Geometric structures

on moment-angle manifolds

Taras Panov
Parts of this talk are joint with Victor Buchstaber, Andrei Mironov, Yury Ustinovskiy and Misha Verbitsky
Moscow State University

Moment-angle manifolds and complexes

A convex polyhedron in \mathbb{R}^{n} obtained by intersecting m halfspaces:

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+b_{i} \geqslant 0 \quad \text { for } i=1, \ldots, m\right\}
$$

Define an affine map

$$
i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad i_{P}(\mathbf{x})=\left(\left\langle\mathbf{a}_{1}, \mathbf{x}\right\rangle+b_{1}, \ldots,\left\langle\mathbf{a}_{m}, \mathbf{x}\right\rangle+b_{m}\right)
$$

If P has a vertex, then i_{P} is monomorphic, and $i_{P}(P)$ is the intersection of an n-plane with $\mathbb{R}_{\geqslant}^{m}=\left\{\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right): y_{i} \geqslant 0\right\}$.

Define the space \mathcal{Z}_{P} from the diagram

\mathcal{Z}_{P} has a \mathbb{T}^{m}-action, $\mathcal{Z}_{P} / \mathbb{T}^{m}=P$, and i_{Z} is a \mathbb{T}^{m}-equivariant inclusion.

Prop 1. If P is a simple polytope (more generally, if the presentation of P by inequalities is generic), then \mathcal{Z}_{P} is a smooth manifold of dimension $m+n$.

Proof. Write $i_{P}\left(\mathbb{R}^{n}\right)$ by $m-n$ linear equations in $\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Replace y_{k} by $\left|z_{k}\right|^{2}$ to obtain a presentation of \mathcal{Z}_{P} by quadrics.
\mathcal{Z}_{P} : polytopal moment-angle manifold corresponding to P.

Similarly, by considering the projection $\mu: \mathbb{R}^{m} \rightarrow \mathbb{R}_{\geqslant}^{m}$ instead of $\mu: \mathbb{C}^{m} \rightarrow \mathbb{R}_{\geqslant}^{m}$ we obtain the real moment-angle manifold $\mathcal{R}_{P} \subset \mathbb{R}^{m}$.

Ex 1. $P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geqslant 0, x_{2} \geqslant 0,-\gamma_{1} x_{1}-\gamma_{2} x_{2}+1 \geqslant 0\right\}, \gamma_{1}, \gamma_{2}>0$ (a 2-simplex). Then

$$
\begin{aligned}
& \left.\mathcal{Z}_{P}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: \gamma_{1}\left|z_{1}\right|^{2}+\gamma_{2}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)=1\right\} \text { (a 5-sphere) } \\
& \left.\mathcal{R}_{P}=\left\{\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}: \gamma_{1}\left|u_{1}\right|^{2}+\gamma_{2}\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2}\right)=1\right\} \text { (a 2-sphere) }
\end{aligned}
$$

\mathcal{K} an (abstract) simplicial complex on the set $[m]=\{1, \ldots, m\}$.
$I=\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{K}$ a simplex. Always assume $\varnothing \in \mathcal{K}$.

Consider the unit polydisc in \mathbb{C}^{m},

$$
\mathbb{D}^{m}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}:\left|z_{i}\right| \leqslant 1, \quad i=1, \ldots, m\right\} .
$$

Given $I \subset[m]$, set

$$
B_{I}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{D}^{m}:\left|z_{j}\right|=1 \text { for } j \notin I\right\} \cong \prod_{i \in I} D^{2} \times \prod_{i \notin I} S^{1} .
$$

The moment-angle complex

$$
\mathcal{Z}_{\mathcal{K}}:=\bigcup_{I \in \mathcal{K}} B_{I}=\bigcup_{I \in \mathcal{K}}\left(\prod_{i \in I} D^{2} \times \prod_{i \notin I} S^{1}\right) \subset \mathbb{D}^{m}
$$

It is invariant under the coordinatewise action of the torus \mathbb{T}^{m}.
Ex 2. $\mathcal{K}=2$ points, then $\mathcal{Z}_{\mathcal{K}}=D^{2} \times S^{1} \cup S^{1} \times D^{2} \cong S^{3}$.
$\mathcal{K}=\Delta$, then $\mathcal{Z}_{\mathcal{K}}=\left(D^{2} \times D^{2} \times S^{1}\right) \cup\left(D^{2} \times S^{1} \times D^{2}\right) \cup\left(S^{1} \times D^{2} \times D^{2}\right) \cong S^{5}$.

