Manifolds defined by right-angled 3-dimensional polytopes

Taras Panov

Moscow State University

 $\label{eq:control_problem} Princeton-Rider\ Workshop \\ on\ the\ homotopy\ theory\ of\ polyhedral\ products \\$

Princeton University, Rider University, 29 May-2 June 2017

Polytopes and moment-angle manifolds

A convex polytope in \mathbb{R}^n is a bounded intersection of m halfspaces:

$$P = \{ \mathbf{x} \in \mathbb{R}^n \colon \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i \geqslant 0 \quad \text{for } i = 1, \dots, m \},$$

where $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$.

Assume that $F_i = P \cap \{x : \langle a_i, x \rangle + b_i = 0\}$ is a facet for each i. $\mathcal{F} = \{F_1, \dots, F_m\}$ the set of facets of P.

Define an affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(x) = (\langle a_1, x \rangle + b_1, \dots, \langle a_m, x \rangle + b_m).$$

Then i_P is injective, and $i_P(P) \subset \mathbb{R}^m$ is the intersection of an n-dimensional plane with $\mathbb{R}^m_{\geq} = \{ \mathbf{y} = (y_1, \dots, y_m) \colon y_i \geq 0 \}$.

Define the space \mathcal{Z}_P from the diagram

$$\mathcal{Z}_{P} \xrightarrow{i_{Z}} \mathbb{C}^{m} \qquad (z_{1}, \dots, z_{m}) \\
\downarrow \qquad \qquad \downarrow^{\mu} \qquad \qquad \downarrow \\
P \xrightarrow{i_{P}} \mathbb{R}^{m}_{\geqslant} \qquad (|z_{1}|^{2}, \dots, |z_{m}|^{2})$$

Explicitly, $\mathcal{Z}_P = \mu^{-1}(i_P(P))$. It has a T^m -action with the quotient $\mathcal{Z}_P/T^m = P$.

P is simple if there are $n = \dim P$ facets meeting at each vertex.

Proposition

If P is a simple polytope, then \mathcal{Z}_P is a smooth (m+n)-dim manifold.

Proof.

Write $i_P(\mathbb{R}^n)$ by (m-n) linear equations in $(y_1,\ldots,y_m)\in\mathbb{R}^m$. Replacing each y_k by $|z_k|^2$ we obtain a presentation of \mathcal{Z}_P by Hermitian quadrics. \square

\mathcal{Z}_P is the moment-angle manifold (corresponding to P).

Similarly, considering

$$\mathcal{R}_{P} \longrightarrow \mathbb{R}^{m} \qquad (u_{1}, \dots, u_{m})$$

$$\downarrow \qquad \qquad \downarrow^{\mu} \qquad \qquad \downarrow$$
 $P \stackrel{i_{P}}{\longrightarrow} \mathbb{R}^{m}_{\geqslant} \qquad (u_{1}^{2}, \dots, u_{m}^{2})$

we obtain a real moment-angle manifold \mathcal{R}_P .

Example

$$P = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \geqslant 0, \ x_2 \geqslant 0, \ -\gamma_1 x_1 - \gamma_2 x_2 + 1 \geqslant 0\}, \ \gamma_1, \gamma_2 > 0$$
 (a 2-simplex). Then

$$\mathcal{Z}_P = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : \gamma_1 | z_1|^2 + \gamma_2 |z_2|^2 + |z_3|^2 = 1\}$$
 (a 5-sphere),

$$\mathcal{R}_P = \{(u_1, u_2, u_3) \in \mathbb{R}^3 \colon \gamma_1 |u_1|^2 + \gamma_2 |u_2|^2 + |u_3|^2 = 1\}$$
 (a 2-sphere).

Right-angled polytopes and hyperbolic manifolds

Let P be a polytope in n-dimensional Lobachevsky space \mathbb{L}^n with right angles between adjacent facets (a right-angled n-polytope).

Denote by G(P) the group generated by reflections in the facets of P. It is a right-angled Coxeter group given by the presentation

$$G(P) = \langle g_1, \dots, g_m \mid g_i^2 = 1, \ g_i g_j = g_j g_i \text{ if } F_i \cap F_j \neq \emptyset \rangle,$$

where g_i denotes the reflection in the facet F_i .

