Geometric structures on moment-angle manifolds

Taras Panov

Parts of this talk are joint with Victor Buchstaber,

Andrei Mironov, Yury Ustinovskiy and Misha Verbitsky

Moscow State University

Dynamics in Siberia Novosibirsk 29 February – 4 March 2016

Moment-angle manifolds and complexes

A convex polyhedron in \mathbb{R}^n obtained by intersecting m halfspaces:

$$P = \left\{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \right\}.$$

Define an affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(\mathbf{x}) = (\langle \mathbf{a}_1, \mathbf{x} \rangle + b_1, \dots, \langle \mathbf{a}_m, \mathbf{x} \rangle + b_m).$$

If P has a vertex, then i_P is monomorphic, and $i_P(P)$ is the intersection of an *n*-plane with $\mathbb{R}^m_{\geq} = \{\mathbf{y} = (y_1, \dots, y_m) : y_i \geq 0\}.$

Define the space \mathcal{Z}_P from the diagram

 \mathcal{Z}_P has a \mathbb{T}^m -action, $\mathcal{Z}_P/\mathbb{T}^m = P$, and i_Z is a \mathbb{T}^m -equivariant inclusion.

Prop 1. If P is a simple polytope (more generally, if the presentation of P by inequalities is generic), then Z_P is a smooth manifold of dimension m + n.

Proof. Write $i_P(\mathbb{R}^n)$ by m - n linear equations in $(y_1, \ldots, y_m) \in \mathbb{R}^m$. Replace y_k by $|z_k|^2$ to obtain a presentation of \mathcal{Z}_P by quadrics.

 \mathcal{Z}_P : polytopal moment-angle manifold corresponding to P.

Similarly, by considering the projection $\mu \colon \mathbb{R}^m \to \mathbb{R}^m_{\geq}$ instead of $\mu \colon \mathbb{C}^m \to \mathbb{R}^m_{\geq}$ we obtain the real moment-angle manifold $\mathcal{R}_P \subset \mathbb{R}^m$.

Ex 1. $P = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0, -\gamma_1 x_1 - \gamma_2 x_2 + 1 \ge 0\}, \gamma_1, \gamma_2 > 0$ (a 2-simplex). Then $\mathcal{Z}_P = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : \gamma_1 |z_1|^2 + \gamma_2 |z_2|^2 + |z_3|^2) = 1\}$ (a 5-sphere), $\mathcal{R}_P = \{(u_1, u_2, u_3) \in \mathbb{R}^3 : \gamma_1 |u_1|^2 + \gamma_2 |u_2|^2 + |u_3|^2) = 1\}$ (a 2-sphere). \mathcal{K} an (abstract) simplicial complex on the set $[m] = \{1, \ldots, m\}$.

 $I = \{i_1, \ldots, i_k\} \in \mathcal{K}$ a simplex. Always assume $\emptyset \in \mathcal{K}$.

Consider the unit polydisc in \mathbb{C}^m ,

$$\mathbb{D}^m = \{(z_1,\ldots,z_m) \in \mathbb{C}^m \colon |z_i| \leq 1, \quad i = 1,\ldots,m\}.$$

Given $I \subset [m]$, set

$$B_I := \left\{ (z_1, \dots, z_m) \in \mathbb{D}^m \colon |z_j| = 1 \text{ for } j \notin I \right\} \cong \prod_{i \in I} D^2 \times \prod_{i \notin I} S^1.$$

The moment-angle complex

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{I \in \mathcal{K}} B_I = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} D^2 \times \prod_{i \notin I} S^1 \right) \subset \mathbb{D}^m$$

It is invariant under the coordinatewise action of the torus \mathbb{T}^m .

