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Bordism of manifolds

All manifolds M are smooth and closed, unless otherwise speci�ed.

M1 and M2 are (co)bordant (notation: M1 ∼ M2) if there exists a manifold
W n+1 with boundary such that ∂W n+1 = M1 tM2.

Bordism ∼ is an equivalence relation.

Indeed, M ∼ M with W = M × [0, 1];
M1 ∼ M2 ⇒ M2 ∼ M1 obvious;
M1 ∼ M2 & M2 ∼ M3 =⇒ M1 ∼ M3 as shown below.
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Denote by [M] the bordism equivalence class of M.
ΩO
n = {[Mn]} the set of bordism classes of n-dimensional manifolds.

ΩO
n is an abelian group: [M1] + [M2] = [M1 tM2], 0 = [∅].

We have ∂(M × I ) = M tM, so 2[M] = 0 and ΩO
n is a 2-torsion group.

Set ΩO =
⊕

n>0Ω
O
n . The product [M1]× [M2] = [M1 ×M2] makes ΩO a

graded commutative ring, the unoriented bordism ring.
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For any space X the bordism relation can be extended to maps M → X of
manifolds to X :
two maps M1 → X and M2 → X are bordant if there is a bordism W
between M1 and M2 with a map W → X extending M1 tM2 → X .

The set of bordism classes of maps M → X with dimM = n is the
n-dimensional unoriented bordism group of X , denoted On(X )
(other notation: Nn(X ), MOn(X )).

We have On(pt) = ΩO
n , where pt is a point.

There is a homomorphism ΩO
m × On(X )→ Om+n(X ) turning

O∗(X ) =
⊕

n>0On(X ) into a graded ΩO -module.

The assignment X 7→ O∗(X ) de�nes a generalised homology theory, that
is, it is functorial in X , homotopy invariant, has the excision property and
exact sequences of pairs.
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Pontryagin�Thom construction

ξ : E → X an n-dimensional real vector bundle over compact Hausdor� X .
Th ξ = BE/SE the Thom space (a one-point compacti�cation of E ).

ηk : EO(k)→ BO(k) be the universal vector k-plane bundle.
Following the original notation of Thom, we denote MO(k) = Th ηk .

Mn ⊂ Rn+k a submanifold with normal bundle ν.
The Pontryagin�Thom map Sn+k → Th ν collapses the complement of a
tubular neighbourhood of Mk in Rn+k to the basepoint of Th ν.

Composing with the classifying map ν → ηk obtain a map
Sn+k → Th ν → MO(k).

Conversely, given a map f : Sn+k → MO(k), we change it in its homotopy
class so that it becomes transverse to the zero section BO(k) ⊂ MO(k).
Then M := f −1(BO(k)) ⊂ Sn+k is an embedded n-manifold.
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Changing f : Sn+k → MO(k) produces bordant manifolds M.
The result is the Thom isomorphism

ΩO
n
∼= lim

k→∞
πk+n

(
MO(k)

)
.

This generalises to bordism of maps M → X as

On(X ) ∼= lim
k→∞

πk+n

(
(X+) ∧MO(k)

)
where X+ = X t pt.

The cobordism groups of X are de�ned dually:

On(X ) = lim
k→∞

[
Σk−n(X+),MO(k)

]
.

It follows that On(pt) = O−n(pt). The graded ring Ω∗O with
Ω−nO := O−n(pt) = ΩO

n is called the unoriented cobordism ring. It has
nonzero elements only in nonpositively graded components.
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Oriented bordism

The bordism relation may be extended to manifolds endowed with some
additional structure, which leads to important bordism theories.

The simplest additional structure is an orientation. Two oriented
n-dimensional manifolds M1 and M2 are oriented bordant if there is an
oriented (n + 1)-dimensional manifold W with boundary such that
∂W = M1 tM2, where M2 denotes M2 with the orientation reversed.

The oriented bordism groups ΩSO
n and the oriented bordism ring

ΩSO =
⊕

n>0Ω
SO
n are de�ned accordingly.

Given an oriented manifold M, the manifold M × I has the canonical
orientation such that ∂(M × I ) = M tM. Hence, −[M] = [M] in ΩSO

n .
Unlike ΩO

n , elements of ΩSO generally do not have order 2.
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Stably complex structures

A tangential stably complex structure on M is determined by a choice of an
isomorphism

cT : TM ⊕ Rk ∼=−−→ ξ

between the stable tangent bundle and a complex vector bundle ξ over M.

