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Moment-angle manifolds and complexes

A convex polyhedron in R™ obtained by intersecting m halfspaces:
P = {XGR”: (@a;,X) +b; >0 fori= 1,...,m}.
Define an affine map
ip: R" 5 R™,  ip(X) = ((al,x> +by,...,(Qm,X) + bm).
If P has a vertex, then ip is monomorphic, and ip(P) is the intersection of

an n-plane with R? = {y = (y1,...,ym): y; = 0}.

Define the space Zp from the diagram

G |
p L RY (2112, . . -, |zm[?)

Zp has a T™-action, Zp/T™ = P, and iy is a T™-equivariant inclusion.



Prop 1. If P is a simple polytope (more generally, if the presentation of P by
inequalities is generic), then Zp is a smooth manifold of dimension m + n.

Proof. Write ip(R™) by m — n linear equations in (y1,...,ym) € R™. Replace
yi. by |z;|2 to obtain a presentation of Zp by quadrics. L]

Zp: polytopal moment-angle manifold corresponding to P.

Similarly, by considering the projection p: R™ — R”; instead of u: C™ — ]R{;”
we obtain the real moment-angle manifold Rp C R™.

Ex 1. P = {(z1,32) €R%: 21 >0, 22 >0, —y121 —y222 + 1 > 0}, 71,72 > 0 (a
2-simplex). Then

Zp = {(21,22,23) € C>: y1|21|% + 72/22|% + |23]%) = 1} (a 5-sphere),

Rp = {(u1,u2,u3) € R3: y1]u1|? + v2|up|? + |uz|?) = 1} (a 2-sphere).



IC an (abstract) simplicial complex on the set [m] = {1,...,m}.
I ={i1,...,i} € K a simplex. Always assume @ € K.

Consider the unit polydisc in C™,
D™ = {(zl,...,zm) eC™: |z <1, i= 1,...,m}.

Given I C [m], set

By = {(zl,...,zm) cD™: |z =1 for j ¢ I}% [T D% x J] st
icl i1
The moment-angle complex

Zx = |J Br= U(HD2><H51)CID>"”

Iek Iek Niel i1
It is invariant under the coordinatewise action of the torus T™.
Ex 2. K = 2 points, then Zx = D? x Stu st x D2 2 §3.
K = A, then Zy = (D? x D? x S1)u (D? x S1 x D?2) U (S! x D? x D?) = 5°.
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More generally, let X a space, and A C X. Given I C [m], set

m
(X,A)I:{(xl,...,xm)e [T X: xjeAforjgél}% IT X x ] A.
i=1 iel i¢1

The K-polyhedral product of (X, A) is

Zie(X,A) = |J (x, 4! cx™
Iexc
Another important example is the complement of the coordinate subspace

arrangement corresponding to K:

UK)y=cm™\ |J {zeC": z
{1,..,i }EK

1=...=zik=0},

namely,
U(K) = Zx(C,C*),
where C* = C\ {0}.

Thm 1. Zc CcU(K) is a T™-deformation retract of U(K).



Thm 2. If P is a simple polytope, Kp = 0(P*) (the dual triangulation), then

Zxp = Zp (T™-equivariantly homeomorphic).

In particular, Z,CP iIs @ manifold. More generally,

Prop 2. Assume |K| £ S"~1 (a sphere triangulation with m vertices). Then
Zx is a closed manifold of dimension m + n.



Geometric structures I. Non-Kahler complex structures

Recall: if K = Kp is the dual triangulation of a simple convex polytope P,
then Zp = Z,CP has a canonical smooth structure (e.g. as a nondegenerate
intersection of Hermitian quadrics in C™).

Let K be a sphere triangulation, i.e. || = s7— 1,
A realisation |K| C R™ is starshaped if there is a point x € |K| such that any
ray from X intersects || in exactly one point.

A convex triangulation Kp is starshaped, but not vice versa!