Ex 2. $\mathcal{K} = 2$ points, then $\mathcal{Z}_{\mathcal{K}} = D^2 \times S^1 \cup S^1 \times D^2 \cong S^3$. $\mathcal{K} = \Delta$, then $\mathcal{Z}_{\mathcal{K}} = (D^2 \times D^2 \times S^1) \cup (D^2 \times S^1 \times D^2) \cup (S^1 \times D^2 \times D^2) \cong S^5$. More generally, let X a space, and $A \subset X$. Given $I \subset [m]$, set

$$(X,A)^{I} = \left\{ (x_{1}, \dots, x_{m}) \in \prod_{i=1}^{m} X \colon x_{j} \in A \text{ for } j \notin I \right\} \cong \prod_{i \in I} X \times \prod_{i \notin I} A.$$

The \mathcal{K} -polyhedral product of (X, A) is

$$\mathcal{Z}_{\mathcal{K}}(X,A) = \bigcup_{I \in \mathcal{K}} (X,A)^{I} \subset X^{m}.$$

Another important example is the complement of the coordinate subspace arrangement corresponding to \mathcal{K} :

$$U(\mathcal{K}) = \mathbb{C}^m \setminus \bigcup_{\{i_1,\dots,i_k\} \notin \mathcal{K}} \{ \mathbf{z} \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0 \},$$

namely,

$$U(\mathcal{K}) = \mathcal{Z}_{\mathcal{K}}(\mathbb{C}, \mathbb{C}^{\times}),$$

where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}.$

Thm 1. $\mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$ is a \mathbb{T}^m -deformation retract of $U(\mathcal{K})$.

Thm 2. If *P* is a simple polytope, $\mathcal{K}_P = \partial(P^*)$ (the dual triangulation), then $\mathcal{Z}_{\mathcal{K}_P} \cong \mathcal{Z}_P$ (\mathbb{T}^m -equivariantly homeomorphic).

In particular, $\mathcal{Z}_{\mathcal{K}_{P}}$ is a manifold. More generally,

Prop 2. Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with *m* vertices). Then $\mathcal{Z}_{\mathcal{K}}$ is a closed manifold of dimension m + n.

Geometric structures I. Non-Kähler complex structures

Recall: if $\mathcal{K} = \mathcal{K}_P$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_P = \mathcal{Z}_{\mathcal{K}_P}$ has a canonical smooth structure (e.g. as a nondegenerate intersection of Hermitian quadrics in \mathbb{C}^m).

Let \mathcal{K} be a sphere triangulation, i.e. $|\mathcal{K}| \cong S^{n-1}$. A realisation $|\mathcal{K}| \subset \mathbb{R}^n$ is starshaped if there is a point $\mathbf{x} \notin |\mathcal{K}|$ such that any ray from \mathbf{x} intersects $|\mathcal{K}|$ in exactly one point.

A convex triangulation \mathcal{K}_P is starshaped, but not vice versa!

 \mathcal{K} has a starshaped realisation if and only if it is the underlying complexes of a complete simplicial fan Σ .

Also recall $U(\mathcal{K}) = \mathbb{C}^m \setminus \bigcup_{\{i_1,\dots,i_k\} \notin \mathcal{K}} \{ \mathbf{z} \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0 \}.$

 $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$ the generators of the 1-dim cones of Σ . Define a map

$$A \colon \mathbb{R}^m \to \mathbb{R}^n, \quad \mathbf{e}_i \mapsto \mathbf{a}_i,$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ is the standard basis of \mathbb{R}^m . Set

$$\mathbb{R}^m_{>} = \{(y_1,\ldots,y_m) \in \mathbb{R}^m \colon y_i > 0\},\$$

and define

$$R := \exp(\operatorname{Ker} A) = \{(y_1, \dots, y_m) \in \mathbb{R}^m : \prod_{i=1}^m y_i^{\langle \mathbf{a}_i, \mathbf{u} \rangle} = 1 \text{ for all } \mathbf{u} \in \mathbb{R}^n \},\$$

 $R \subset \mathbb{R}^m_>$ acts on $U(\mathcal{K}) \subset \mathbb{C}^m$ by coordinatewise multiplications.

Thm 3. Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Then

(a) the group $R \cong \mathbb{R}^{m-n}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K})/R$ is a smooth (m+n)-dimensional manifold;

(b) $U(\mathcal{K})/R$ is \mathbb{T}^m -equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

Assume m - n is even and set $\ell = \frac{m - n}{2}$.