Stably complex structures are equivalent if they di�er by adding trivial
complex summands and composing with isomorphisms of complex bundles.
The equivalence class of cT is the equivalence class of a lift

BU(N)

��
M //

;;

BO(2N)

of the classifying map for TM to BU(N) up to homotopy and stabilisation.
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A tangential stably complex manifold is a pair (M, cT ).

Example

The standard complex structure on CP1 is equivalent to the stably complex
structure determined by the isomorphism

T CP1 ⊕ R2
∼=−→ η̄ ⊕ η̄

where η is the tautological line bundle.

On the other hand, one can view CP1 as S2 embedded into R4 ∼= C2 with
trivial normal bundle. We therefore have an isomorphism

T CP1 ⊕ R2
∼=−→ C2 ∼= η̄ ⊕ η

which determines a trivial stably complex structure on CP1 ∼= S2.

A normal stably complex structure on M is determined by a choice of a
complex bundle structure on the normal bundle ν(M) of an embedding
M ↪→ RN . Tangential and normal stably complex structures on M
determine each other by means of the isomorphism TM ⊕ ν(M) ∼= RN .
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Complex bordism

The bordism relation can be de�ned between stably complex manifolds.
The n-dimensional complex bordism group ΩU

n consists of bordism classes
of [Mn, cT ] of stably complex n-manifolds.

The opposite element to [M, cT ] ∈ ΩU
n may be represented by the same M

with the stably complex structure determined by the isomorphism

TM ⊕ Rk ⊕ C cT ⊕τ−−−→ ξ ⊕ C

where τ : C→ C is the complex conjugation.

The direct product of stably complex manifolds turns ΩU =
⊕

n>0Ω
U
n into

a graded ring, the complex bordism ring.
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The complex bordism groups Un(X ) and cobordism groups Un(X ) may be
de�ned homotopically as

Un(X ) = lim
k→∞

π2k+n

(
(X+) ∧MU(k)

)
,

Un(X ) = lim
k→∞

[
Σ2k−n(X+),MU(k)

]
,

where MU(k) is the Thom space of the universal complex k-plane bundle
over BU(k). Here the direct limit uses the maps Σ2MU(k)→ MU(k + 1).

These groups are ΩU
∗ -modules and give rise to a multiplicative

(co)homology theory. In particular, U∗(X ) =
∏

n U
n(X ) is a graded ring.

Ω∗U with Ωn
U = ΩU

−n = Un(pt) is the complex cobordism ring; it has
nontrivial elements only in nonpositively graded components.

Taras Panov (Moscow University) Lecture 1. Bordism and Cobordism 2�6 July 2018 11 / 29



Characteristic classes and numbers

The classifying space BU(m) of complex m-plane has

H∗(BU(m)) = Z[c1, . . . , cm], deg ci = 2i .

ci ∈ H2i (BU(m)) the universal Chern characteristic classes.

ξ a complex m-plane bundle ξ over X classi�ed by a map f : X → BU(m).
The ith Chern characteristic class of ξ is ci (ξ) = f ∗(ci ) ∈ H2i (X ).
The total Chern class of ξ is

c(ξ) = 1 + c1(ξ) + · · ·+ cn(ξ).

Chern classes are determined uniquely by their functoriality,
Whitney sum formula c(ξ ⊕ η) = c(ξ)c(η)
and normalisation: c1(η̄) = u ∈ H2(CPn) dual to CPn−1 ⊂ CPn.
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(M, cT ) a 2n-dimensional stably complex manifold.

Given a polynomial in Chern classes c ∈ Z[c1, . . . , cn] of degree 2n,
the corresponding tangential Chern number c[M] ∈ Z is the result of
pairing of c(TM) ∈ H2n(M) with the fundamental class 〈M〉 ∈ H2n(M).
The number c[M] depends only on the complex bordism class of M.

Tangential Stiefel�Whitney numbers w [M] ∈ Z2 of n-manifolds and
Pontryagin numbers p[M] ∈ Z of oriented 4n-manifolds are de�ned
similarly; they are unoriented and oriented bordism invariants, respectively.

M ↪→ RN an embedding with a �xed complex structure in the normal
bundle ν, classi�ed by a map g : M → BU(k).
The normal Chern number c̄[M] corresponding to
c ∈ H∗(BU(k)) = Z[c1, . . . , ck ] is de�ned as c̄[M] := (g∗c)〈M〉.
Normal Stiefel�Whitney and Pontryagin numbers are de�ned similarly.
As we have TM ⊕ ν = RN , the tangential and normal characteristic
numbers determine each other.
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We proceed to describe two di�erent ways of encoding characteristic
classes and numbers by integer vectors.

We consider nonnegative integer vectors ω = (i1, . . . , in) and denote

‖ω‖ =
n∑

k=1

k ik .