The group G(P) acts on \mathbb{L}^n discretely with finite isotropy subgroups and with fundamental domain P.

Lemma

Consider an epimorphism $\varphi \colon G(P) \to \mathbb{Z}_2^k$, $k \geqslant n$. The subgroup $\operatorname{Ker} \varphi \subset G(P)$ does not contain elements of finite order if and only if the images of the reflections in any n facets of P that have a common vertex are linearly independent in \mathbb{Z}_2^k .

In this case the group $\operatorname{Ker} \varphi$ acts freely on \mathbb{L}^n .

The quotient $N = \mathbb{L}^n/\operatorname{Ker} \varphi$ is a hyperbolic *n*-manifold. It is composed of $|\mathbb{Z}_2^k| = 2^k$ copies of P and has a Riemannian metric of constant negative curvature. Furthermore, the manifold N is aspherical (the Eilenberg–Mac Lane space $K(\operatorname{Ker} \varphi, 1)$), as its universal cover \mathbb{L}^n is contractible.

Which combinatorial *n*-polytopes have right-angled realisations in \mathbb{L}^n ? In dim 3, there is a nice criterion going back to Pogorelov's work of 1967:

Theorem (Pogorelov, Andreev)

A combinatorial 3-polytope $P \neq \Delta^3$ can be realised as a right-angled polytope in \mathbb{L}^3 if and only if it is simple, and does not have 3- and 4-belts of facets. Furthermore, such a realisation is unique up to isometry.

We refer to the above class of 3-polytopes as the Pogorelov class \mathcal{P} . A Pogorelov polytope does not have triangular or quadrangular facets. The Pogorelov class contains all fullerenes (simple 3-polytopes with only pentagonal and hexagonal facets).

The conditions specifying Pogorelov polytopes also feature as the $no-\triangle$ and $no-\square$ condition in Gromov's theory of hyperbolic groups.

There is no classification of right-angled polytopes in \mathbb{L}^4 . For $n \ge 5$, right-angled polytopes in \mathbb{L}^n do not exist [Vinberg].

Given a right-angled polytope P, how to find an epimorphism $\varphi \colon G(P) \to \mathbb{Z}_2^k$ with $\operatorname{Ker} \varphi$ acting freely on \mathbb{L}^n ?

One can consider the abelianisation: $G(P) \xrightarrow{ab} \mathbb{Z}_2^m$, with $\operatorname{Ker} ab = G'(P)$, the commutator subgroup.

The corresponding *n*-manifold $\mathbb{L}^n/G'(P)$ is the real moment-angle manifold \mathcal{R}_P , described as an intersection of quadrics in the beginning of this talk.

Corollary

If P is a right-angled polytope in \mathbb{L}^n , then the real moment-angle manifold \mathcal{R}_P admits a hyperbolic structure as $\mathbb{L}^n/G'(P)$, where G'(P) is the commutator subgroup of the corresponding right-angled Coxeter group. The manifold \mathcal{R}_P is composed of 2^m copies of P.

A more econimical way to obtain a hyperbolic manifold is to consider $\varphi \colon G(P) \to \mathbb{Z}_2^n$. Such an epimorphism factors as $G(P) \xrightarrow{\mathrm{ab}} \mathbb{Z}_2^m \xrightarrow{\Lambda} \mathbb{Z}_2^n$, where Λ is a linear map.

The subgroup $\operatorname{Ker} \varphi$ acts freely on \mathbb{L}^n if and only the Λ -images of any n facets of P that meet at a vertex form a basis of \mathbb{Z}_2^n . Such Λ is called a \mathbb{Z}_2 -characteristic function.

Proposition

Any simple 3-polytope admits a characteristic function.

Proof.