Choose a linear map $\Psi : \mathbb{C}^{\ell} \to \mathbb{C}^{m}$ satisfying the two conditions: (a) $\operatorname{Re} \circ \Psi : \mathbb{C}^{\ell} \to \mathbb{R}^{m}$ is a monomorphism. (b) $A \circ \operatorname{Re} \circ \Psi = 0$.

The composite map of the top line in the following diagram is zero:

Now set

$$C = \exp \Psi(\mathbb{C}^{\ell}) = \left\{ \left(e^{\langle \psi_1, \mathbf{w} \rangle}, \dots, e^{\langle \psi_m, \mathbf{w} \rangle} \right) \in (\mathbb{C}^{\times})^m \right\}$$

Then $C \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup in $(\mathbb{C}^{\times})^m$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Ex 3. Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have n = 0, m = 2, $\ell = 1$, and $A \colon \mathbb{R}^2 \to 0$ is a zero map. Let $\Psi \colon \mathbb{C} \to \mathbb{C}^2$ be given by $z \mapsto (z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$C = \left\{ (e^z, e^{\alpha z}) \right\} \subset (\mathbb{C}^{\times})^2.$$

Condition (b) above is void, while (a) is equivalent to that $\alpha \notin \mathbb{R}$. Then exp $\Psi \colon \mathbb{C} \to (\mathbb{C}^{\times})^2$ is an embedding, and the quotient $(\mathbb{C}^{\times})^2/C$ with the natural complex structure is a complex torus $T_{\mathbb{C}}^2$ with parameter $\alpha \in \mathbb{C}$:

$$(\mathbb{C}^{\times})^2/C \cong \mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z}) = T^2_{\mathbb{C}}(\alpha).$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that n = 0, $m = 2\ell$), we may obtain any complex torus $T_{\mathbb{C}}^{2\ell}$ as the quotient $(\mathbb{C}^{\times})^{2\ell}/C$. **Thm 4.** Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Assume that $m - n = 2\ell$. Then

- (a) the holomorphic action of the group $C \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K})/C$ is a compact complex $(m \ell)$ -manifold;
- (b) there is a \mathbb{T}^m -equivariant diffeomorphism $U(\mathcal{K})/C \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^m acts holomorphically.

Ex 4 (Hopf manifold). Let Σ be the complete fan in \mathbb{R}^n whose cones are generated by all proper subsets of n + 1 vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n, -\mathbf{e}_1 - \ldots - \mathbf{e}_n$.

To make m - n even we add one 'empty' 1-cone. We have m = n + 2, $\ell = 1$. Then $A \colon \mathbb{R}^{n+2} \to \mathbb{R}^n$ is given by the matrix $(0 \ I - 1)$, where I is the unit $n \times n$ matrix, and 0, 1 are the *n*-columns of zeros and units respectively.

We have that \mathcal{K} is the boundary of an *n*-dim simplex with n + 1 vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^1 \times S^{2n+1}$, and $U(\mathcal{K}) = \mathbb{C}^{\times} \times (\mathbb{C}^{n+1} \setminus \{0\})$.

Take $\Psi : \mathbb{C} \to \mathbb{C}^{n+2}$, $z \mapsto (z, \alpha z, \dots, \alpha z)$ for some $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{R}$. Then

$$C = \left\{ (e^z, e^{\alpha z}, \dots, e^{\alpha z}) \colon z \in \mathbb{C} \right\} \subset (\mathbb{C}^{\times})^{n+2},$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K})/C$:

$$\mathbb{C}^{\times} \times \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ (t, \mathbf{w}) \sim (e^{z}t, e^{\alpha z} \mathbf{w}) \right\} \cong \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ \mathbf{w} \sim e^{2\pi i \alpha} \mathbf{w} \right\},$$

where $t \in \mathbb{C}^{\times}$, $\mathbf{w} \in \mathbb{C}^{n+1} \setminus \{0\}$. The latter quotient of $\mathbb{C}^{n+1} \setminus \{0\}$ is known as the Hopf manifold.