More generally, let X a space, and $A \subset X$. Given $I \subset[m]$, set

$$
(X, A)^{I}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \prod_{i=1}^{m} X: x_{j} \in A \text { for } j \notin I\right\} \cong \prod_{i \in I} X \times \prod_{i \notin I} A .
$$

The \mathcal{K}-polyhedral product of (X, A) is

$$
\mathcal{Z}_{\mathcal{K}}(X, A)=\bigcup_{I \in \mathcal{K}}(X, A)^{I} \subset X^{m} .
$$

Another important example is the complement of the coordinate subspace arrangement corresponding to \mathcal{K} :

$$
U(\mathcal{K})=\mathbb{C}^{m} \backslash \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}}\left\{\mathbf{z} \in \mathbb{C}^{m}: z_{i_{1}}=\ldots=z_{i_{k}}=0\right\},
$$

namely,

$$
U(\mathcal{K})=\mathcal{Z}_{\mathcal{K}}\left(\mathbb{C}, \mathbb{C}^{\times}\right),
$$

where $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$.
Thm 1. $\quad \mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$ is a \mathbb{T}^{m}-deformation retract of $U(\mathcal{K})$.

Thm 2. If P is a simple polytope, $\mathcal{K}_{P}=\partial\left(P^{*}\right)$ (the dual triangulation), then $\mathcal{Z}_{\mathcal{K}_{P}} \cong \mathcal{Z}_{P}$ (\mathbb{T}^{m}-equivariantly homeomorphic).

In particular, $\mathcal{Z}_{\mathcal{K}_{P}}$ is a manifold. More generally,
Prop 2. Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with m vertices). Then $\mathcal{Z}_{\mathcal{K}}$ is a closed manifold of dimension $m+n$.

Geometric structures I. Non-Kähler complex structures

Recall: if $\mathcal{K}=\mathcal{K}_{P}$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_{P}=\mathcal{Z}_{\mathcal{K}_{P}}$ has a canonical smooth structure (e.g. as a nondegenerate intersection of Hermitian quadrics in \mathbb{C}^{m}).

Let \mathcal{K} be a sphere triangulation, i.e. $|\mathcal{K}| \cong S^{n-1}$.
A realisation $|\mathcal{K}| \subset \mathbb{R}^{n}$ is starshaped if there is a point $\mathbf{x} \notin|\mathcal{K}|$ such that any ray from \mathbf{x} intersects $|\mathcal{K}|$ in exactly one point.

A convex triangulation \mathcal{K}_{P} is starshaped, but not vice versa!
\mathcal{K} has a starshaped realisation if and only if it is the underlying complexes of a complete simplicial fan Σ.

Also recall $U(\mathcal{K})=\mathbb{C}^{m} \backslash \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}}\left\{\mathbf{z} \in \mathbb{C}^{m}: z_{i_{1}}=\ldots=z_{i_{k}}=0\right\}$.
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$ the generators of the 1-dim cones of Σ. Define a map

$$
A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \quad \mathbf{e}_{i} \mapsto \mathbf{a}_{i}
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ is the standard basis of \mathbb{R}^{m}. Set

$$
\mathbb{R}_{>}^{m}=\left\{\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}: y_{i}>0\right\}
$$

and define

$$
R:=\exp (\operatorname{Ker} A)=\left\{\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}_{>}^{m}: \prod_{i=1}^{m} y_{i}^{\left\langle\mathbf{a}_{i}, \mathbf{u}\right\rangle}=1 \text { for all } \mathbf{u} \in \mathbb{R}^{n}\right\}
$$

$R \subset \mathbb{R}_{>}^{m}$ acts on $U(\mathcal{K}) \subset \mathbb{C}^{m}$ by coordinatewise multiplications.
Thm 3. Let Σ be a complete simplicial fan in \mathbb{R}^{n} with m one-dimensional cones, and let $\mathcal{K}=\mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Then
(a) the group $R \cong \mathbb{R}^{m-n}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K}) / R$ is a smooth $(m+n)$-dimensional manifold;
(b) $U(\mathcal{K}) / R$ is \mathbb{T}^{m}-equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

Assume $m-n$ is even and set $\ell=\frac{m-n}{2}$.

