Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups joint with Yakov Veryovkin

Taras Panov

Lomonosov Moscow State University

XIX Geometrical Seminar Zlatibor, Serbia, 29 August–3 September 2016

1. Preliminaries

Polyhedral product

$$(m{X},m{A})=\{(X_1,A_1),\ldots,(X_m,A_m)\}$$
 a sequence of pairs of spaces, $A_i\subset X_i$.

 $\mathcal K$ a simplicial complex on $[m] = \{1, 2, \dots, m\}, \qquad arnothing \in \mathcal K.$

Given
$$I = \{i_1, \dots, i_k\} \subset [m]$$
, set
 $(\boldsymbol{X}, \boldsymbol{A})^I = Y_1 \times \dots \times Y_m$ where $Y_i = \begin{cases} X_i & \text{if } i \in I, \\ A_i & \text{if } i \notin I. \end{cases}$

The \mathcal{K} -polyhedral product of $(\boldsymbol{X}, \boldsymbol{A})$ is

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I} = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} X_{i} \times \prod_{j \notin I} A_{j} \right)$$

Notation: $(X, A)^{\mathcal{K}} = (X, A)^{\mathcal{K}}$ when all $(X_i, A_i) = (X, A)$; $X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}, X^{\mathcal{K}} = (X, pt)^{\mathcal{K}}.$

24

Categorical approach

Category of faces CAT(\mathcal{K}). Objects: simplices $I \in \mathcal{K}$. Morphisms: inclusions $I \subset J$.

TOP the category of topological spaces. Define the $CAT(\mathcal{K})$ -diagram

$$\mathcal{D}_{\mathcal{K}}(oldsymbol{X},oldsymbol{A})\colon ext{cat}(\mathcal{K}) \longrightarrow ext{top}, \ oldsymbol{I} \longmapsto (oldsymbol{X},oldsymbol{A})^{I}$$

which maps the morphism $I \subset J$ of $CAT(\mathcal{K})$ to the inclusion of spaces $(\mathbf{X}, \mathbf{A})^I \subset (\mathbf{X}, \mathbf{A})^J$.

Then we have

$$(\boldsymbol{X}, \boldsymbol{A})^{\mathcal{K}} = \operatorname{colim} \mathcal{D}_{\mathcal{K}}(\boldsymbol{X}, \boldsymbol{A}) = \operatorname{colim}_{I \in \mathcal{K}} (\boldsymbol{X}, \boldsymbol{A})^{I}.$$

Let $(X, A) = (S^1, pt)$, where S^1 is a circle. Then

$$(S^1)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (S^1)^I \subset (S^1)^m.$$

When $\mathcal{K} = \{\emptyset, \{1\}, \dots, \{m\}\}$ (*m* disjoint points), the polyhedral product $(S^1)^{\mathcal{K}}$ is the wedge $(S^1)^{\vee m}$ of *m* circles.

When \mathcal{K} consists of all proper subsets of [m] (the boundary $\partial \Delta^{m-1}$ of an (m-1)-dimensional simplex), $(S^1)^{\mathcal{K}}$ is the fat wedge of m circles; it is obtained by removing the top-dimensional cell from the m-torus $(S^1)^m$.

For a general \mathcal{K} on m vertices, $(S^1)^{\vee m} \subset (S^1)^{\mathcal{K}} \subset (S^1)^m$.

Let $(X, A) = (\mathbb{R}, \mathbb{Z})$. Then

$$\mathcal{L}_{\mathcal{K}} := (\mathbb{R},\mathbb{Z})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{R},\mathbb{Z})^{I} \subset \mathbb{R}^{m}.$$

When \mathcal{K} consists of m disjoint points, $\mathcal{L}_{\mathcal{K}}$ is a grid in \mathbb{R}^m consisting of all lines parallel to one of the coordinate axis and passing though integer points.

When $\mathcal{K} = \partial \Delta^{m-1}$, the complex $\mathcal{L}_{\mathcal{K}}$ is the union of all integer hyperplanes parallel to coordinate hyperplanes.

Let $(X, A) = (\mathbb{R}P^{\infty}, \rho t)$, where $\mathbb{R}P^{\infty} = B\mathbb{Z}_2$. Then

$$(\mathbb{R}P^{\infty})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (\mathbb{R}P^{\infty})^{I} \subset (\mathbb{R}P^{\infty})^{m}.$$

Example

Let $(X, A) = (D^1, S^0)$, where $D^1 = [-1, 1]$ and $S^0 = \{1, -1\}$. The real moment-angle complex is

$$\mathcal{R}_{\mathcal{K}} := (D^1, S^0)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (D^1, S^0)^I.$$

It is a cubic subcomplex in the *m*-cube $(D^1)^m = [-1, 1]^m$.

When \mathcal{K} consists of m disjoint points, $\mathcal{R}_{\mathcal{K}}$ is the 1-dimensional skeleton of the cube $[-1,1]^m$. When $\mathcal{K} = \partial \Delta^{m-1}$, $\mathcal{R}_{\mathcal{K}}$ is the boundary of the cube $[-1,1]^m$. Also, $\mathcal{R}_{\mathcal{K}}$ is a topological manifold when $|\mathcal{K}|$ is a sphere.

Taras Panov (MSU)

The four polyhedral products above are related by the two homotopy fibrations

$$(\mathbb{R},\mathbb{Z})^{\mathcal{K}} = \mathcal{L}_{\mathcal{K}} \longrightarrow (S^1)^{\mathcal{K}} \longrightarrow (S^1)^m,$$

 $(D^1, S^0)^{\mathcal{K}} = \mathcal{R}_{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^{\mathcal{K}} \longrightarrow (\mathbb{R}P^{\infty})^m.$

By analogy with the polyhedral product of spaces $\mathbf{X}^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}} \mathbf{X}^{I}$, we may consider the following construction of a discrete group.

