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Polytopes and moment-angle manifolds

A convex polytope in Rn is a bounded intersection of m halfspaces:

P =
{
x ∈ Rn : 〈ai , x〉+ bi > 0 for i = 1, . . . ,m

}
,

where ai ∈ Rn and bi ∈ R.

Assume that Fi = P ∩ {x : 〈ai , x〉+ bi = 0} is a facet for each i .
F = {F1, . . . ,Fm} the set of facets of P .

De�ne an a�ne map

iP : Rn → Rm, iP(x) =
(
〈a1, x〉+ b1, . . . , 〈am, x〉+ bm

)
.

Then iP is injective, and iP(P) ⊂ Rm is the intersection of an
n-dimensional plane with Rm

> = {y = (y1, . . . , ym) : yi > 0}.
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De�ne the space ZP from the diagram

ZP
iZ−−−−→ Cm (z1, . . . , zm)y yµ y

P
iP−−−−→ Rm

> (|z1|2, . . . , |zm|2)

Explicitly, ZP = µ−1(iP(P)). It has a Tm-action with the quotient
ZP/T

m = P .

P is simple if there are n = dimP facets meeting at each vertex.

Proposition

If P is a simple polytope, then ZP is a smooth (m + n)-dim manifold.

Proof.

Write iP(Rn) by (m − n) linear equations in (y1, . . . , ym) ∈ Rm. Replacing
each yk by |zk |2 we obtain a presentation of ZP by Hermitian quadrics.
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ZP is the moment-angle manifold (corresponding to P).

Similarly, considering

RP −−−−→ Rm (u1, . . . , um)y yµ y
P

iP−−−−→ Rm
> (u21 , . . . , u

2
m)

we obtain a real moment-angle manifold RP .

Example

P = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0, −γ1x1 − γ2x2 + 1 > 0}, γ1, γ2 > 0
(a 2-simplex). Then

ZP = {(z1, z2, z3) ∈ C3 : γ1|z1|2 + γ2|z2|2 + |z3|2 = 1} (a 5-sphere),

RP = {(u1, u2, u3) ∈ R3 : γ1|u1|2 + γ2|u2|2 + |u3|2 = 1} (a 2-sphere).
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Right-angled polytopes and hyperbolic manifolds

Let P be a polytope in n-dimensional Lobachevsky space Ln with right
angles between adjacent facets (a right-angled n-polytope).

Denote by G (P) the group generated by re�ections in the facets of P .
It is a right-angled Coxeter group given by the presentation

G (P) = 〈g1, . . . , gm | g2
i = 1, gigj = gjgi if Fi ∩ Fj 6= ∅〉,

where gi denotes the re�ection in the facet Fi .

The group G (P) acts on Ln discretely with �nite isotropy subgroups and
with fundamental domain P .
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Lemma (A. Vesnin, 1987)

Consider an epimorphism ϕ : G (P)→ Zk
2 , k > n. The subgroup

Kerϕ ⊂ G (P) does not contain elements of �nite order if and only if the

images of the re�ections in any n facets of P that have a common vertex

are linearly independent in Zk
2 .

In this case the group Kerϕ acts freely on Ln.

The quotient N = Ln/Kerϕ is a hyperbolic n-manifold. It is composed of
|Zk

2 | = 2k copies of P and has a Riemannian metric of constant negative
curvature. Furthermore, the manifold N is aspherical (the Eilenberg�Mac
Lane space K (Kerϕ, 1)), as its universal cover Ln is contractible.
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Which combinatorial n-polytopes have right-angled realisations in Ln?
In dim 3, there is a nice criterion going back to Pogorelov's work of 1967:

Theorem (Pogorelov, Andreev)

A combinatorial 3-polytope P 6= ∆3 can be realised as a right-angled

polytope in L3 if and only if it is simple, and does not have 3- and 4-belts
of facets. Furthermore, such a realisation is unique up to isometry.

We refer to the above class of 3-polytopes as the Pogorelov class P.
A Pogorelov polytope does not have triangular or quadrangular facets.
The Pogorelov class contains all fullerenes (simple 3-polytopes with only
pentagonal and hexagonal facets).
The conditions specifying Pogorelov polytopes also feature as the no-4
and no-� condition in Gromov's theory of hyperbolic groups.

There is no classi�cation of right-angled polytopes in L4. For n > 5,
right-angled polytopes in Ln do not exist [Vinberg].
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Given a right-angled polytope P , how to �nd an epimorphism
ϕ : G (P)→ Zk

2 with Kerϕ acting freely on Ln?

One can consider the abelianisation: G (P)
ab−→ Zm

2 , with Ker ab = G ′(P),
the commutator subgroup.
The corresponding n-manifold Ln/G ′(P) is the real moment-angle manifold
RP , described as an intersection of quadrics in the beginning of this talk.

Corollary

If P is a right-angled polytope in Ln, then the real moment-angle manifold

RP admits a hyperbolic structure as Ln/G ′(P), where G ′(P) is the

commutator subgroup of the corresponding right-angled Coxeter group.