Choose a linear map $\Psi: \mathbb{C}^{\ell} \rightarrow \mathbb{C}^{m}$ satisfying the two conditions:
(a) $\operatorname{Reo\psi :~} \mathbb{C}^{\ell} \rightarrow \mathbb{R}^{m}$ is a monomorphism.
(b) $A \circ \operatorname{Re} \circ \Psi=0$.

The composite map of the top line in the following diagram is zero:

where $|\cdot|$ denotes the $\operatorname{map}\left(z_{1}, \ldots, z_{m}\right) \mapsto\left(\left|z_{1}\right|, \ldots,\left|z_{m}\right|\right)$.

Now set

$$
C=\exp \Psi\left(\mathbb{C}^{\ell}\right)=\left\{\left(e^{\left\langle\psi_{1}, \mathbf{w}\right\rangle}, \ldots, e^{\left\langle\psi_{m}, \mathbf{w}\right\rangle}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\right\}
$$

Then $C \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup in $\left(\mathbb{C}^{\times}\right)^{m}$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Ex 3. Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have $n=0, m=2, \ell=1$, and $A: \mathbb{R}^{2} \rightarrow 0$ is a zero map. Let $\Psi: \mathbb{C} \rightarrow \mathbb{C}^{2}$ be given by $z \mapsto(z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$
C=\left\{\left(e^{z}, e^{\alpha z}\right)\right\} \subset\left(\mathbb{C}^{\times}\right)^{2}
$$

Condition (b) above is void, while (a) is equivalent to that $\alpha \notin \mathbb{R}$. Then $\exp \psi: \mathbb{C} \rightarrow\left(\mathbb{C}^{\times}\right)^{2}$ is an embedding, and the quotient $\left(\mathbb{C}^{\times}\right)^{2} / C$ with the natural complex structure is a complex torus $T_{\mathbb{C}}^{2}$ with parameter $\alpha \in \mathbb{C}$:

$$
\left(\mathbb{C}^{\times}\right)^{2} / C \cong \mathbb{C} /(\mathbb{Z} \oplus \alpha \mathbb{Z})=T_{\mathbb{C}}^{2}(\alpha)
$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that $n=0, m=2 \ell$), we may obtain any complex torus $T_{\mathbb{C}}^{2 \ell}$ as the quotient $\left(\mathbb{C}^{\times}\right)^{2 \ell} / C$.

Thm 4. Let Σ be a complete simplicial fan in \mathbb{R}^{n} with m one-dimensional cones, and let $\mathcal{K}=\mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Assume that $m-n=2 \ell$. Then
(a) the holomorphic action of the group $C \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K}) / C$ is a compact complex $(m-\ell)$-manifold;
(b) there is a \mathbb{T}^{m}-equivariant diffeomorphism $U(\mathcal{K}) / C \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^{m} acts holomorphically.

Ex 4 (Hopf manifold). Let Σ be the complete fan in \mathbb{R}^{n} whose cones are generated by all proper subsets of $n+1$ vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n},-\mathbf{e}_{1}-\ldots-\mathbf{e}_{n}$.

To make $m-n$ even we add one 'empty' 1-cone. We have $m=n+2, \ell=1$. Then $A: \mathbb{R}^{n+2} \rightarrow \mathbb{R}^{n}$ is given by the matrix $(0 I-1)$, where I is the unit $n \times n$ matrix, and $\mathbf{0}, \mathbf{1}$ are the n-columns of zeros and units respectively.

We have that \mathcal{K} is the boundary of an n-dim simplex with $n+1$ vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^{1} \times S^{2 n+1}$, and $U(\mathcal{K})=\mathbb{C}^{\times} \times\left(\mathbb{C}^{n+1} \backslash\{0\}\right)$.

Take $\psi: \mathbb{C} \rightarrow \mathbb{C}^{n+2}, z \mapsto(z, \alpha z, \ldots, \alpha z)$ for some $\alpha \in \mathbb{C}, \alpha \notin \mathbb{R}$. Then

$$
C=\left\{\left(e^{z}, e^{\alpha z}, \ldots, e^{\alpha z}\right): z \in \mathbb{C}\right\} \subset\left(\mathbb{C}^{\times}\right)^{n+2}
$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K}) / C$:

$$
\mathbb{C}^{\times} \times\left(\mathbb{C}^{n+1} \backslash\{0\}\right) /\left\{(t, \mathbf{w}) \sim\left(e^{z} t, e^{\alpha z} \mathbf{w}\right)\right\} \cong\left(\mathbb{C}^{n+1} \backslash\{0\}\right) /\left\{\mathbf{w} \sim e^{2 \pi i \alpha} \mathbf{w}\right\}
$$

where $t \in \mathbb{C}^{\times}, \mathbf{w} \in \mathbb{C}^{n+1} \backslash\{0\}$. The latter quotient of $\mathbb{C}^{n+1} \backslash\{0\}$ is known as the Hopf manifold.