JIC has a starshaped realisation if and only if it is the underlying complexes of
a complete simplicial fan 2.

Also recall U(K) = C™ \ Uy, . i3ex{z € C" 2y = ... = 2, = 0}



ai,...,am € R™ the generators of the 1-dim cones of >. Define a map
A Rm%Rn, e, — a,,
where eq,...,€y, is the standard basis of R"™. Set

Rg:{(yla"'aym) c R™: Yi > O}a

and define

m
R = exp(KerA) =1(y1,...,ym) € RT: y-<ai’u> =1 for all u € R},
> ?
i=1

R C RZ acts on U(K) C C™ by coordinatewise multiplications.
Thm 3. Let > be a complete simplicial fan in R™ with m one-dimensional
cones, and let K = Ky be its underlying simplicial complex. Then

(a) the group R = R™™" acts on U(K) freely and properly, so the quotient
U(K)/R is a smooth (m + n)-dimensional manifold;

(b) U(K)/R is T™-equivariantly homeomorphic to Zi.

T herefore, Zyx can be smoothed canonically.



Assume m — n is even and set ¢ = mQ_”.

Choose a linear map WV: ct — ¢m satisfying the two conditions:

(a) ReoW: Cf — R™ is a monomorphism.

(b) AoReoWV = 0.

The composite map of the top line in the following diagram is zero:

ct Y, ¢om R pm A pn

lexp lexp lexp

B
(c)m — RT

where | - | denotes the map (z1,...,zm) — (|z1],---,|2m])-
Now set

C =expW(Ch) = {(eV1W),... WmW)) e ()™}

Then C £ C! is a complex-analytic (but not algebraic) subgroup in (C*)™. It
acts on U(K) by holomorphic transformations.



Ex 3. Let £ be empty on 2 elements (that is, K has two ghost vertices).
We therefore have n=0, m =2, /=1, and A: R2 — 0 is a zero map.
Let W: C — C2 be given by z +— (z,az) for some a € C, so that

C = {(ez,egz)} c (CX)2.

Condition (b) above is void, while (a) is equivalent to that o« € R. Then
expW: C — (C*)?2is an embedding, and the quotient (C*)2/C with the natural
complex structure is a complex torus Té with parameter o € C:

(C)2/C 2 C/(Z D aZ) = TE(a).

Similarly, if K is empty on 2¢ elements (so that n = 0, m = 2¢), we may obtain
any complex torus T2 as the quotient (C*)2¢/C.
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Thm 4. Let > be a complete simplicial fan in R"™ with m one-dimensional
cones, and let K = Ks be its underlying simplicial complex. Assume that

m—n=2¢. Then

(a) the holomorphic action of the group C = Ct on U(K) is free and proper,
so the quotient U(K)/C is a compact complex (m — £)-manifold,

(b) there is a T™-equivariant diffeomorphism U(K)/C = Zx defining a com-
plex structure on Zx in which T'™ acts holomorphically.

11



Ex 4 (Hopf manifold). Let X be the complete fan in R™ whose cones are
generated by all proper subsets of n + 1 vectors eq,...,€e,,—€1 — ... — €.

To make m —n even we add one ‘empty’ 1-cone. We have m=n-+2, £ = 1.
Then A: R*t2  R™ js given by the matrix (0 I —1), where I is the unit n x n
matrix, and 0, 1 are the n-columns of zeros and units respectively.

We have that I is the boundary of an n-dim simplex with n 4+ 1 vertices and
1 ghost vertex, Zx = S1 x 5271 and U(K) = C* x (C*T1\ {0}).

Take W: C — C" 2, 2 — (2,az,...,az) for some a € C, a« ¢ R. Then
C = {(ez,eo‘z, ez e C} c (CX)n T2
and Zj acquires a complex structure as the quotient U(K)/C:"
C* x (C"HIN{0}) / {(t. W) ~ (et e )} = (C"F1\ {0}) / {w~ 27w},
where t € C*, w € C*T1\ {0}. The latter quotient of C*»*1\ {0} is known as
the Hopf manifold.
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Holomorphic bundles over toric varieties.