The manifold RP is composed of 2m copies of P .
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A more econimical way to obtain a hyperbolic manifold is to consider

ϕ : G (P)→ Zn
2. Such an epimorphism factors as G (P)

ab−→ Zm
2

Λ−→ Zn
2,

where Λ is a linear map.

The subgroup Kerϕ acts freely on Ln if and only the Λ-images of any n
facets of P that meet at a vertex form a basis of Zn

2.
Such Λ is called a Z2-characteristic function.

Proposition

Any simple 3-polytope admits a characteristic function.

Proof.

Given a 4-colouring of the facets of P , we assign to a facet of ith colour
the ith basis vector e i ∈ Z3 for i = 1, 2, 3 and the vector e1 + e2 + e3 for
i = 4. The resulting map Λ : Zm

2 → Z3
2 satis�es the required condition, as

any three of the four vectors e1, e2, e3, e1 +e2 +e3 form a basis of Z3.
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De�nition (A. Vesnin, 1987)

N(P, Λ) = L3/Kerϕ a hyperbolic 3-manifold of L�obell type.
It is composed of |Z3

2| = 8 copies of a right-angled 3-polytope P ∈ P glued
along their facets;
the gluing is prescribed by the characteristic function Λ : Zm

2 → Z3
2.

In particular, one obtains a hyperbolic 3-manifold N(P, χ) from any regular
4-colouring χ : F → {1, 2, 3, 4} of a right-angled 3-polytope P .

L�obell (1931) was �rst to consider hyperbolic 3-manifolds coming from
4-colourings of a family of right-angled polytopes starting from the
dodecahedron.
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Example: L�obell polytopes Qk (�barrel� fullerenes)

For k > 5, let Qk be a simple 3-polytope with two �top� and �bottom�
k-gonal facets and 2k pentagonal facets forming two k-belts around the
top and bottom, so that Qk has 2k + 2 facets in total.
Note that Q5 is a combinatorial dodecahedron, while Q6 is a fullerene.

It is easy to see that Qk ∈ P, so it admits a right-angled realisation in L3.
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Consider hyperbolic 3-manifolds N(Qk , χ) corresponding to 4-colourings χ
of Qk . For example, a dodecahedron Q5 has a unique 4-colouring up to
equivalence, while Q6 has four non-equivalent regular 4-colourings
(4-colourings are equivalent if they di�er by a permutation of colours).
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Conjecture (Vesnin, 1991)

Hyperbolic 3-manifolds N(Qk , χ1) and N(Qk , χ2) are di�eomorphic

(isometric) if and only if the 4-colourings χ1 and χ2 are equivalent.

By 2009 the conjecture was veri�ed for all k except 6, 8 using deep results
on arithmetic groups (Margulis commensurator theorem).
However, it remained open for Q6 and Q8.
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Pairs (P, Λ) and (P ′, Λ′) are equivalent if P and P ′ are combinatorially
equivalent, and Λ,Λ′ : Zm

2 → Zn
2 di�er by an automorphism of Zn

2.

Theorem (Buchstaber�Erokhovets�Masuda�P�Park)

Let N = N(P, Λ) and N ′ = N(P ′, Λ′) be two hyperbolic 3-manifolds of

L�obell type corresponding to right-angled 3-polytopes P and P ′. Then the

following conditions are equivalent:

(a) there is a cohomology ring isomorphism

ϕ : H∗(N;Z2)
∼=−→ H∗(N ′;Z2);

(b) there is a di�eomorphism N ∼= N ′;

(c) there is an equivalence of Z2-characteristic pairs (P, Λ) ∼ (P ′, Λ′).

The di�cult implication is (a)⇒(c). Its proof builds upon the wealth of
cohomological techniques of toric topology.
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Specifying to Z2-characteristic functions Λ coming from colourings χ we
obtain:

Theorem (Buchstaber�P)

Hyperbolic 3-manifolds N(P, χ1) and N(P ′, χ2) corresponding to

right-angled polytopes P and P ′ are di�eomorphic (isometric) if and only if

the 4-colourings χ1 and χ2 are equivalent.

In particular, Vesnin's conjecture holds for all L�obell polytopes Qk .

Taras Panov (MSU) Manifolds and right-angled polytopes Nsk 22 Sep 2017 14 / 22



Cohomology of moment-angle manifolds

The face ring (the Stanley�Reisner ring) of a simple polytope P

Z[P] := Z[v1, . . . , vm]
/(

vi1 · · · vik = 0 for Fi1 ∩ · · · ∩ F ik = ∅)

where deg vi = 2.

Theorem

There are ring isomorphisms

H∗(ZP) ∼= TorZ[v1,...,vm](Z[P],Z)

∼= H
(
Λ[u1, . . . , um]⊗ Z[P], d

)
dui = vi , dvi = 0

∼=
⊕

I⊂{1,...,m}

H̃∗−|I |−1(PI ) PI =
⋃
i∈I

Fi
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(Quasi)toric manifolds and small covers

P a simple n-polytope, F = {F1, . . . ,Fm} the set of facets.