Holomorphic bundles over toric varieties.

Manifolds $\mathcal{Z}_{\mathcal{K}}$ corresponding to complete regular (in particular, rational) simplicial fans are total spaces of holomorphic principal bundles over toric varieties with fibre a complex torus. This allows us to calculate invariants of the complex structures on $\mathcal{Z}_{\mathcal{K}}$, such as Hodge numbers and Dolbeault cohomology.

A toric variety is a normal algebraic variety X on which an algebraic torus $\left(\mathbb{C}^{\times}\right)^{n}$ acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,
complete fans \longleftrightarrow compact varieties
normal fans of polytopes \longleftrightarrow projective varieties
regular fans \longleftrightarrow nonsingular varieties
simplicial fans \longleftrightarrow orbifolds
Σ complete, simplicial, rational;
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ primitive integral generators of 1-cones;
$\mathbf{a}_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in \mathbb{Z}^{n}$.
Constr 1 ('Cox construction'). Let $A_{\mathbb{C}}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}, \mathbf{e}_{i} \mapsto \mathbf{a}_{i}$,

$$
\begin{aligned}
\exp A_{\mathbb{C}}:\left(\mathbb{C}^{\times}\right)^{m} & \rightarrow\left(\mathbb{C}^{\times}\right)^{n}, \\
\left(z_{1}, \ldots, z_{m}\right) & \mapsto\left(\prod_{i=1}^{m} z_{i}^{a_{i 1}}, \ldots, \prod_{i=1}^{m} z_{i}^{a_{i n}}\right)
\end{aligned}
$$

Set $G=\operatorname{Ker} \exp A_{\mathbb{C}}$.
This is an $(m-n)$-dimensional algebraic subgroup in $\left(\mathbb{C}^{\times}\right)^{m}$. It acts almost freely (with finite isotropy subgroups) on $U\left(\mathcal{K}_{\Sigma}\right)$.
If Σ is regular, then $G \cong\left(\mathbb{C}^{\times}\right)^{m-n}$ and the action is free.
$V_{\Sigma}=U\left(\mathcal{K}_{\Sigma}\right) / G$ the toric variety associated to Σ.
The quotient torus $\left(\mathbb{C}^{\times}\right)^{m} / G \cong\left(\mathbb{C}^{\times}\right)^{n}$ acts on V_{Σ} with a dense orbit.

Observe that $\mathbb{C}^{\ell} \cong C \subset G \cong\left(\mathbb{C}^{\times}\right)^{m-n}$ as a complex subgroup.

Prop 3.

(a) The toric variety V_{Σ} is homeomorphic to the quotient of $\mathcal{Z}_{\mathcal{K}_{\Sigma}}$ by the holomorphic action of G / C.
(b) If Σ is regular, then there is a holomorphic principal bundle $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \rightarrow V_{\Sigma}$ with fibre the compact complex torus G / C of dimension ℓ.

Rem 1. For singular varieties V_{Σ} the quotient projection $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \rightarrow V_{\Sigma}$ is a holomorphic principal Seifert bundle for an appropriate orbifold structure on V_{Σ}.

Submanifolds and analytic subsets.

The complex structure on $\mathcal{Z}_{\mathcal{K}}$ is determined by two pieces of data:

- the complete simplicial fan Σ with generators $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$;
- the ℓ-dimensional holomorphic subgroup $C \subset\left(\mathbb{C}^{\times}\right)^{m}$.

If this data is generic (in particular, the fan Σ is not rational), then there is no holomorphic principal torus fibration $\mathcal{Z}_{\mathcal{K}} \rightarrow V_{\Sigma}$ over a toric variety V_{Σ}.

However, there still exists a holomorphic ℓ-dimensional foliation \mathcal{F} with a transverse Kähler form $\omega_{\mathcal{F}}$. This form can be used to describe submanifolds and analytic subsets in $\mathcal{Z}_{\mathcal{K}}$.