Holomorphic bundles over toric varieties.

Manifolds $\mathcal{Z}_{\mathcal{K}}$ corresponding to complete *regular* (in particular, *rational*) simplicial fans are total spaces of holomorphic principal bundles over toric varieties with fibre a complex torus. This allows us to calculate invariants of the complex structures on $\mathcal{Z}_{\mathcal{K}}$, such as Hodge numbers and Dolbeault cohomology.

A toric variety is a normal algebraic variety X on which an algebraic torus $(\mathbb{C}^{\times})^n$ acts with a dense (Zariski open) orbit.

Toric varieties are classified by *rational* fans. Under this correspondence,

complete fans $\leftrightarrow \rightarrow$ compact varieties

- normal fans of polytopes $\leftrightarrow \rightarrow$ projective varieties
 - regular fans \leftrightarrow nonsingular varieties

simplicial fans \leftrightarrow orbifolds

 Σ complete, simplicial, *rational*; $\mathbf{a}_1, \dots, \mathbf{a}_m$ primitive integral generators of 1-cones; $\mathbf{a}_i = (a_{i1}, \dots, a_{in}) \in \mathbb{Z}^n$.

Constr 1 ('Cox construction'). Let $A_{\mathbb{C}} \colon \mathbb{C}^m \to \mathbb{C}^n$, $\mathbf{e}_i \mapsto \mathbf{a}_i$,

$$\exp A_{\mathbb{C}} \colon (\mathbb{C}^{\times})^m \to (\mathbb{C}^{\times})^n,$$
$$(z_1, \dots, z_m) \mapsto \left(\prod_{i=1}^m z_i^{a_{i1}}, \dots, \prod_{i=1}^m z_i^{a_{in}}\right)$$

Set $G = \operatorname{Ker} \exp A_{\mathbb{C}}$.

This is an (m - n)-dimensional algebraic subgroup in $(\mathbb{C}^{\times})^m$. It acts almost freely (with finite isotropy subgroups) on $U(\mathcal{K}_{\Sigma})$. If Σ is regular, then $G \cong (\mathbb{C}^{\times})^{m-n}$ and the action is free.

 $V_{\Sigma} = U(\mathcal{K}_{\Sigma})/G$ the toric variety associated to Σ . The quotient torus $(\mathbb{C}^{\times})^m/G \cong (\mathbb{C}^{\times})^n$ acts on V_{Σ} with a dense orbit. Observe that $\mathbb{C}^{\ell} \cong C \subset G \cong (\mathbb{C}^{\times})^{m-n}$ as a complex subgroup.

Prop 3.

- (a) The toric variety V_{Σ} is homeomorphic to the quotient of $\mathcal{Z}_{\mathcal{K}_{\Sigma}}$ by the holomorphic action of G/C.
- (b) If Σ is regular, then there is a holomorphic principal bundle $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \to V_{\Sigma}$ with fibre the compact complex torus G/C of dimension ℓ .

Rem 1. For singular varieties V_{Σ} the quotient projection $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \to V_{\Sigma}$ is a holomorphic principal Seifert bundle for an appropriate orbifold structure on V_{Σ} .

Submanifolds and analytic subsets.

The complex structure on $\mathcal{Z}_{\mathcal{K}}$ is determined by two pieces of data:

- the complete simplicial fan Σ with generators $\mathbf{a}_1, \ldots, \mathbf{a}_m$;
- the ℓ -dimensional holomorphic subgroup $C \subset (\mathbb{C}^{\times})^m$.

If this data is *generic* (in particular, the fan Σ is not rational), then there is no holomorphic principal torus fibration $\mathcal{Z}_{\mathcal{K}} \to V_{\Sigma}$ over a toric variety V_{Σ} .

However, there still exists a holomorphic ℓ -dimensional foliation \mathcal{F} with a transverse Kähler form $\omega_{\mathcal{F}}$. This form can be used to describe submanifolds and analytic subsets in $\mathcal{Z}_{\mathcal{K}}$.