Manifolds Zx corresponding to complete regular (in particular, rational) sim-
plicial fans are total spaces of holomorphic principal bundles over toric varieties
with fibre a complex torus. This allows us to calculate invariants of the com-
plex structures on Zx, such as Hodge numbers and Dolbeault cohomology.

A toric variety is a normal algebraic variety X on which an algebraic torus
(C*)™ acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,

complete fans <— compact varieties
normal fans of polytopes «<— projective varieties
regular fans <«— nonsingular varieties
simplicial fans <«— orbifolds
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2 complete, simplicial, rational;
ai,...,am primitive integral generators of 1-cones;
a; = (a;1,...,a;p) € Z"™.

Constr 1 (‘Cox construction’). Let A¢g: C™ — C", e; — a;,
exp Ag: (C*)™ — (CH)™,

m
(z1,...,2m) |—>< 1] z,?“,.
1=1

m
Ain
II =)

i=1
Set G = Kerexp Ac.
This is an (m — n)-dimensional algebraic subgroup in (C*)™.

It acts almost freely (with finite isotropy subgroups) on U(Ky).

If > is regular, then G = (C*)™~™ and the action is free.

Vs = U(Ky)/G the toric variety associated to 3.

The quotient torus (C*)™/G = (C*)™ acts on Vs with a dense orbit.

14



Observe that Ct = C ¢ G = (C*)™ " as a complex subgroup.

Prop 3.

(a) The toric variety Vs is homeomorphic to the quotient of Z’Cz by the holo-
morphic action of G/C.

(b) If > is regular, then there is a holomorphic principal bundle ZICZ — Vs
with fibre the compact complex torus G/C of dimension £.

Rem 1. For singular varieties Vs the quotient projection ZIC: — V5 is a holo-
morphic principal Seifert bundle for an appropriate orbifold structure on Vs-.

15



Submanifolds and analytic subsets.

The complex structure on Zi is determined by two pieces of data:
— the complete simplicial fan > with generators aq,...,am;
— the ¢-dimensional holomorphic subgroup C C (C*)™,

If this data is generic (in particular, the fan 3 is not rational), then there is
no holomorphic principal torus fibration Zx — V3 over a toric variety Vs

However, there still exists a holomorphic /-dimensional foliation F with a

transverse Kahler form wx. This form can be used to describe submanifolds
and analytic subsets in Zi.
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Consider the complexified map Ac¢: C"* — C", e; — a;. and the following
complex (m — n)-dimensional subgroup in (C*)™:

G = exp(Ker A¢p) = {(ezl,...,e"‘m) c (C)Y™: (21,...,2m) € KerAC}.
Note C C G.
The group G acts on U(K), and its orbits define a holomorphic foliation
on U(K). Since G C (C*)™, this action is free on open subset (C*)™ c U(K),
so that the generic leaf of the foliation has complex dimension m — n = 2¢.
The ¢-dimensional closed subgroup C C G acts on U(K) freely and properly
by Theorem 4, so that U(K)/C carries a holomorphic action of the quotient
group D = G/C.

F: the holomorphic foliation on U(K)/C = Zx by the orbits of D.
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The subgroup G C (CX*)™ is closed if and only if it is isomorphic to (C*)2¢;
in this case the subspace Ker A C R™ is rational. Then X is a rational fan
and Vs is the quotient U(K)/G. The foliation F gives rise to a holomorphic
principal Seifert fibration n: Zx — Vs with fibres compact complex tori G/C.

For a generic configuration of nonzero vectors a1,...,am, GG is biholomorphic
to C2¢ and D = G/C is biholomorphic to C¢.
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A (1,1)-form wr on the complex manifold Zi is called transverse Kahler with
respect to the foliation F if

(a) wr is closed, i.e. dwr = O;

(b) wr is nonnegative and the zero space of wr is the tangent space of F.