Consider the complexified map $A_{\mathbb{C}}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}, \mathbf{e}_{i} \mapsto \mathbf{a}_{i}$. and the following complex $(m-n)$-dimensional subgroup in $\left(\mathbb{C}^{\times}\right)^{m}$:

$$
G=\exp \left(\operatorname{Ker} A_{\mathbb{C}}\right)=\left\{\left(e^{z_{1}}, \ldots, e^{z_{m}}\right) \in\left(\mathbb{C}^{\times}\right)^{m}:\left(z_{1}, \ldots, z_{m}\right) \in \operatorname{Ker} A_{\mathbb{C}}\right\}
$$

Note $C \subset G$.

The group G acts on $U(\mathcal{K})$, and its orbits define a holomorphic foliation on $U(\mathcal{K})$. Since $G \subset\left(\mathbb{C}^{\times}\right)^{m}$, this action is free on open subset $\left(\mathbb{C}^{\times}\right)^{m} \subset U(\mathcal{K})$, so that the generic leaf of the foliation has complex dimension $m-n=2 \ell$.

The ℓ-dimensional closed subgroup $C \subset G$ acts on $U(\mathcal{K})$ freely and properly by Theorem 4, so that $U(\mathcal{K}) / C$ carries a holomorphic action of the quotient group $D=G / C$.
\mathcal{F} : the holomorphic foliation on $U(\mathcal{K}) / C \cong \mathcal{Z}_{\mathcal{K}}$ by the orbits of D.

The subgroup $G \subset\left(\mathbb{C}^{\times}\right)^{m}$ is closed if and only if it is isomorphic to $\left(\mathbb{C}^{\times}\right)^{2 \ell}$; in this case the subspace $\operatorname{Ker} A \subset \mathbb{R}^{m}$ is rational. Then Σ is a rational fan and V_{Σ} is the quotient $U(\mathcal{K}) / G$. The foliation \mathcal{F} gives rise to a holomorphic principal Seifert fibration $\pi: \mathcal{Z}_{\mathcal{K}} \rightarrow V_{\Sigma}$ with fibres compact complex tori G / C.

For a generic configuration of nonzero vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}, G$ is biholomorphic to $\mathbb{C}^{2 \ell}$ and $D=G / C$ is biholomorphic to \mathbb{C}^{ℓ}.

A $(1,1)$-form $\omega_{\mathcal{F}}$ on the complex manifold $\mathcal{Z}_{\mathcal{K}}$ is called transverse Kähler with respect to the foliation \mathcal{F} if
(a) $\omega_{\mathcal{F}}$ is closed, i.e. $d \omega_{\mathcal{F}}=0$;
(b) $\omega_{\mathcal{F}}$ is nonnegative and the zero space of $\omega_{\mathcal{F}}$ is the tangent space of \mathcal{F}.

A complete simplicial fan Σ in \mathbb{R}^{n} is called weakly normal if there exists a (not necessarily simple) n-dimensional polytope P such that Σ is a simplicial subdivision of the normal fan Σ_{P}.

Thm 5. Assume that Σ is a weakly normal fan. Then there exists an exact (1,1)-form $\omega_{\mathcal{F}}$ on $\mathcal{Z}_{\mathcal{K}}=U(\mathcal{K}) / C$ which is transverse Kähler for the foliation \mathcal{F} on the dense open subset $\left(\mathbb{C}^{\times}\right)^{m} / C \subset U(\mathcal{K}) / C$.

For each $J \subset[m]$, define the corresponding coordinate submanifold in $\mathcal{Z}_{\mathcal{K}}$ by

$$
\mathcal{Z}_{\mathcal{K}_{J}}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathcal{Z}_{\mathcal{K}}: z_{i}=0 \quad \text { for } i \notin J\right\}
$$

Obviously, $\mathcal{Z}_{\mathcal{K}_{J}}$ is identified with the quotient of

$$
U\left(\mathcal{K}_{J}\right)=\left\{\left(z_{1}, \ldots, z_{m}\right) \in U(\mathcal{K}): z_{i}=0 \quad \text { for } i \notin J\right\}
$$

by $C \cong \mathbb{C}^{\ell}$. In particular, $U\left(\mathcal{K}_{J}\right) / C$ is a complex submanifold in $\mathcal{Z}_{\mathcal{K}}=U(\mathcal{K}) / C$.

