Manifolds defined by right-angled 3-dimensional polytopes

Taras Panov
Moscow State University

Geometry Days in Novosibirsk - 2017
Sobolev Institute of of Mathematics, Novosibirsk
20-23 September 2017

Polytopes and moment-angle manifolds

A convex polytope in \mathbb{R}^{n} is a bounded intersection of m halfspaces:

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i} \geqslant 0 \quad \text { for } i=1, \ldots, m\right\},
$$

where $\boldsymbol{a}_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$.

Assume that $F_{i}=P \cap\left\{\boldsymbol{x}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0\right\}$ is a facet for each i. $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ the set of facets of P.

Define an affine map

$$
i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad i_{P}(\boldsymbol{x})=\left(\left\langle\boldsymbol{a}_{1}, \boldsymbol{x}\right\rangle+b_{1}, \ldots,\left\langle\boldsymbol{a}_{m}, \boldsymbol{x}\right\rangle+b_{m}\right)
$$

Then i_{P} is injective, and $i_{P}(P) \subset \mathbb{R}^{m}$ is the intersection of an n-dimensional plane with $\mathbb{R}_{\geqslant}^{m}=\left\{\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right): y_{i} \geqslant 0\right\}$.

Define the space \mathcal{Z}_{P} from the diagram

$$
\begin{array}{ccc}
\mathcal{Z}_{P} \xrightarrow{i z} \mathbb{C}^{m} & \left(z_{1}, \ldots, z_{m}\right) \\
\downarrow & \downarrow^{\mu} & \downarrow \\
P \xrightarrow{i_{P}} \mathbb{R}_{\geqslant}^{m} & \left(\left|z_{1}\right|^{2}, \ldots,\left|z_{m}\right|^{2}\right)
\end{array}
$$

Explicitly, $\mathcal{Z}_{P}=\mu^{-1}\left(i_{P}(P)\right)$. It has a T^{m}-action with the quotient $\mathcal{Z}_{P} / T^{m}=P$.
P is simple if there are $n=\operatorname{dim} P$ facets meeting at each vertex.

Proposition

If P is a simple polytope, then \mathcal{Z}_{P} is a smooth $(m+n)$-dim manifold.

Proof.

Write $i_{P}\left(\mathbb{R}^{n}\right)$ by $(m-n)$ linear equations in $\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Replacing each y_{k} by $\left|z_{k}\right|^{2}$ we obtain a presentation of \mathcal{Z}_{P} by Hermitian quadrics.

[^0]\mathcal{Z}_{P} is the moment-angle manifold (corresponding to P).

Similarly, considering

we obtain a real moment-angle manifold \mathcal{R}_{P}.

Example

$P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geqslant 0, x_{2} \geqslant 0,-\gamma_{1} x_{1}-\gamma_{2} x_{2}+1 \geqslant 0\right\}, \gamma_{1}, \gamma_{2}>0$
(a 2 -simplex). Then
$\mathcal{Z}_{P}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: \gamma_{1}\left|z_{1}\right|^{2}+\gamma_{2}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\}$ (a 5-sphere),
$\mathcal{R}_{P}=\left\{\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}: \gamma_{1}\left|u_{1}\right|^{2}+\gamma_{2}\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2}=1\right\}$ (a 2-sphere).

Right-angled polytopes and hyperbolic manifolds

Let P be a polytope in n-dimensional Lobachevsky space \mathbb{L}^{n} with right angles between adjacent facets (a right-angled n-polytope).

Denote by $G(P)$ the group generated by reflections in the facets of P. It is a right-angled Coxeter group given by the presentation

$$
\left.G(P)=\left\langle g_{1}, \ldots, g_{m}\right| g_{i}^{2}=1, g_{i} g_{j}=g_{j} g_{i} \text { if } F_{i} \cap F_{j} \neq \varnothing\right\rangle
$$

where g_{i} denotes the reflection in the facet F_{i}.

The group $G(P)$ acts on \mathbb{L}^{n} discretely with finite isotropy subgroups and with fundamental domain P.

Lemma (A. Vesnin, 1987)

Consider an epimorphism $\varphi: G(P) \rightarrow \mathbb{Z}_{2}^{k}, k \geqslant n$. The subgroup Ker $\varphi \subset G(P)$ does not contain elements of finite order if and only if the images of the reflections in any n facets of P that have a common vertex are linearly independent in \mathbb{Z}_{2}^{k}.
In this case the group $\operatorname{Ker} \varphi$ acts freely on \mathbb{L}^{n}.