Vectors ω = (i1, . . . , in) encode partitions of ‖ω‖ into a sum of positive
integers; the kth component ik of ω is the number of summands k .

To each ω = (i1, . . . , in) one assigns the universal characteristic class

cω = c i11 c
i2
2 · · · c

in
n ∈ H2‖ω‖(BU(n)).

Another way of assigning a characteristic class to an integer vector is
described next.
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ξ be a complex n-plane bundle over a manifold M. Write formally

c(ξ) = 1 + c1(ξ) + · · ·+ cn(ξ) = (1 + t1) · · · (1 + tn),

so that ci (ξ) = σi (t1, . . . , tn) is the ith elementary symmetric function.

These indeterminates t1, . . . , tn acquire a geometric meaning if ξ is a sum
ξ1 ⊕ · · · ⊕ ξn of line bundles; then tj = c1(ξj), 1 6 j 6 n.
The canonical �bre bundle BT n → BU(n) induces an embedding of
H∗(BU(n)) = Z[c1, . . . , cn] in H∗(BT n) = Z[t1, . . . , tn].

Given ω = (i1, . . . , in), de�ne the universal symmetric polynomial

Pω(t1, . . . , tn) = t1 · · · ti1t2i1+1 · · · t2i1+i2 · · · t
n
i1+i2+···+in + · · ·

as the smallest symmetric polynomial containing the monomial above.
Express Pω via the elementary symmetric functions and substitute the
Chern classes. We obtain a universal characteristic class

sω = sω(c1, . . . , cn) = Pω(t1, . . . , tn) =∈ H2‖ω‖(BU(n)).
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Example

Let ω = (k , 0, . . . , 0) be the partition into a sum of k units. Then

c(k,0,...,0) = ck1 , P(k,0,...,0) = σk , s(k,0,...,0) = ck .

Now let ω = (0, . . . , 0, 1, 0, . . . , 0) with unit at the kth position. Then

c(0,...,0,1,0,...,0) = ck , P(0,...,0,1,0,...,0) = tk1 + · · ·+ tkn .

Traditionally, the characteristic class s(0,...,0,1,0,...,0) ∈ H2k(BU(n)) is
denoted simply by sk . For example,

s1 = c1, s2 = c21 − 2c2, s3 = c31 − 3c1c2 + 3c3.
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Theorem

sω(ξ ⊕ η) =
∑

ω=ω′+ω′′

sω′(ξ) sω′′(η)

Proposition

(a) sk(ξ) = 0 if ξ is a bundle over X and dimX < 2k ;

(b) sk(ξ ⊕ η) = sk(ξ) + sk(η);

(c) sk(ξ) = c1(ξ)k if ξ is a line bundle.

For a stably complex 2n-dimensional manifold (M, cT ), the characteristic
numbers are de�ned by evaluation:

cω[M] = cω(TM)〈M〉, sω[M] = sω(TM)〈M〉, sn[M] = sn(TM)〈M〉.

Corollary

If a bordism class [M] ∈ ΩU
2n decomposes as [M1]× [M2] where

dimM1 > 0 and dimM2 > 0, then sn[M] = 0.
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BU = limn→∞ BU(n) has H∗(BU) ∼= Z[[c1, c2, . . .]], deg ck = 2k .
The evaluation homomorphism

e : ΩU → H∗(BU) ⊂ Hom(H∗(BU),Z), ([M], c) 7→ c[M].

Proposition

The evaluation homomorphism ē for normal Chern numbers coincides with

the Hurewicz homomorphism in complex cobordism:

ΩU
2n = lim

k→∞
π2k+2n(MU(k))

Hurewicz−−−→ lim
k→∞

H2k+2n(MU(k))

Thom−−−→ lim
k→∞

H2n(BU(k)) = H2n(BU),

Theorem (Thom)

e ⊗Q : ΩU ⊗Q
∼=−→ H∗(BU;Q).

Therefore, for any set of integers {kω}, there exists a stably complex

manifold M such that sω[M] = Nkω for some �xed N ∈ Z and any ω.
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Structure results

The theory of unoriented (co)bordism was the �rst to be completed: the
coe�cient ring ΩO was calculated by Thom, and the bordism groups
O∗(X ) of cell complexes X were reduced to homology groups of X with
coe�cients in ΩO .

Theorem (Thom, Conner�Floyd)

(a) Two manifolds are unorientedly bordant if and only if they have

identical sets of Stiefel�Whitney characteristic numbers.

(b) ΩO is a polynomial ring over Z2 with one generator ai in every

positive dimension i 6= 2k − 1.