Consider the complexified map $A_{\mathbb{C}}: \mathbb{C}^m \to \mathbb{C}^n$, $\mathbf{e}_i \mapsto \mathbf{a}_i$. and the following complex (m-n)-dimensional subgroup in $(\mathbb{C}^{\times})^m$:

$$G = \exp(\operatorname{Ker} A_{\mathbb{C}}) = \left\{ \left(e^{z_1}, \dots, e^{z_m} \right) \in (\mathbb{C}^{\times})^m \colon (z_1, \dots, z_m) \in \operatorname{Ker} A_{\mathbb{C}} \right\}.$$

Note $C \subset G$.

The group G acts on $U(\mathcal{K})$, and its orbits define a holomorphic foliation on $U(\mathcal{K})$. Since $G \subset (\mathbb{C}^{\times})^m$, this action is free on open subset $(\mathbb{C}^{\times})^m \subset U(\mathcal{K})$, so that the generic leaf of the foliation has complex dimension $m - n = 2\ell$.

The ℓ -dimensional closed subgroup $C \subset G$ acts on $U(\mathcal{K})$ freely and properly by Theorem 4, so that $U(\mathcal{K})/C$ carries a holomorphic action of the quotient group D = G/C.

 \mathcal{F} : the holomorphic foliation on $U(\mathcal{K})/C \cong \mathcal{Z}_{\mathcal{K}}$ by the orbits of D.

The subgroup $G \subset (\mathbb{C}^{\times})^m$ is closed if and only if it is isomorphic to $(\mathbb{C}^{\times})^{2\ell}$; in this case the subspace Ker $A \subset \mathbb{R}^m$ is rational. Then Σ is a rational fan and V_{Σ} is the quotient $U(\mathcal{K})/G$. The foliation \mathcal{F} gives rise to a holomorphic principal Seifert fibration $\pi: \mathcal{Z}_{\mathcal{K}} \to V_{\Sigma}$ with fibres compact complex tori G/C.

For a generic configuration of nonzero vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$, G is biholomorphic to $\mathbb{C}^{2\ell}$ and D = G/C is biholomorphic to \mathbb{C}^{ℓ} .

A (1,1)-form $\omega_{\mathcal{F}}$ on the complex manifold $\mathcal{Z}_{\mathcal{K}}$ is called transverse Kähler with respect to the foliation \mathcal{F} if

(a) $\omega_{\mathcal{F}}$ is closed, i.e. $d\omega_{\mathcal{F}} = 0$;

(b) $\omega_{\mathcal{F}}$ is nonnegative and the zero space of $\omega_{\mathcal{F}}$ is the tangent space of \mathcal{F} .

A complete simplicial fan Σ in \mathbb{R}^n is called weakly normal if there exists a (not necessarily simple) *n*-dimensional polytope *P* such that Σ is a simplicial subdivision of the normal fan Σ_P .

Thm 5. Assume that Σ is a weakly normal fan. Then there exists an exact (1,1)-form $\omega_{\mathcal{F}}$ on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$ which is transverse Kähler for the foliation \mathcal{F} on the dense open subset $(\mathbb{C}^{\times})^m/C \subset U(\mathcal{K})/C$.

For each $J \subset [m]$, define the corresponding coordinate submanifold in $\mathcal{Z}_{\mathcal{K}}$ by

$$\mathcal{Z}_{\mathcal{K}_J} = \{ (z_1, \dots, z_m) \in \mathcal{Z}_{\mathcal{K}} \colon z_i = 0 \quad \text{for } i \notin J \}.$$

Obviously, $\mathcal{Z}_{\mathcal{K}_{\mathcal{I}}}$ is identified with the quotient of

$$U(\mathcal{K}_J) = \{(z_1, \dots, z_m) \in U(\mathcal{K}) \colon z_i = 0 \quad \text{for } i \notin J\}$$

by $C \cong \mathbb{C}^{\ell}$. In particular, $U(\mathcal{K}_J)/C$ is a complex submanifold in $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$.