The quotient $N=\mathbb{L}^{n} / \operatorname{Ker} \varphi$ is a hyperbolic n-manifold. It is composed of $\left|\mathbb{Z}_{2}^{k}\right|=2^{k}$ copies of P and has a Riemannian metric of constant negative curvature. Furthermore, the manifold N is aspherical (the Eilenberg-Mac Lane space $K(\operatorname{Ker} \varphi, 1)$), as its universal cover \mathbb{L}^{n} is contractible.

Which combinatorial n-polytopes have right-angled realisations in \mathbb{L}^{n} ? In dim 3, there is a nice criterion going back to Pogorelov's work of 1967:

Theorem (Pogorelov, Andreev)

A combinatorial 3-polytope $P \neq \Delta^{3}$ can be realised as a right-angled polytope in \mathbb{L}^{3} if and only if it is simple, and does not have 3- and 4-belts of facets. Furthermore, such a realisation is unique up to isometry.

We refer to the above class of 3-polytopes as the Pogorelov class \mathcal{P}. A Pogorelov polytope does not have triangular or quadrangular facets. The Pogorelov class contains all fullerenes (simple 3-polytopes with only pentagonal and hexagonal facets).
The conditions specifying Pogorelov polytopes also feature as the no- \triangle and no- \square condition in Gromov's theory of hyperbolic groups.

There is no classification of right-angled polytopes in \mathbb{L}^{4}. For $n \geqslant 5$, right-angled polytopes in \mathbb{L}^{n} do not exist [Vinberg].

Given a right-angled polytope P, how to find an epimorphism $\varphi: G(P) \rightarrow \mathbb{Z}_{2}^{k}$ with $\operatorname{Ker} \varphi$ acting freely on \mathbb{L}^{n} ?

One can consider the abelianisation: $G(P) \xrightarrow{\mathrm{ab}} \mathbb{Z}_{2}^{m}$, with Ker ab $=G^{\prime}(P)$, the commutator subgroup.
The corresponding n-manifold $\mathbb{L}^{n} / G^{\prime}(P)$ is the real moment-angle manifold \mathcal{R}_{P}, described as an intersection of quadrics in the beginning of this talk.

Corollary

If P is a right-angled polytope in \mathbb{L}^{n}, then the real moment-angle manifold \mathcal{R}_{P} admits a hyperbolic structure as $\mathbb{L}^{n} / G^{\prime}(P)$, where $G^{\prime}(P)$ is the commutator subgroup of the corresponding right-angled Coxeter group. The manifold \mathcal{R}_{P} is composed of 2^{m} copies of P.

A more econimical way to obtain a hyperbolic manifold is to consider $\varphi: G(P) \rightarrow \mathbb{Z}_{2}^{n}$. Such an epimorphism factors as $G(P) \xrightarrow{\mathrm{ab}} \mathbb{Z}_{2}^{m} \xrightarrow{\Lambda} \mathbb{Z}_{2}^{n}$, where Λ is a linear map.

The subgroup $\operatorname{Ker} \varphi$ acts freely on \mathbb{L}^{n} if and only the Λ-images of any n facets of P that meet at a vertex form a basis of \mathbb{Z}_{2}^{n}. Such Λ is called a \mathbb{Z}_{2}-characteristic function.

Proposition

Any simple 3-polytope admits a characteristic function.

Proof.

Given a 4-colouring of the facets of P, we assign to a facet of i th colour the i th basis vector $\boldsymbol{e}_{i} \in \mathbb{Z}^{3}$ for $i=1,2,3$ and the vector $\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$ for $i=4$. The resulting map $\Lambda: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{3}$ satisfies the required condition, as any three of the four vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$ form a basis of \mathbb{Z}^{3}.

Definition (A. Vesnin, 1987)

$N(P, \Lambda)=\mathbb{L}^{3} / \operatorname{Ker} \varphi$ a hyperbolic 3-manifold of Löbell type.
It is composed of $\left|\mathbb{Z}_{2}^{3}\right|=8$ copies of a right-angled 3-polytope $P \in \mathcal{P}$ glued along their facets; the gluing is prescribed by the characteristic function $\Lambda: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{3}$.