Observe that the closure of any $\left(\mathbb{C}^{\times}\right)^{m}$-orbit of $U(\mathcal{K})$ has the form $U\left(\mathcal{K}_{J}\right)$ for some $J \subset[m]$ (in particular, the dense orbit corresponds to $J=[m]$). Similarly, the closure of any $\left(\mathbb{C}^{\times}\right)^{m} / C$-orbit of $\mathcal{Z}_{\mathcal{K}} \cong U(\mathcal{K}) / C$ has the form $\mathcal{Z}_{\mathcal{K}_{J}}$.

Thm 6. Assume that the data defining a complex structure on $\mathcal{Z}_{\mathcal{K}}=U(\mathcal{K}) / C$ is generic. Then any divisor of $\mathcal{Z}_{\mathcal{K}}$ is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible analytic subset $Y \subset \mathcal{Z}_{\mathcal{K}}$ of positive dimension is a coordinate submanifold.

Cor 1. Under generic assumptions, there are no non-constant meromorphic functions on $\mathcal{Z}_{\mathcal{K}}$.

Geometric structures II. Lagrangian submanifolds

M a Kähler manifold with symplectic form $\omega, \operatorname{dim}_{\mathbb{R}} M=2 n$.

An immersion $i: N \rightarrow M$ of an n-manifold N is Lagrangian if $i^{*}(\omega)=0$. If i is an embedding, then $i(N)$ is a Lagrangian submanifold of M.

A vector field ξ on M is Hamiltonian if the 1 -form $\omega(\cdot, \xi)$ is exact.

A Lagrangian immersion $i: N \rightarrow M$ is Hamiltonian minimal (H-minimal) if the variations of the volume of $i(N)$ along all Hamiltonian vector fields with compact support are zero, i.e.

$$
\left.\frac{d}{d t} \operatorname{vol}\left(i_{t}(N)\right)\right|_{t=0}=0
$$

where $i_{0}(N)=i(N), i_{t}(N)$ is a Hamiltonian deformation of $i(N)$, and $\operatorname{vol}\left(i_{t}(N)\right)$ is the volume of the deformed part of $i_{t}(N)$.

Recall: P a simple polytope

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle+b_{i} \geqslant 0 \quad \text { for } i=1, \ldots, m\right\} .
$$

The polytopal moment-angle manifold \mathcal{Z}_{P},

$$
\begin{aligned}
& \underset{\downarrow}{\mathcal{Z}_{P}} \xrightarrow{i_{Z}} \mathbb{C}^{m} \\
& \left(z_{1}, \ldots, z_{m}\right) \\
& P \xrightarrow{i_{P}} \mathbb{R}_{\geqslant}^{m} \\
& \left(\left|z_{1}\right|^{2}, \ldots,\left|z_{m}\right|^{2}\right)
\end{aligned}
$$

can be written as the intersection of $m-n$ real quadrics,

$$
\mathcal{Z}_{P}=\left\{\mathbf{z}=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}: \sum_{k=1}^{m} \gamma_{j k}\left|z_{k}\right|^{2}=c_{j}, \quad \text { for } 1 \leqslant j \leqslant m-n\right\}
$$

Also have the real moment-angle manifold,

$$
\mathcal{R}_{P}=\left\{\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{R}^{m}: \sum_{k=1}^{m} \gamma_{j k} u_{k}^{2}=c_{j}, \quad \text { for } 1 \leqslant j \leqslant m-n\right\}
$$

Set $\gamma_{k}=\left(\gamma_{1 k}, \ldots, \gamma_{m-n, k}\right) \in \mathbb{R}^{m-n}$ for $1 \leqslant k \leqslant m$.

Assume that the polytope P is rational. Then have two lattices:

$$
\wedge=\mathbb{Z}\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\rangle \subset \mathbb{R}^{n} \quad \text { and } \quad L=\mathbb{Z}\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle \subset \mathbb{R}^{m-n}
$$

Consider the $(m-n)$-torus

$$
T_{P}=\left\{\left(e^{2 \pi i\left\langle\gamma_{1}, \varphi\right\rangle}, \ldots, e^{2 \pi i\left\langle\gamma_{m}, \varphi\right\rangle}\right) \in \mathbb{T}^{m}\right\}
$$

i.e. $T_{P}=\mathbb{R}^{m-n} / L^{*}$, and set

$$
D_{P}=\frac{1}{2} L^{*} / L^{*} \cong(\mathbb{Z} / 2)^{m-n}
$$

Prop 4. The $(m-n)$-torus T_{P} acts on \mathcal{Z}_{P} almost freely.