(c) For every cell complex X the module O∗(X ) is a free graded

ΩO -module isomorphic to H∗(X ;Z2)⊗Z2 Ω
O .

Parts (a) and (b) were done by Thom in 1954. Part (c) was �rst formulated
by Conner and Floyd in 1964; it also follows from the results of Thom.
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Theorem (Milnor, Novikov)

(a) ΩU ⊗Q is a polynomial ring over Q generated by the bordism classes

of complex projective spaces CP i , i > 1.

(b) Two stably complex manifolds are bordant if and only if they have

identical sets of Chern characteristic numbers.

(c) ΩU ∼= Z[a1, a2, . . .], a polynomial ring over Z with one generator ai in
every even dimension 2i , where i > 1.

Part (a) follows from the results of Thom. Part (c) is the most di�cult
one; it was done by Novikov (1960, 1962) using the Adams spectral
sequence and structure theory of Hopf algebras, and by Milnor (1960,
unpublished). Another more geometric proof was given by Stong in 1965.

Note that U∗(X ) is not a free ΩU -module in general, unlike the unoriented
bordism case. The theory of complex (co)bordism is much richer than its
unoriented analogue, and at the same time is not as complicated as
oriented bordism or other bordism theories with additional structure.
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The calculation of the oriented bordism ring was completed in 1960 by
Novikov (ring structure modulo torsion and odd torsion) and Wall (even
torsion), with important earlier contributions made by Rokhlin, Averbuch,
and Milnor. Unlike complex bordism, the ring ΩSO has additive torsion.

Theorem (Rokhlin, Averbuch, Milnor, Novikov, Wall)

(a) ΩSO ⊗Q is a polynomial ring over Q generated by the bordism classes

of complex projective spaces CP2i , i > 1.

(b) The subring Tors ⊂ ΩSO of torsion elements contains only elements of

order 2. The quotient ΩSO/Tors is a polynomial ring over Z with one

generator ai in every dimension 4i , where i > 1.

(c) Two oriented manifolds are bordant if and only if they have identical

sets of Pontryagin and Stiefel�Whitney characteristic numbers.
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Construction (geometric cobordisms)

For any cell complex X , have H2(X ) = [X ,CP∞]. Since CP∞ = MU(1),
every element x ∈ H2(X ) determines a cobordism class ux ∈ U2(X ), a
geometric cobordism. Hence, H2(X ) ⊂ U2(X ) (a subset, not a subgroup!)

When X is a manifold, each ux ∈ U2(X ) corresponds to a submanifold
M ⊂ X of codimension 2 with a complex structure on the normal bundle.

Indeed, x ∈ H2(X ) corresponds to a homotopy class of fx : X → CP∞.
May assume fx(X ) is transverse to a hyperplane H ⊂ CPN ⊂ CP∞. Then
Mx = f −1x (H) is a codimension-2 submanifold in X .
A homotopy of fx gives a bordism of Mx → X .

Conversely, given an embedding i : M ⊂ X as above, the composite
X → Th(ν)→ MU(1) = CP∞ of the Pontryagin�Thom collapse map and
the classifying map for ν de�nes an element xM ∈ H2(X ), and therefore a
geometric cobordism.

If X is oriented, then i∗〈M〉 ∈ H∗(X ) is Poincar�e dual to xM ∈ H2(X ).
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Ring generators for ΩU

As we have seen, the characteristic number sn vanishes on decomposable
elements of ΩU . Furthermore, this characteristic number detects
indecomposables that may be chosen as polynomial generators:

Theorem

A bordism class [M] ∈ ΩU
2n may be chosen as a polynomial generator an of

the ring ΩU if and only if

sn[M] =

{
±1 if n 6= pk − 1 for any prime p;

±p if n = pk − 1 for some prime p.

There is no universal description of manifolds representing the polynomial
generators an ∈ ΩU . On the other hand, there is a particularly nice family
of manifolds whose bordism classes generate the whole ring ΩU . This
family is redundant though, so there are algebraic relations between their
bordism classes.
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Construction (Milnor hypersurfaces)

The Milnor hypersurface in CP i × CP j (0 6 i 6 j) is

Hij = {(z0 : · · · : zi )× (w0 : · · · : wj) ∈ CP i ×CP j : z0w0 + · · ·+ ziwi = 0}

Note that H0j
∼= CP j−1.