In particular, one obtains a hyperbolic 3-manifold $N(P, \chi)$ from any regular 4-colouring $\chi: \mathcal{F} \rightarrow\{1,2,3,4\}$ of a right-angled 3-polytope P.

Löbell (1931) was first to consider hyperbolic 3-manifolds coming from 4-colourings of a family of right-angled polytopes starting from the dodecahedron.

Example: Löbell polytopes Q_{k} ('barrel" fullerenes)

For $k \geqslant 5$, let Q_{k} be a simple 3-polytope with two "top" and "bottom" k-gonal facets and $2 k$ pentagonal facets forming two k-belts around the top and bottom, so that Q_{k} has $2 k+2$ facets in total. Note that Q_{5} is a combinatorial dodecahedron, while Q_{6} is a fullerene.

It is easy to see that $Q_{k} \in \mathcal{P}$, so it admits a right-angled realisation in \mathbb{L}^{3}.

Consider hyperbolic 3-manifolds $N\left(Q_{k}, \chi\right)$ corresponding to 4-colourings χ of Q_{k}. For example, a dodecahedron Q_{5} has a unique 4-colouring up to equivalence, while Q_{6} has four non-equivalent regular 4-colourings (4-colourings are equivalent if they differ by a permutation of colours).

Conjecture (Vesnin, 1991)

Hyperbolic 3-manifolds $N\left(Q_{k}, \chi_{1}\right)$ and $N\left(Q_{k}, \chi_{2}\right)$ are diffeomorphic (isometric) if and only if the 4 -colourings χ_{1} and χ_{2} are equivalent.

By 2009 the conjecture was verified for all k except 6,8 using deep results on arithmetic groups (Margulis commensurator theorem). However, it remained open for Q_{6} and Q_{8}.

Pairs (P, Λ) and $\left(P^{\prime}, \Lambda^{\prime}\right)$ are equivalent if P and P^{\prime} are combinatorially equivalent, and $\Lambda, \Lambda^{\prime}: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$ differ by an automorphism of \mathbb{Z}_{2}^{n}.

Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let $N=N(P, \Lambda)$ and $N^{\prime}=N\left(P^{\prime}, \Lambda^{\prime}\right)$ be two hyperbolic 3-manifolds of Löbell type corresponding to right-angled 3-polytopes P and P^{\prime}. Then the following conditions are equivalent:
(a) there is a cohomology ring isomorphism

$$
\varphi: H^{*}\left(N ; \mathbb{Z}_{2}\right) \xrightarrow{\cong} H^{*}\left(N^{\prime} ; \mathbb{Z}_{2}\right) ;
$$

(b) there is a diffeomorphism $N \cong N^{\prime}$;
(c) there is an equivalence of \mathbb{Z}_{2}-characteristic pairs $(P, \Lambda) \sim\left(P^{\prime}, \Lambda^{\prime}\right)$.

The difficult implication is $(a) \Rightarrow(c)$. Its proof builds upon the wealth of cohomological techniques of toric topology.

Specifying to \mathbb{Z}_{2}-characteristic functions Λ coming from colourings χ we obtain:

Theorem (Buchstaber-P)

Hyperbolic 3-manifolds $N\left(P, \chi_{1}\right)$ and $N\left(P^{\prime}, \chi_{2}\right)$ corresponding to right-angled polytopes P and P^{\prime} are diffeomorphic (isometric) if and only if the 4-colourings χ_{1} and χ_{2} are equivalent.

In particular, Vesnin's conjecture holds for all Löbell polytopes Q_{k}.

Cohomology of moment-angle manifolds

The face ring (the Stanley-Reisner ring) of a simple polytope P

$$
\mathbb{Z}[P]:=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i_{1}} \cdots v_{i_{k}}=0 \quad \text { for } F_{i_{1}} \cap \cdots \cap F i_{k}=\varnothing\right)
$$

where $\operatorname{deg} v_{i}=2$.