A complete simplicial fan > in R" is called weakly normal if there exists a
(not necessarily simple) n-dimensional polytope P such that X is a simplicial
subdivision of the normal fan > p.

Thm 5. Assume that > is a weakly normal fan. Then there exists an exact
(1,1)-form wr on Zx = U(K)/C which is transverse Kdhler for the foliation F
on the dense open subset (C*)™/C Cc U(K)/C.
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For each J C [m], define the corresponding coordinate submanifold in Zx by
ZKJZ{(Zl,...,Zm)EZ]CIZZ'ZO forigEJ}.
Obviously, Z,CJ is identified with the quotient of
U(/CJ):{(Zl,...,Zm)EU(IC)IZi:O fOI’iéJ}
by C = C*. In particular, U(K;)/C is a complex submanifold in Zx = U(K)/C.

Observe that the closure of any (C*)™-orbit of U(K) has the form U(K ;) for
some J C [m] (in particular, the dense orbit corresponds to J = [m]). Similarly,
the closure of any (C*)™/C-orbit of Zx = U(K)/C has the form Zj .
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Thm 6. Assume that the data defining a complex structure on Zx = U(K)/C
Is generic. Then any divisor of Zyx Is a union of coordinate divisors.

Furthermore, if > is a weakly normal fan, then any compact irreducible analytic
subset Y C Zx of positive dimension is a coordinate submanifold.

Cor 1. Under generic assumptions, there are no non-constant meromorphic
functions on Zi.

21



Geometric structures II. Lagrangian submanifolds
M a Kahler manifold with symplectic form w, dimp M = 2n.

An immersion i: N & M of an n-manifold N is Lagrangian if i*(w) = 0. If 7 is
an embedding, then #(IN) is a Lagrangian submanifold of M.

A vector field £ on M is Hamiltonian if the 1-form w(-,&) is exact.

A Lagrangian immersion . N a M is Hamiltonian minimal
(H-minimal) if the variations of the volume of i(IN) along all Hamiltonian
vector fields with compact support are zero, i.e.

d .
L vol(i(N))|,_, =0,

where ig(N) = i(N), 4(N) is a Hamiltonian deformation of #(IN), and
vol(i:(IN)) is the volume of the deformed part of (V).
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Recall: P a simple polytope
Pz{xeR”: (@a;,X) +b;, >0 forizl,...,m}.

The polytopal moment-angle manifold Zp,

G |
P 5 RZ (2112, ..., |2m|?)

can be written as the intersection of m — n real quadrics,

m
Zp = {Z: (z1,...,2m) cC™: Z yjk|zk|2=cj, for 1 é]ém—n}

k=1
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Also have the real moment-angle manifold,

m
RPZ{U=(u1,...,um)ERm: Z ’yjkuizcj, for 1<j<m—n}.
k=1

Set v, = (V1k>- -+ > Ym—nk) ERTT" for 1 <k < m.

Assume that the polytope P is rational. Then have two lattices:
N=17Z(ai,...,am) CR" and L =7Z(vy1,...,vym) CRT"".
Consider the (m — n)-torus
Tp = {(627”3(71,90), o 627773(%,90)) e Tﬂ%})
i.e. Tp=R™M™™"/L* and set

1
Dp = _L*/L* & (2/2)" "

Prop 4. The (m —n)-torus Tp acts on Zp almost freely.
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Consider the map

f:RpxTp— C™,
(u’ 90) = U= (U162ﬂi<71790>’ . ’um€27Ti<'Ym790>).

Note f(Rp x Tp) C Zp is the set of Tp-orbits through Rp C C™.

Have an m-dimensional manifold

NPZRP XDPTP-

Lemma 1. . Rp xTp — C™ induces an immersion 3. Np & C',
P P P

Thm 7 (Mironov). The immersion ir: N & C™ is H-minimal Lagrangian.