Observe that the closure of any $(\mathbb{C}^{\times})^m$ -orbit of $U(\mathcal{K})$ has the form $U(\mathcal{K}_J)$ for some $J \subset [m]$ (in particular, the dense orbit corresponds to J = [m]). Similarly, the closure of any $(\mathbb{C}^{\times})^m/C$ -orbit of $\mathcal{Z}_{\mathcal{K}} \cong U(\mathcal{K})/C$ has the form $\mathcal{Z}_{\mathcal{K}_I}$. **Thm 6.** Assume that the data defining a complex structure on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$ is generic. Then any divisor of $\mathcal{Z}_{\mathcal{K}}$ is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible analytic subset $Y \subset \mathcal{Z}_{\mathcal{K}}$ of positive dimension is a coordinate submanifold.

Cor 1. Under generic assumptions, there are no non-constant meromorphic functions on $\mathcal{Z}_{\mathcal{K}}$.

Geometric structures II. Lagrangian submanifolds

M a Kähler manifold with symplectic form ω , dim_{\mathbb{R}} M = 2n.

An immersion $i: N \hookrightarrow M$ of an *n*-manifold N is Lagrangian if $i^*(\omega) = 0$. If *i* is an embedding, then i(N) is a Lagrangian submanifold of M.

A vector field ξ on M is Hamiltonian if the 1-form $\omega(\cdot,\xi)$ is exact.

A Lagrangian immersion $i: N \hookrightarrow M$ is Hamiltonian minimal (*H*-minimal) if the variations of the volume of i(N) along all Hamiltonian vector fields with compact support are zero, i.e.

$$\frac{d}{dt}\operatorname{vol}(i_t(N))\Big|_{t=0}=0,$$

where $i_0(N) = i(N)$, $i_t(N)$ is a Hamiltonian deformation of i(N), and $vol(i_t(N))$ is the volume of the deformed part of $i_t(N)$.

Recall: P a simple polytope

$$P = \left\{ \mathbf{x} \in \mathbb{R}^n \colon \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \right\}.$$

The polytopal moment-angle manifold \mathcal{Z}_P ,

can be written as the intersection of m - n real quadrics,

$$\mathcal{Z}_P = \Big\{ \mathbf{z} = (z_1, \dots, z_m) \in \mathbb{C}^m \colon \sum_{k=1}^m \gamma_{jk} |z_k|^2 = c_j, \quad \text{for } 1 \leq j \leq m-n \Big\}.$$

Also have the real moment-angle manifold,

$$\mathcal{R}_P = \Big\{ \mathbf{u} = (u_1, \dots, u_m) \in \mathbb{R}^m \colon \sum_{k=1}^m \gamma_{jk} u_k^2 = c_j, \quad \text{for } 1 \leq j \leq m-n \Big\}.$$

Set $\gamma_k = (\gamma_{1k}, \dots, \gamma_{m-n,k}) \in \mathbb{R}^{m-n}$ for $1 \leq k \leq m$.

Assume that the polytope P is rational. Then have two lattices:

$$\Lambda = \mathbb{Z} \langle \mathbf{a}_1, \dots, \mathbf{a}_m \rangle \subset \mathbb{R}^n \quad \text{and} \quad L = \mathbb{Z} \langle \gamma_1, \dots, \gamma_m \rangle \subset \mathbb{R}^{m-n}$$

Consider the (m-n)-torus

$$T_P = \left\{ \left(e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, e^{2\pi i \langle \gamma_m, \varphi \rangle} \right) \in \mathbb{T}^m \right\},\$$

i.e. $T_P = \mathbb{R}^{m-n}/L^*$, and set

$$D_P = \frac{1}{2}L^*/L^* \cong (\mathbb{Z}/2)^{m-n}.$$

Prop 4. The (m-n)-torus T_P acts on \mathcal{Z}_P almost freely.