Given a 4-colouring of the facets of P, we assign to a facet of ith colour the ith basis vector $\mathbf{e}_i \in \mathbb{Z}^3$ for i=1,2,3 and the vector $\mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3$ for i=4. The resulting map $\Lambda \colon \mathbb{Z}_2^m \to \mathbb{Z}_2^3$ satisfies the required condition, as any three of the four vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_1+\mathbf{e}_2+\mathbf{e}_3$ form a basis of \mathbb{Z}^3 . \square

Definition (A. Vesnin, 1987)

 $N(P,\Lambda)=\mathbb{L}^3/\operatorname{Ker}\varphi$ a hyperbolic 3-manifold of Löbell type. It is composed of $|\mathbb{Z}_2^3|=8$ copies of a right-angled 3-polytope $P\in\mathcal{P}$ glued along their facets;

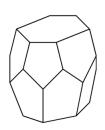
the gluing is prescribed by the characteristic function $\Lambda\colon\mathbb{Z}_2^m\to\mathbb{Z}_2^3$.

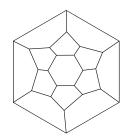
In particular, one obtains a hyperbolic 3-manifold $N(P,\chi)$ from any regular 4-colouring $\chi\colon \mathcal{F}\to\{1,2,3,4\}$ of a right-angled 3-polytope P.

Löbell (1931) was first to consider hyperbolic 3-manifolds coming from 4-colourings of a family of right-angled polytopes starting from the dodecahedron.

Example: Löbell polytopes Q_k ("barrel" fullerenes)

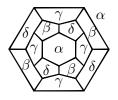
For $k \ge 5$, let Q_k be a simple 3-polytope with two "top" and "bottom" k-gonal facets and 2k pentagonal facets forming two k-belts around the top and bottom, so that Q_k has 2k + 2 facets in total. Note that Q_5 is a combinatorial dodecahedron, while Q_6 is a fullerene.

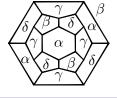


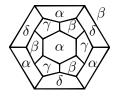


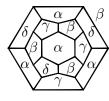
It is easy to see that $Q_k \in \mathcal{P}$, so it admits a right-angled realisation in \mathbb{L}^3 .

Consider hyperbolic 3-manifolds $N(Q_k,\chi)$ corresponding to 4-colourings χ of Q_k . For example, a dodecahedron Q_5 has a unique 4-colouring up to equivalence, while Q_6 has four non-equivalent regular 4-colourings (4-colourings are equivalent if they differ by a permutation of colours).









Conjecture (Vesnin, 1991)

Hyperbolic 3-manifolds $N(Q_k, \chi_1)$ and $N(Q_k, \chi_2)$ are diffeomorphic (isometric) if and only if the 4-colourings χ_1 and χ_2 are equivalent.

By 2009 the conjecture was verified for all k except 6,8 using deep results on arithmetic groups (Margulis commensurator theorem). However, it remained open for Q_6 and Q_8 .

Pairs (P, Λ) and (P', Λ') are equivalent if P and P' are combinatorially equivalent, and $\Lambda, \Lambda' : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ differ by an automorphism of \mathbb{Z}_2^n .

Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let $N = N(P, \Lambda)$ and $N' = N(P', \Lambda')$ be two hyperbolic 3-manifolds of Löbell type corresponding to right-angled 3-polytopes P and P'. Then the following conditions are equivalent:

- (a) there is a cohomology ring isomorphism $\varphi \colon H^*(\mathbb{N}; \mathbb{Z}_2) \stackrel{\cong}{\longrightarrow} H^*(\mathbb{N}'; \mathbb{Z}_2);$
- (b) there is a diffeomorphism $N \cong N'$;
- (c) there is an equivalence of \mathbb{Z}_2 -characteristic pairs $(P,\Lambda)\sim (P',\Lambda')$.

The difficult implication is (a) \Rightarrow (c). Its proof builds upon the wealth of cohomological techniques of toric topology.

Specifying to \mathbb{Z}_2 -characteristic functions Λ coming from colourings χ we obtain:

Theorem (Buchstaber-P)

Hyperbolic 3-manifolds $N(P, \chi_1)$ and $N(P', \chi_2)$ corresponding to right-angled polytopes P and P' are diffeomorphic (isometric) if and only if the 4-colourings χ_1 and χ_2 are equivalent.

In particular, Vesnin's conjecture holds for all Löbell polytopes Q_k .

Cohomology of moment-angle manifolds

The face ring (the Stanley-Reisner ring) of a simple polytope P

$$\mathbb{Z}[P] := \mathbb{Z}[v_1, \dots, v_m] / (v_{i_1} \cdots v_{i_k} = 0 \text{ for } F_{i_1} \cap \dots \cap F_{i_k} = \emptyset)$$

where deg $v_i = 2$.