A characteristic function is map Λ : F → Zn such that Λ(Fi1), . . . , Λ(Fin) is
a basis of Zn whenever Fi1 , . . . ,Fin intersect in a vertex.
A characteristic function de�nes a linear map Λ : ZF = Zm → Zn and a
homomorphism of tori Λ : Tm → T n.

Proposition

The subgroup KerΛ ∼= Tm−n acts freely on ZP .

M(P, Λ) = ZP/KerΛ is a quasitoric manifold.
It is a smooth 2n-dimensional manifold with an action of the n-torus
Tm/KerΛ ∼= T n and the quotient P .
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By considering Z2-characteristic functions Λ : Zm
2 → Zn

2, we obtain small
covers of P as the quotients RP/KerΛ.
A small cover N(P, Λ) is a smooth n-dimensional manifold with an action
of Zn

2 and the quotient P .

Proposition

In dimension 3, a real moment-angle manifold RP and a small cover

N(P, Λ) admit a hyperbolic structure if and only if P is a Pogorelov

polytope.

Proof.

P is a Pogorelov polytope ⇔ dual K has no 4 and �

If P is a Pogorelov polytope, then RP and N(P, Λ) are hyperbolic.

If K has a 4, then R4 ∼= S2 retracts o� RP , so RP cannot be hyperbolic
(as it has π2 6= 0).

If K has a �, then R� ∼= T 2 retracts o� RP , which is impossible for a
hyperbolic manifold.
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Theorem (Danilov�Jurkiewicz, Davis�Januszkiewicz)

Let M = M(P, Λ) be a quasitoric manifold over a simple n-polytope P .

The cohomology ring H∗(M;Z) is generated by the 2-dimensional classes

[vi ] dual to the characteristic submanifolds Mi , i = 1, . . . ,m, and is given

by

H∗(M;Z) ∼= Z[v1, . . . , vm]/I, deg vi = 2,

where I is the ideal generated by elements of two kinds:

(a) vi1 · · · vik , where Fi1 ∩ · · · ∩ Fik = ∅ in P ;

(b)
m∑
i=1

〈Λ(Fi ), x〉vi for any x ∈ Zn.

The Z2-cohomology ring H∗(N;Z2) of a small cover N = N(P, Λ) has the
same description, with generators vi of degree 1.
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Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let M = M(P, Λ) and M ′ = M(P ′, Λ′) be quasitoric 6-manifolds, where P
is a Pogorelov 3-polytope. The following conditions are equivalent:

(a) There is a ring isomorphism ϕ : H∗(M;Z)
∼=−→ H∗(M ′;Z);

(b) There is a di�eomorphism M ∼= M ′;

(c) There is an equivalence of characteristic pairs (P, Λ) ∼ (P ′, Λ′).
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Idea of proof (for both theorems).

We need to prove that a ring iso ϕ : H∗(N;Z)
∼=−→ H∗(N ′;Z) implies an

equivalence (P, Λ) ∼ (P ′, Λ′).

An iso ϕ : H∗(N;Z2)
∼=−→ H∗(N ′;Z2) implies an iso

ϕ : H∗(M;Z2)
∼=−→ H∗(M ′;Z2) (as every Z2-characteristic function of a

3-polytope lifts to a Z-characteristic function!)

An iso ϕ : H∗(M;Z2) = Z2[P]/JΛ
∼=−→ Z2[P ′]/JΛ′ = H∗(M ′;Z2) implies

an iso
ψ : H∗(ZP ;Z2) = TorZ2[v1,...,vm]/JΛ

(
Z2[P]/JΛ,Z2

)
∼=−→ TorZ2[v1,...,vm]/JΛ′

(
Z2[P ′]/JΛ′ ,Z2

)
= H∗(ZP′ ;Z2)

The results of Fan, Ma and Wang imply that ψ maps the set of canonical
generators {[uivj ] ∈ H3(ZP) : Fi ∩ Fj = ∅} bijectively to the corresponding
set for ZP′ .
This implies that ϕ maps the set {[vi ] ∈ H2(M)} bijectively to the
corresponding set for M ′, giving an equivalence (P, Λ) ∼ (P ′, Λ′).
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Cohomological rigidity

Problem

Let M = M(P, Λ) and M ′ = M(P ′, Λ′) be quasitoric manifolds with

isomorphic integer cohomology rings. Are they homeomorphic?

Our result gives a positive answer in the case of quasitoric 6-manifolds over
Pogorelov polytopes.

Proposition

6-dimensional quasitoric manifolds M and M ′ are di�eomorphic if there is

an isomorphism ϕ : H∗(M;Z)
∼=−→ H∗(M ′;Z) preserving the �rst

Pontryagin class, i. e. ϕ(p1(M)) = p1(M ′).

We have p1(M) = v21 + · · ·+ v2m ∈ H4(M). However, we were not able to
establish the invariance of p1(M) directly...
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