More intrinsically, Hij is a hyperplane section of the Segre embedding

σ : CP i × CP j → CP(i+1)(j+1)−1,

(z0 : · · · : zi )× (w0 : · · · : wj) 7→ (z0w0 : z0w1 : · · · : zkwl : · · · : ziwj),

Also, Hij may be identi�ed with the set of pairs (`, α), where ` is a line in
Ci+1 and α is a hyperplane in Cj+1 containing `.
In particular, H22 = Fl(C3), the �ag manifold.
The projection Hij → CP i , (`, α) 7→ `, is a �bre bundle with �bre CP j−1.
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Denote by p1 and p2 the projections of CP i × CP j onto its factors. Then

H∗(CP i × CP j) = Z[x , y ]/(x i+1 = 0, y j+1 = 0)

where x = p∗1c1(η̄), y = p∗2c1(η̄), and η the tautological bundle.

Proposition

Hij represents the geometric cobordism in CP i × CP j corresponding

x + y ∈ H2(CP i × CP j). In particular, the image of the fundamental class

〈Hij〉 in H2(i+j−1)(CP i × CP j) is Poincar�e dual to x + y .

Proof.

We have x + y = c1(p∗1(η̄)⊗ p∗2(η̄)). The classifying map for p∗1(η̄)⊗ p∗2(η̄)
is the Segre embedding σ : CP i × CP j → CP(i+1)(j+1)−1 → CP∞.
The codimension-2 submanifold in CP i × CP j corresponding to x + y is
the preimage σ−1(H) of a generally positioned hyperplane in
CP(i+1)(j+1)−1. The Milnor hypersurface Hij is exactly σ

−1(H) for one
such hyperplane H.
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Lemma

si+j−1[Hij ] =

{
j if i = 0;

−
(i+j

i

)
if i > 1.

Proof.

The stably complex structure on H0j = CP j−1 comes from the isomorphism
T (CP j−1)⊕ C ∼= η̄ ⊕ · · · ⊕ η̄ (j summands) and x = c1(η̄), so have

sj−1[CP j−1] = jx j−1〈CP j−1〉 = j .

Denote by ν the normal bundle of ι : Hij ↪→ CP i × CP j . Then

T (Hij)⊕ ν = ι∗(T (CP i × CP j)).

We have si+j−1(ν) = ι∗(x + y)i+j−1 and
si+j−1(T (CP i × CP j)) = (i + 1)x i+j−1 + (j + 1)y i+j−1 = 0 for i > 1, so

si+j−1[Hij ] = −si+j−1(ν)〈Hij〉 = −ι∗(x + y)i+j−1〈Hij〉
= −(x + y)i+j〈CP i × CP j〉 = −

(i+j
i

)
.
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Theorem

The bordism classes {[Hij ], 0 6 i 6 j} generate the ring ΩU .

Proof.

g.c.d.
((n+1

i

)
, 1 6 i 6 n

)
=

{
p if n = pk − 1,

1 otherwise.

Now the previous calculation of si+j−1[Hij ] implies that a certain integer
linear combination of bordism classes [Hij ] with i + j = n + 1 has si+j−1
equal p or 1, as needed for the polynomial generator an.

Example

ΩU
2 = Z, generated by [CP1], as 1 = 21 − 1 and s1[CP1] = 2;

ΩU
4 = Z⊕ Z, generated by [CP1 × CP1] and [CP2], as 2 = 31 − 1

and s2[CP2] = 3;

[CP3] cannot be taken as the polynomial generator a3 ∈ ΩU
6 , since

s3[CP3] = 4, while s3(a3) = ±2. We have a3 = [H22] + [CP3].
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Theorem (Milnor)

Every bordism class x ∈ ΩU
n with n > 0 contains a nonsingular algebraic

variety (not necessarily connected).

The proof of this fact uses a construction of a (possibly disconnected)
algebraic variety representing the class −[M] for any bordism class
[M] ∈ ΩU

n of 2n-dimensional manifold.

Problem (Hirzebruch)

Describe the set of bordism classes in ΩU containing connected nonsingular

algebraic varieties.

Example

Every class k[CP1] ∈ ΩU
2 contains a nonsingular algebraic variety, namely,

a disjoint union of k copies of CP1 for k > 0 and a Riemann surface of
genus (1− k) for k 6 0.
Connected algebraic varieties are contained only in k[CP1] with k 6 1.

Taras Panov (Moscow University) Lecture 1. Bordism and Cobordism 2�6 July 2018 28 / 29



Literature

[1] Robert E. Stong. Notes on Cobordism Theory. Math. Notes, 7.
Princeton Univ. Press, Princeton, NJ, 1968.

[2] Victor Buchstaber and Taras Panov. Toric Topology. Mathematical
Surveys and Monographs, vol. 204, Amer. Math. Soc., Providence,
RI, 2015.

Taras Panov (Moscow University) Lecture 1. Bordism and Cobordism 2�6 July 2018 29 / 29