When it is an embedding?
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A simple rational polytope P is Delzant if for any vertex v € P the set of
vectors a;,,...,a;, normal to the facets meeting at v forms a basis of the

lattice A =Z{aq,...,am):

Z{ai,...,am) = Z<ai1, . .,ain> for any v = Fil ARERNS Fin-

Thm 8. The following conditions are equivalent:

1) j: Np — C™ js an embedding of an H-minimal Lagrangian submanifold,
2) the (m — n)-torus Tp acts on Zp freely.

3) P is a Delzant polytope.

Explicit constructions of families of Delzant polytopes are known in toric

geometry and topology:
- simplices and cubes in all dimensions;

- products and face cuts;
- associahedra (Stasheff ptopes), permutahedra, and generalisations.
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Ex 5 (one quadric). Let P = A™~1 (a simplex), i.e. m—n=1 and Rom-1 is
given by a single quadric

y1uf + - 4 ymug, = c (1)
with «; > 0, i.e. Ram-1 = S™" L. Then

sm—1 s g1 if + preserves the orient. of §m—1

N%Sm_l Xz/Qslg . : 1
Km if 7 reverses the orient. of ™™+,

where 7 is the involution and K™ is an m-dimensional Klein bottle.

[aY

Prop 5. We obtain an H-minimal Lagrangian embedding of N pm-1
S" 1 xzp 8 in C™ if and only if 1 = --- = ym in (1). The topological
type of Nam-1 = N(m) depends only on the parity of m:

N(m) =2 sm 1 x gt if m is even,
N(m)= K" if m is odd.

The Klein bottle K™ with even m does not admit Lagrangian embeddings
in C™ [Nemirovsky, Shevchishin].
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Ex 6 (two quadrics).

Thm 9. Let m—n=2, iie. P~ AP~ 1 x AL
(a) Rp is diffeomorphic to R(p,q) = SP~1 x S9—1 given by

i+ tuptufy oo+ =1,
uf ... 4 ul Fuliy 4+ Fug, =2,
wherep+qg=m, O<p<m and 0 <k <p.

(b) If Np — C™ is an embedding, then Np is diffeomorphic to

Ni(p, @) = R(p, @) Xz2x7/2 (S* x S1),
where the two involutions act on R(p,q) by
Y1 (U1, um) = (SUL, e, ULy — U1y - - —Upy Up1s -+ -5 Um),
Yo (g, um) = (—UL, -y = Uy U 1y -+ Upy —Upp1s - - -, —Um)-

(2)

There is a fibration Ny(p,q) — S9! xz,, St = N(q) with fibre N(p) (the
manifold from the previous example), which is trivial for k = 0.
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Ex 7 (three quadrics).

In the case m —n = 3 the topology of compact manifolds Rp and Zp was
fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a
product of three spheres, or to a connected sum of products of spheres, with
two spheres in each product.

The simplest P with m —n = 3 is a (Delzant) pentagon, e.g.

P = {(331,562) € R?: 120, 2020, — 14220, —20+22>20, —x1—x20+3 > O}.

In this case Rp is an oriented surface of genus 5, and Zp is diffeomorphic to
a connected sum of 5 copies of S3 x S%.

Get an H-minimal Lagrangian submanifold Np C C> which is the total space
of a bundle over T3 with fibre a surface of genus 5.
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Prop 6. Let P be an m-gon. Then Rp is an orientable surface Sy of genus
g=14+2m"3(m — 4).

Get an H-minimal Lagrangian submanifold Np C C™ which is the total space

of a bundle over T™~2 with fibre S,. It is an aspherical manifold (for m > 4)
whose fundamental group enters into the short exact sequence

1 — m(Sy) — m(N) — Zm2 — 1.

Forn > 2 and m—n > 3 the topology of Rp and Zp is even more complicated.
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