Theorem

There are ring isomorphisms

$$
\begin{array}{rlr}
H^{*}\left(\mathcal{Z}_{P}\right) & \cong \operatorname{Tor}_{\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]}(\mathbb{Z}[P], \mathbb{Z}) & \\
& \cong H\left(\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[P], d\right) & d u_{i}=v_{i}, d v_{i}=0 \\
& \cong \bigoplus_{I \subset\{1, \ldots, m\}} \widetilde{H}^{*-|I|-1}\left(P_{I}\right) & P_{I}=\bigcup_{i \in I} F_{i}
\end{array}
$$

(Quasi)toric manifolds and small covers

P a simple n-polytope, $\mathcal{F}=\left\{F_{1}, \ldots, F_{m}\right\}$ the set of facets.
A characteristic function is map $\Lambda: \mathcal{F} \rightarrow \mathbb{Z}^{n}$ such that $\Lambda\left(F_{i_{1}}\right), \ldots, \Lambda\left(F_{i_{n}}\right)$ is a basis of \mathbb{Z}^{n} whenever $F_{i_{1}}, \ldots, F_{i_{n}}$ intersect in a vertex.
A characteristic function defines a linear map $\Lambda: \mathbb{Z}^{\mathcal{F}}=\mathbb{Z}^{m} \rightarrow \mathbb{Z}^{n}$ and a homomorphism of tori $\Lambda: T^{m} \rightarrow T^{n}$.

Proposition

The subgroup $\operatorname{Ker} \Lambda \cong T^{m-n}$ acts freely on \mathcal{Z}_{P}.
$M(P, \Lambda)=\mathcal{Z}_{P} / \operatorname{Ker} \Lambda$ is a quasitoric manifold.
It is a smooth $2 n$-dimensional manifold with an action of the n-torus $T^{m} / \operatorname{Ker} \Lambda \cong T^{n}$ and the quotient P.

By considering \mathbb{Z}_{2}-characteristic functions $\Lambda: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}^{n}$, we obtain small covers of P as the quotients $\mathcal{R}_{P} / \operatorname{Ker} \Lambda$.
A small cover $N(P, \Lambda)$ is a smooth n-dimensional manifold with an action of \mathbb{Z}_{2}^{n} and the quotient P.

Proposition

In dimension 3, a real moment-angle manifold \mathcal{R}_{P} and a small cover $N(P, \Lambda)$ admit a hyperbolic structure if and only if P is a Pogorelov polytope.

Proof.

P is a Pogorelov polytope \Leftrightarrow dual \mathcal{K} has no \triangle and \square If P is a Pogorelov polytope, then \mathcal{R}_{P} and $N(P, \Lambda)$ are hyperbolic. If \mathcal{K} has a \triangle, then $R_{\triangle} \cong S^{2}$ retracts off \mathcal{R}_{P}, so \mathcal{R}_{P} cannot be hyperbolic (as it has $\pi_{2} \neq 0$).
If \mathcal{K} has a \square, then $R_{\square} \cong T^{2}$ retracts off \mathcal{R}_{P}, which is impossible for a hyperbolic manifold.

Theorem (Danilov-Jurkiewicz, Davis-Januszkiewicz)

Let $M=M(P, \Lambda)$ be a quasitoric manifold over a simple n-polytope P. The cohomology ring $H^{*}(M ; \mathbb{Z})$ is generated by the 2-dimensional classes [v_{i}] dual to the characteristic submanifolds $M_{i}, i=1, \ldots, m$, and is given by

$$
H^{*}(M ; \mathbb{Z}) \cong \mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] / \mathcal{I}, \quad \operatorname{deg} v_{i}=2
$$

where \mathcal{I} is the ideal generated by elements of two kinds:
(a) $v_{i_{1}} \cdots v_{i_{k}}$, where $F_{i_{1}} \cap \cdots \cap F_{i_{k}}=\varnothing$ in P;
(b) $\sum_{i=1}^{m}\left\langle\Lambda\left(F_{i}\right), \boldsymbol{x}\right\rangle v_{i}$ for any $\boldsymbol{x} \in \mathbb{Z}^{n}$.

The \mathbb{Z}_{2}-cohomology ring $H^{*}\left(N ; \mathbb{Z}_{2}\right)$ of a small cover $N=N(P, \Lambda)$ has the same description, with generators v_{i} of degree 1 .

Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let $M=M(P, \Lambda)$ and $M^{\prime}=M\left(P^{\prime}, \Lambda^{\prime}\right)$ be quasitoric 6-manifolds, where P is a Pogorelov 3-polytope. The following conditions are equivalent:
(a) There is a ring isomorphism $\varphi: H^{*}(M ; \mathbb{Z}) \xrightarrow{\cong} H^{*}\left(M^{\prime} ; \mathbb{Z}\right)$;
(b) There is a diffeomorphism $M \cong M^{\prime}$;
(c) There is an equivalence of characteristic pairs $(P, \Lambda) \sim\left(P^{\prime}, \Lambda^{\prime}\right)$.