Consider the map

$$
\begin{aligned}
f: \mathcal{R}_{P} \times T_{P} & \longrightarrow \mathbb{C}^{m} \\
(\mathbf{u}, \varphi) & \mapsto \mathbf{u} \cdot \varphi=\left(u_{1} e^{2 \pi i\left\langle\gamma_{1}, \varphi\right\rangle}, \ldots, u_{m} e^{2 \pi i\left\langle\gamma_{m}, \varphi\right\rangle}\right)
\end{aligned}
$$

Note $f\left(\mathcal{R}_{P} \times T_{P}\right) \subset \mathcal{Z}_{P}$ is the set of T_{P}-orbits through $\mathcal{R}_{P} \subset \mathbb{C}^{m}$.

Have an m-dimensional manifold

$$
N_{P}=\mathcal{R}_{P} \times{ }_{D_{P}} T_{P}
$$

Lemma 1. $f: \mathcal{R}_{P} \times T_{P} \rightarrow \mathbb{C}^{m}$ induces an immersion $j: N_{P} \rightarrow \mathbb{C}^{m}$.
Thm 7 (Mironov). The immersion $i_{\Gamma}: N_{\Gamma} \leftrightarrow \mathbb{C}^{m}$ is H-minimal Lagrangian.

When it is an embedding?

A simple rational polytope P is Delzant if for any vertex $v \in P$ the set of vectors $\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{n}}$ normal to the facets meeting at v forms a basis of the lattice $\wedge=\mathbb{Z}\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\rangle$:

$$
\mathbb{Z}\left\langle\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}\right\rangle=\mathbb{Z}\left\langle\mathbf{a}_{i_{1}}, \ldots, \mathbf{a}_{i_{n}}\right\rangle \quad \text { for any } v=F_{i_{1}} \cap \cdots \cap F_{i_{n}}
$$

Thm 8. The following conditions are equivalent:

1) $j: N_{P} \rightarrow \mathbb{C}^{m}$ is an embedding of an H-minimal Lagrangian submanifold;
2) the $(m-n)$-torus T_{P} acts on \mathcal{Z}_{P} freely.
3) P is a Delzant polytope.

Explicit constructions of families of Delzant polytopes are known in toric geometry and topology:

- simplices and cubes in all dimensions;
- products and face cuts;
- associahedra (Stasheff ptopes), permutahedra, and generalisations.

Ex 5 (one quadric). Let $P=\Delta^{m-1}$ (a simplex), i.e. $m-n=1$ and $\mathcal{R}_{\Delta^{m-1}}$ is given by a single quadric

$$
\begin{equation*}
\gamma_{1} u_{1}^{2}+\cdots+\gamma_{m} u_{m}^{2}=c \tag{1}
\end{equation*}
$$

with $\gamma_{i}>0$, i.e. $\mathcal{R}_{\Delta^{m-1}} \cong S^{m-1}$. Then

$$
N \cong S^{m-1} \times_{\mathbb{Z} / 2} S^{1} \cong \begin{cases}S^{m-1} \times S^{1} & \text { if } \tau \text { preserves the orient. of } S^{m-1} \\ \mathcal{K}^{m} & \text { if } \tau \text { reverses the orient. of } S^{m-1}\end{cases}
$$

where τ is the involution and \mathcal{K}^{m} is an m-dimensional Klein bottle.
Prop 5. We obtain an H-minimal Lagrangian embedding of $N_{\Delta^{m-1}} \cong$ $S^{n-1} \times_{\mathbb{Z} / 2} S^{1}$ in \mathbb{C}^{m} if and only if $\gamma_{1}=\cdots=\gamma_{m}$ in (1). The topological type of $N_{\Delta^{m-1}}=N(m)$ depends only on the parity of m :

$$
\begin{array}{ll}
N(m) \cong S^{m-1} \times S^{1} & \text { if } m \text { is even } \\
N(m) \cong \mathcal{K}^{m} & \text { if } m \text { is odd }
\end{array}
$$

The Klein bottle \mathcal{K}^{m} with even m does not admit Lagrangian embeddings in \mathbb{C}^{m} [Nemirovsky, Shevchishin].

