U∗(X )⊗ΩU
h∗(pt) −→ h∗(X )

is an equivalence of homology theories.
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Example

1. The Thom homomorphism U∗ → H∗ gives rise to the augmentation
genus ε : ΩU → Z sending each element of nonzero degree in ΩU to zero.
It corresponds to the series f (x) = x .
The ordinary cohomology theory H∗ is not Landweber exact, because
ε(t1) = 0 and hence the multiplication by t1 is zero on Z/pZ. Indeed, it is
known that the identity U∗(X )⊗ΩU

Z = H∗(X ) does not hold in general.

On the other hand, the rational cohomology theory H∗(X ;Q) is Landweber
exact; we have U∗(X )⊗ΩU

Q = H∗(X ;Q). The reason is that Q/pQ = 0.

2. The Todd genus td : ΩU → Z de�nes a ΩU -module structure on Z,
which we denote by Ztd for emphasis.
The p-th power in the corresponding formal group law is given by

[p]td(u) = 1− (1− u)p = pu + · · ·+ up,

so t1 acts identically on Ztd/pZtd. Hence, Landweber's Theorem applies,
and we get a cohomology theory U∗(X )⊗ΩU

Ztd.
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Example

On the other hand, there is a natural transformation

µc : U∗(X )→ K ∗(X )

from complex cobordism to complex K -theory (graded mod 2), due to
Conner and Floyd. Since µc : ΩU → K ∗(pt) is the same as the Todd
genus, the above transformation factors through a transformation

µ̃c : U∗(X )⊗ΩU
Ztd → K ∗(X )

which is an equivalence by the uniqueness theorem for cohomology theories.

We therefore obtain the celebrated result of Conner and Floyd which states
that complex cobordism determines complex K -theory.
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Example

We can also obtain Z-graded K -theory (which remembers the dimension of
complex line bundles) by a similar procedure.

Then we have K ∗(pt) = Z[β, β−1] where β = 1− η̄ as the Bott element in
K̃ 0(CP1) = K−2(pt), deg β = −2.

We view Z[β, β−1] as a graded ΩU -module via the homomorphism
[M2n] 7→ td[M2n]βn. The corresponding formal group law has the p-th
power is given by

[p]β(u) = pu + · · ·+ βp−1up.

Landweber's Theorem applies because the multiplication by βp−1 is an
isomorphism Zp[β, β−1]→ Zp[β, β−1], and Zp[β, β−1]/(βp−1) = 0. We
therefore obtain an equivalence of cohomology theories

U∗(X )⊗ΩU
Z[β, β−1]

∼=−→ K ∗(X ).

The conclusion is that both Z2- and Z-graded versions of complex
K -theory are Landweber exact.
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