Theorem

There are ring isomorphisms

$$H^*(\mathcal{Z}_P) \cong \operatorname{Tor}_{\mathbb{Z}[v_1, \dots, v_m]}(\mathbb{Z}[P], \mathbb{Z})$$

$$\cong H(\Lambda[u_1, \dots, u_m] \otimes \mathbb{Z}[P], d) \qquad du_i = v_i, dv_i = 0$$

$$\cong \bigoplus_{I \subset \{1, \dots, m\}} \widetilde{H}^{*-|I|-1}(P_I) \qquad P_I = \bigcup_{i \in I} F_i$$

(Quasi)toric manifolds and small covers

P a simple n-polytope, $\mathcal{F} = \{F_1, \ldots, F_m\}$ the set of facets.

A characteristic function is map $\Lambda \colon \mathcal{F} \to \mathbb{Z}^n$ such that $\Lambda(F_{i_1}), \ldots, \Lambda(F_{i_n})$ is a basis of \mathbb{Z}^n whenever F_{i_1}, \ldots, F_{i_n} intersect in a vertex.

A characteristic function defines a linear map $\Lambda\colon \mathbb{Z}^{\mathcal{F}}=\mathbb{Z}^m \to \mathbb{Z}^n$ and a homomorphism of tori $\Lambda\colon T^m \to T^n$.

Proposition

The subgroup $\operatorname{Ker} \Lambda \cong T^{m-n}$ acts freely on \mathcal{Z}_P .

 $M(P,\Lambda) = \mathcal{Z}_P / \operatorname{Ker} \Lambda$ is a quasitoric manifold. It is a smooth 2n-dimensional manifold with an action of the n-torus $T^m / \operatorname{Ker} \Lambda \cong T^n$ and the quotient P. By considering \mathbb{Z}_2 -characteristic functions $\Lambda\colon \mathbb{Z}_2^m \to \mathbb{Z}_2^n$, we obtain small covers of P as the quotients $\mathcal{R}_P/\operatorname{Ker} \Lambda$.

A small cover $N(P, \Lambda)$ is a smooth *n*-dimensional manifold with an action of \mathbb{Z}_2^n and the quotient P.

Proposition

In dimension 3, a real moment-angle manifold \mathcal{R}_P and a small cover $N(P,\Lambda)$ admit a hyperbolic structure if and only if P is a Pogorelov polytope.

Proof.

P is a Pogorelov polytope \iff dual $\mathcal K$ has no \triangle and \square

If P is a Pogorelov polytope, then \mathcal{R}_P and $N(P,\Lambda)$ are hyperbolic.

If \mathcal{K} has a \triangle , then $R_{\triangle} \cong S^2$ retracts off \mathcal{R}_P , so \mathcal{R}_P cannot be hyperbolic (as it has $\pi_2 \neq 0$).

If K has a \square , then $R_{\square} \cong T^2$ retracts off \mathcal{R}_P , which is impossible for a hyperbolic manifold.

Theorem (Danilov–Jurkiewicz, Davis–Januszkiewicz)

Let $M=M(P,\Lambda)$ be a quasitoric manifold over a simple n-polytope P. The cohomology ring $H^*(M;\mathbb{Z})$ is generated by the 2-dimensional classes $[v_i]$ dual to the characteristic submanifolds M_i , $i=1,\ldots,m$, and is given by

$$H^*(M; \mathbb{Z}) \cong \mathbb{Z}[v_1, \dots, v_m]/\mathcal{I}, \qquad \text{deg } v_i = 2,$$

where $\mathcal I$ is the ideal generated by elements of two kinds:

- (a) $v_{i_1} \cdots v_{i_k}$, where $F_{i_1} \cap \cdots \cap F_{i_k} = \emptyset$ in P;
- (b) $\sum_{i=1} \langle \Lambda(F_i), \mathbf{x} \rangle v_i$ for any $\mathbf{x} \in \mathbb{Z}^n$.

The \mathbb{Z}_2 -cohomology ring $H^*(N; \mathbb{Z}_2)$ of a small cover $N = N(P, \Lambda)$ has the same description, with generators v_i of degree 1.

Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let $M=M(P,\Lambda)$ and $M'=M(P',\Lambda')$ be quasitoric 6-manifolds, where P is a Pogorelov 3-polytope. The following conditions are equivalent:

- (a) There is a ring isomorphism $arphi\colon H^*(M;\mathbb{Z})\stackrel{\cong}{\longrightarrow} H^*(M';\mathbb{Z});$
- (b) There is a diffeomorphism $M \cong M'$;
- (c) There is an equivalence of characteristic pairs $(P, \Lambda) \sim (P', \Lambda')$.

Idea of proof (for both theorems).

We need to prove that a ring iso $\varphi \colon H^*(N; \mathbb{Z}) \xrightarrow{\cong} H^*(N'; \mathbb{Z})$ implies an equivalence $(P, \Lambda) \sim (P', \Lambda')$.

An iso $\varphi \colon H^*(N; \mathbb{Z}_2) \stackrel{\cong}{\longrightarrow} H^*(N'; \mathbb{Z}_2)$ implies an iso

 $\varphi \colon H^*(M; \mathbb{Z}_2) \stackrel{\cong}{\longrightarrow} H^*(M'; \mathbb{Z}_2)$ (as every \mathbb{Z}_2 -characteristic function of a 3-polytope lifts to a \mathbb{Z} -characteristic function!)

An iso $\varphi \colon H^*(M; \mathbb{Z}_2) = \mathbb{Z}_2[P]/\mathcal{J}_\Lambda \xrightarrow{\cong} \mathbb{Z}_2[P']/\mathcal{J}_{\Lambda'} = H^*(M'; \mathbb{Z}_2)$ implies an iso

$$\psi \colon H^*(\mathcal{Z}_P; \mathbb{Z}_2) = \operatorname{Tor}_{\mathbb{Z}_2[\nu_1, \dots, \nu_m]/\mathcal{J}_{\Lambda}}(\mathbb{Z}_2[P]/\mathcal{J}_{\Lambda}, \mathbb{Z}_2)$$

$$\stackrel{\cong}{\longrightarrow} \operatorname{Tor}_{\mathbb{Z}_2[\nu_1, \dots, \nu_m]/\mathcal{J}_{\Lambda'}}(\mathbb{Z}_2[P']/\mathcal{J}_{\Lambda'}, \mathbb{Z}_2) = H^*(\mathcal{Z}_{P'}; \mathbb{Z}_2)$$

The results of Fan, Ma and Wang imply that ψ maps the set of canonical generators $\{[u_iv_j] \in H^3(\mathcal{Z}_P) \colon F_i \cap F_j = \varnothing\}$ bijectively to the corresponding set for $\mathcal{Z}_{P'}$.

This implies that φ maps the set $\{[v_i] \in H^2(M)\}$ bijectively to the corresponding set for M', giving an equivalence $(P, \Lambda) \sim (P', \Lambda')$.

Cohomological rigidity

Problem

Let $M = M(P, \Lambda)$ and $M' = M(P', \Lambda')$ be quasitoric manifolds with isomorphic integer cohomology rings. Are they homeomorphic?

Our result gives a positive answer in the case of quasitoric 6-manifolds over Pogorelov polytopes.

Proposition

6-dimensional quasitoric manifolds M and M' are diffeomorphic if there is an isomorphism $\varphi \colon H^*(M;\mathbb{Z}) \xrightarrow{\cong} H^*(M';\mathbb{Z})$ preserving the first Pontryagin class, i.e. $\varphi(p_1(M)) = p_1(M')$.

We have $p_1(M) = v_1^2 + \cdots + v_m^2 \in H^4(M)$. However, we were not able to establish the invariance of $p_1(M)$ directly...

References

- [1] V. Buchstaber, N. Erokhovets, M. Masuda, T. Panov and S. Park. Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes. Russian Math. Surveys 72 (2017), no. 2; arXiv:1610.07575.
- [2] V. Buchstaber and T. Panov. On manifolds defined by 4-colourings of simple 3-polytopes. Russian Math. Surveys 71 (2016), no. 6, 1137-1139; arXiv:1703.06801.