Ex 6 (two quadrics).
Thm 9. Let $m-n=2$, i.e. $P \simeq \Delta^{p-1} \times \Delta^{q-1}$.
(a) \mathcal{R}_{P} is diffeomorphic to $\mathcal{R}(p, q) \cong S^{p-1} \times S^{q-1}$ given by

$$
\begin{array}{ll}
u_{1}^{2}+\ldots+u_{k}^{2}+u_{k+1}^{2}+\cdots+u_{p}^{2} & =1 \\
u_{1}^{2}+\ldots+u_{k}^{2} & +u_{p+1}^{2}+\cdots+u_{m}^{2}=2
\end{array}
$$

where $p+q=m, 0<p<m$ and $0 \leqslant k \leqslant p$.
(b) If $N_{P} \rightarrow \mathbb{C}^{m}$ is an embedding, then N_{P} is diffeomorphic to

$$
N_{k}(p, q)=\mathcal{R}(p, q) \times_{\mathbb{Z} / 2 \times \mathbb{Z} / 2}\left(S^{1} \times S^{1}\right)
$$

where the two involutions act on $\mathcal{R}(p, q)$ by

$$
\begin{align*}
& \psi_{1}:\left(u_{1}, \ldots, u_{m}\right) \mapsto\left(-u_{1}, \ldots,-u_{k},-u_{k+1}, \ldots,-u_{p}, u_{p+1}, \ldots, u_{m}\right) \\
& \psi_{2}:\left(u_{1}, \ldots, u_{m}\right) \mapsto\left(-u_{1}, \ldots,-u_{k}, u_{k+1}, \ldots, u_{p},-u_{p+1}, \ldots,-u_{m}\right) \tag{2}
\end{align*}
$$

There is a fibration $N_{k}(p, q) \rightarrow S^{q-1} \times_{\mathbb{Z} / 2} S^{1}=N(q)$ with fibre $N(p)$ (the manifold from the previous example), which is trivial for $k=0$.

Ex 7 (three quadrics).

In the case $m-n=3$ the topology of compact manifolds \mathcal{R}_{P} and \mathcal{Z}_{P} was fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a product of three spheres, or to a connected sum of products of spheres, with two spheres in each product.

The simplest P with $m-n=3$ is a (Delzant) pentagon, e.g.
$P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geqslant 0, x_{2} \geqslant 0,-x_{1}+2 \geqslant 0,-x_{2}+2 \geqslant 0,-x_{1}-x_{2}+3 \geqslant 0\right\}$.
In this case \mathcal{R}_{P} is an oriented surface of genus 5 , and \mathcal{Z}_{P} is diffeomorphic to a connected sum of 5 copies of $S^{3} \times S^{4}$.

Get an H-minimal Lagrangian submanifold $N_{P} \subset \mathbb{C}^{5}$ which is the total space of a bundle over T^{3} with fibre a surface of genus 5 .

Prop 6. Let P be an m-gon. Then \mathcal{R}_{P} is an orientable surface S_{g} of genus $g=1+2^{m-3}(m-4)$.

Get an H -minimal Lagrangian submanifold $N_{P} \subset \mathbb{C}^{m}$ which is the total space of a bundle over T^{m-2} with fibre S_{g}. It is an aspherical manifold (for $m \geqslant 4$) whose fundamental group enters into the short exact sequence

$$
1 \longrightarrow \pi_{1}\left(S_{g}\right) \longrightarrow \pi_{1}(N) \longrightarrow \mathbb{Z}^{m-2} \longrightarrow 1
$$

For $n>2$ and $m-n>3$ the topology of \mathcal{R}_{P} and \mathcal{Z}_{P} is even more complicated.
[BP] Victor Buchstaber and Taras Panov. Toric Topology. Math. Surv. and Monogr., vol. 204, Amer. Math. Soc., Providence, RI, 2015.
[MP] Andrey E. Mironov and Taras Panov. Intersections of quadrics, momentangle manifolds, and Hamiltonian-minimal Lagrangian embeddings. Funktsional. Anal. i Prilozhen. 47 (2013), no. 1, 47-61 (Russian); Funct. Anal. and Appl. 47 (2013), no. 1, 38-49 (English translation).
[PU] Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. 12 (2012), no. 1, 149-172.
[PUV] Taras Panov, Yuri Ustinovsky and Misha Verbitsky. Complex geometry of moment-angle manifolds. Math. Zeitschrift, to appear (2016); arXiv:1308.2818.