Consider the map

$$f \colon \mathcal{R}_P \times T_P \longrightarrow \mathbb{C}^m,$$

$$(\mathbf{u}, \varphi) \mapsto \mathbf{u} \cdot \varphi = (u_1 e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, u_m e^{2\pi i \langle \gamma_m, \varphi \rangle}).$$

Note $f(\mathcal{R}_P \times T_P) \subset \mathcal{Z}_P$ is the set of T_P -orbits through $\mathcal{R}_P \subset \mathbb{C}^m$.

Have an *m*-dimensional manifold

$$N_P = \mathcal{R}_P \times_{D_P} T_P.$$

Lemma 1. $f: \mathcal{R}_P \times T_P \to \mathbb{C}^m$ induces an immersion $j: N_P \hookrightarrow \mathbb{C}^m$.

Thm 7 (Mironov). The immersion $i_{\Gamma} : N_{\Gamma} \hookrightarrow \mathbb{C}^m$ is H-minimal Lagrangian.

When it is an embedding?

A simple rational polytope P is Delzant if for any vertex $v \in P$ the set of vectors $\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}$ normal to the facets meeting at v forms a basis of the lattice $\Lambda = \mathbb{Z}\langle \mathbf{a}_1, \ldots, \mathbf{a}_m \rangle$:

 $\mathbb{Z}\langle \mathbf{a}_1,\ldots,\mathbf{a}_m\rangle = \mathbb{Z}\langle \mathbf{a}_{i_1},\ldots,\mathbf{a}_{i_n}\rangle$ for any $v = F_{i_1} \cap \cdots \cap F_{i_n}$.

Thm 8. The following conditions are equivalent:

1) $j: N_P \to \mathbb{C}^m$ is an embedding of an H-minimal Lagrangian submanifold;

2) the
$$(m-n)$$
-torus T_P acts on \mathcal{Z}_P freely.

3) P is a Delzant polytope.

Explicit constructions of families of Delzant polytopes are known in toric geometry and topology:

- simplices and cubes in all dimensions;
- products and face cuts;
- associahedra (Stasheff ptopes), permutahedra, and generalisations.

Ex 5 (one quadric). Let $P = \Delta^{m-1}$ (a simplex), i.e. m - n = 1 and $\mathcal{R}_{\Delta^{m-1}}$ is given by a single quadric

$$\gamma_1 u_1^2 + \dots + \gamma_m u_m^2 = c \tag{1}$$

with $\gamma_i > 0$, i.e. $\mathcal{R}_{\Delta^{m-1}} \cong S^{m-1}$. Then

$$N \cong S^{m-1} \times_{\mathbb{Z}/2} S^1 \cong \begin{cases} S^{m-1} \times S^1 & \text{if } \tau \text{ preserves the orient. of } S^{m-1}, \\ \mathcal{K}^m & \text{if } \tau \text{ reverses the orient. of } S^{m-1}, \end{cases}$$

where τ is the involution and \mathcal{K}^m is an *m*-dimensional Klein bottle.

Prop 5. We obtain an H-minimal Lagrangian embedding of $N_{\Delta^{m-1}} \cong S^{n-1} \times_{\mathbb{Z}/2} S^1$ in \mathbb{C}^m if and only if $\gamma_1 = \cdots = \gamma_m$ in (1). The topological type of $N_{\Delta^{m-1}} = N(m)$ depends only on the parity of m:

$$N(m) \cong S^{m-1} \times S^1 \qquad \text{if } m \text{ is even,}$$
$$N(m) \cong \mathcal{K}^m \qquad \text{if } m \text{ is odd.}$$

The Klein bottle \mathcal{K}^m with even m does *not* admit Lagrangian embeddings in \mathbb{C}^m [Nemirovsky, Shevchishin].

Ex 6 (two quadrics).

Thm 9. Let m - n = 2, i.e. $P \simeq \Delta^{p-1} \times \Delta^{q-1}$.