Idea of proof (for both theorems)

We need to prove that a ring iso $\varphi: H^{*}(N ; \mathbb{Z}) \xrightarrow{\cong} H^{*}\left(N^{\prime} ; \mathbb{Z}\right)$ implies an equivalence $(P, \Lambda) \sim\left(P^{\prime}, \Lambda^{\prime}\right)$.
An iso $\varphi: H^{*}\left(N ; \mathbb{Z}_{2}\right) \xrightarrow{\cong} H^{*}\left(N^{\prime} ; \mathbb{Z}_{2}\right)$ implies an iso
$\varphi: H^{*}\left(M ; \mathbb{Z}_{2}\right) \xrightarrow{\cong} H^{*}\left(M^{\prime} ; \mathbb{Z}_{2}\right)$ (as every \mathbb{Z}_{2}-characteristic function of a 3-polytope lifts to a \mathbb{Z}-characteristic function!)
An iso $\varphi: H^{*}\left(M ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[P] / \mathcal{J}_{\Lambda} \xrightarrow{\cong} \mathbb{Z}_{2}\left[P^{\prime}\right] / \mathcal{J}_{\Lambda^{\prime}}=H^{*}\left(M^{\prime} ; \mathbb{Z}_{2}\right)$ implies an iso

$$
\begin{aligned}
& \psi: H^{*}\left(\mathcal{Z}_{P} ; \mathbb{Z}_{2}\right)=\operatorname{Tor}_{\mathbb{Z}_{2}\left[v_{1}, \ldots, v_{m}\right] / \mathcal{J}_{\Lambda}}\left(\mathbb{Z}_{2}[P] / \mathcal{J}_{\Lambda}, \mathbb{Z}_{2}\right) \\
& \cong \\
& \operatorname{Tor}_{\mathbb{Z}_{2}\left[v_{1}, \ldots, v_{m}\right] / \mathcal{J}_{\Lambda^{\prime}}}\left(\mathbb{Z}_{2}\left[P^{\prime}\right] / \mathcal{J}_{\Lambda^{\prime}}, \mathbb{Z}_{2}\right)=H^{*}\left(\mathcal{Z}_{P^{\prime}} ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

The results of Fan, Ma and Wang imply that ψ maps the set of canonical generators $\left\{\left[u_{i} v_{j}\right] \in H^{3}\left(\mathcal{Z}_{P}\right): F_{i} \cap F_{j}=\varnothing\right\}$ bijectively to the corresponding set for $\mathcal{Z}_{P^{\prime}}$.
This implies that φ maps the set $\left\{\left[v_{i}\right] \in H^{2}(M)\right\}$ bijectively to the corresponding set for M^{\prime}, giving an equivalence $(P, \Lambda) \sim\left(P^{\prime}, \Lambda^{\prime}\right)$.

Cohomological rigidity

Problem

Let $M=M(P, \Lambda)$ and $M^{\prime}=M\left(P^{\prime}, \Lambda^{\prime}\right)$ be quasitoric manifolds with isomorphic integer cohomology rings. Are they homeomorphic?

Our result gives a positive answer in the case of quasitoric 6-manifolds over Pogorelov polytopes.

Proposition

6-dimensional quasitoric manifolds M and M^{\prime} are diffeomorphic if there is an isomorphism $\varphi: H^{*}(M ; \mathbb{Z}) \xrightarrow{\cong} H^{*}\left(M^{\prime} ; \mathbb{Z}\right)$ preserving the first Pontryagin class, i. e. $\varphi\left(p_{1}(M)\right)=p_{1}\left(M^{\prime}\right)$.

We have $p_{1}(M)=v_{1}^{2}+\cdots+v_{m}^{2} \in H^{4}(M)$. However, we were not able to establish the invariance of $p_{1}(M)$ directly...

References

[1] V. Buchstaber, N. Erokhovets, M. Masuda, T. Panov and S. Park. Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes. Russian Math. Surveys 72 (2017), no. 2, 199-256; arXiv:1610.07575.
[2] V. Buchstaber and T. Panov. On manifolds defined by 4-colourings of simple 3-polytopes. Russian Math. Surveys 71 (2016), no. 6, 1137-1139; arXiv:1703.06801.

[^0]: Taras Panov (MSU)