(a) \mathcal{R}_P is diffeomorphic to $\mathcal{R}(p,q) \cong S^{p-1} \times S^{q-1}$ given by

$$u_1^2 + \dots + u_k^2 + u_{k+1}^2 + \dots + u_p^2 = 1,$$

$$u_1^2 + \dots + u_k^2 + u_{k+1}^2 + \dots + u_p^2 = 1,$$

$$u_1^2 + \dots + u_k^2 = 2,$$

where p + q = m, $0 and <math>0 \leq k \leq p$.

(b) If $N_P \to \mathbb{C}^m$ is an embedding, then N_P is diffeomorphic to

$$N_k(p,q) = \mathcal{R}(p,q) \times_{\mathbb{Z}/2 \times \mathbb{Z}/2} (S^1 \times S^1),$$

where the two involutions act on $\mathcal{R}(p,q)$ by

$$\psi_{1}: (u_{1}, \dots, u_{m}) \mapsto (-u_{1}, \dots, -u_{k}, -u_{k+1}, \dots, -u_{p}, u_{p+1}, \dots, u_{m}), \psi_{2}: (u_{1}, \dots, u_{m}) \mapsto (-u_{1}, \dots, -u_{k}, u_{k+1}, \dots, u_{p}, -u_{p+1}, \dots, -u_{m}).$$
(2)

There is a fibration $N_k(p,q) \to S^{q-1} \times_{\mathbb{Z}/2} S^1 = N(q)$ with fibre N(p) (the manifold from the previous example), which is trivial for k = 0.

Ex 7 (three quadrics).

In the case m - n = 3 the topology of compact manifolds \mathcal{R}_P and \mathcal{Z}_P was fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a product of three spheres, or to a connected sum of products of spheres, with two spheres in each product.

The simplest P with m - n = 3 is a (Delzant) pentagon, e.g.

 $P = \left\{ (x_1, x_2) \in \mathbb{R}^2 \colon x_1 \ge 0, \ x_2 \ge 0, \ -x_1 + 2 \ge 0, \ -x_2 + 2 \ge 0, \ -x_1 - x_2 + 3 \ge 0 \right\}.$ In this case \mathcal{R}_P is an oriented surface of genus 5, and \mathcal{Z}_P is diffeomorphic to a connected sum of 5 copies of $S^3 \times S^4$.

Get an H-minimal Lagrangian submanifold $N_P \subset \mathbb{C}^5$ which is the total space of a bundle over T^3 with fibre a surface of genus 5. **Prop 6.** Let P be an m-gon. Then \mathcal{R}_P is an orientable surface S_g of genus $g = 1 + 2^{m-3}(m-4)$.

Get an H-minimal Lagrangian submanifold $N_P \subset \mathbb{C}^m$ which is the total space of a bundle over T^{m-2} with fibre S_g . It is an aspherical manifold (for $m \ge 4$) whose fundamental group enters into the short exact sequence

$$1 \longrightarrow \pi_1(S_g) \longrightarrow \pi_1(N) \longrightarrow \mathbb{Z}^{m-2} \longrightarrow 1.$$

For n > 2 and m - n > 3 the topology of \mathcal{R}_P and \mathcal{Z}_P is even more complicated.

- [BP] Victor Buchstaber and Taras Panov. *Toric Topology*. Math. Surv. and Monogr., vol. 204, Amer. Math. Soc., Providence, RI, 2015.
- [MP] Andrey E. Mironov and Taras Panov. Intersections of quadrics, momentangle manifolds, and Hamiltonian-minimal Lagrangian embeddings. Funktsional. Anal. i Prilozhen. 47 (2013), no. 1, 47–61 (Russian); Funct. Anal. and Appl. 47 (2013), no. 1, 38–49 (English translation).
- [PU] Taras Panov and Yuri Ustinovsky. *Complex-analytic structures on moment-angle manifolds*. Moscow Math. J. **12** (2012), no. 1, 149–172.
- [PUV] Taras Panov, Yuri Ustinovsky and Misha Verbitsky. *Complex geometry of moment-angle manifolds*. Math. Zeitschrift, to appear (2016); arXiv:1308.2818.