Graph product

$$oldsymbol{G} = (G_1, \dots, G_m)$$
 a sequence of m discrete groups, $G_i \neq \{1\}$.
Given $I = \{i_1, \dots, i_k\} \subset [m]$, set
 $oldsymbol{G}^I = \{(g_1, \dots, g_m) \in \prod_{k=1}^m G_k : g_k = 1 \ \text{ for } k \notin I\}.$

Then consider the following ${}_{\mathrm{CAT}}(\mathcal{K})$ -diagram of groups:

$$\mathcal{D}_{\mathcal{K}}(\boldsymbol{G})\colon \operatorname{CAT}(\mathcal{K})\longrightarrow \operatorname{GRP}, \quad I\longmapsto \boldsymbol{G}^{I},$$

which maps a morphism $I \subset J$ to the canonical monomorphism $G^I \to G^J$. The graph product of the groups G_1, \ldots, G_m is

$$\boldsymbol{G}^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{grp}} \mathcal{D}_{\mathcal{K}}(\boldsymbol{G}) = \operatorname{colim}_{I \in \mathcal{K}}^{\operatorname{grp}} \boldsymbol{G}^{I}.$$

The graph product $\pmb{G}^{\mathcal{K}}$ depends only on the 1-skeleton (graph) of $\mathcal{K}.$ Namely,

Proposition

The is an isomorphism of groups

$$\boldsymbol{G}^{\mathcal{K}} \cong \overset{m}{\underset{k=1}{\bigstar}} G_k / (g_i g_j = g_j g_i \text{ for } g_i \in G_i, \, g_j \in G_j, \, \{i, j\} \in \mathcal{K}),$$

where $\bigstar_{k=1}^m G_k$ denotes the free product of the groups G_k .

Let $G_i = \mathbb{Z}$. Then $\boldsymbol{G}^{\mathcal{K}}$ is the right-angled Artin group

$$extsf{RA}_{\mathcal{K}} = extsf{F}(extsf{g}_1,\ldots, extsf{g}_m) ig/(extsf{g}_i extsf{g}_j = extsf{g}_j extsf{g}_i extsf{ for } \{i,j\} \in \mathcal{K}),$$

where $F(g_1, \ldots, g_m)$ is a free group with *m* generators.

When \mathcal{K} is a full simplex, we have $RA_{\mathcal{K}} = \mathbb{Z}^m$. When \mathcal{K} is *m* points, we obtain a free group of rank *m*.

Example

Let $G_i = \mathbb{Z}_2$. Then $\mathbf{G}^{\mathcal{K}}$ is the right-angled Coxeter group

$$RC_{\mathcal{K}} = F(g_1, \ldots, g_m)/(g_i^2 = 1, g_ig_j = g_jg_i \text{ for } \{i, j\} \in \mathcal{K}).$$

2. Classifying spaces

The homotopy fibrations $\mathcal{L}_{\mathcal{K}} \to (S^1)^{\mathcal{K}} \to (S^1)^m$ and $\mathcal{R}_{\mathcal{K}} \to (\mathbb{R}P^{\infty})^{\mathcal{K}} \to (\mathbb{R}P^{\infty})^m$ are generalised as follows.

Proposition

There is a homotopy fibration

$$(E\mathbf{G},\mathbf{G})^{\mathcal{K}}\longrightarrow (B\mathbf{G})^{\mathcal{K}}\longrightarrow \prod_{k=1}^{m}BG_{k}.$$

A missing face (a minimal non-face) of \mathcal{K} is a subset $I \subset [m]$ such that $I \notin \mathcal{K}$, but $J \in \mathcal{K}$ for each $J \subsetneq I$.

 \mathcal{K} a flag complex if each of its missing faces consists of two vertices. Equivalently, \mathcal{K} is flag if any set of vertices of \mathcal{K} which are pairwise connected by edges spans a simplex.

Every flag complex \mathcal{K} is determined by its 1-skeleton \mathcal{K}^1 .

Taras Panov (MSU)

Theorem

Let $\boldsymbol{G}^{\mathcal{K}}$ be a graph product group.

- Both spaces (BG)^𝔅 and (EG, G)^𝔅 are aspherical if and only if 𝔅 is flag. Hence, B(G^𝔅) = (BG)^𝔅 whenever 𝔅 is flag.
- $\pi_i((B\mathbf{G})^{\mathcal{K}}) \cong \pi_i((E\mathbf{G},\mathbf{G})^{\mathcal{K}}) \text{ for } i \geq 2.$
- $\pi_1((E \mathbf{G}, \mathbf{G})^{\mathcal{K}})$ is isomorphic to the kernel of the canonical projection $\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^m \mathbf{G}_k$.

Proof

(1) Proceed inductively by adding simplices to \mathcal{K} one by one and use van Kampen's Theorem. The base of the induction is \mathcal{K} consisting of m disjoint points. Then $(B\mathbf{G})^{\mathcal{K}}$ is the wedge $BG_1 \vee \cdots \vee BG_m$, and $\pi_1((B\mathbf{G})^{\mathcal{K}})$ is the free product $G_1 \star \cdots \star G_m$.

(2) To see that $B({m G}^{{\mathcal K}})=(B{m G})^{{\mathcal K}}$ when ${\mathcal K}$ is flag, consider the map

$$\operatorname{colim}_{I\in\mathcal{K}} B\,\boldsymbol{G}^{\,I} = (B\,\boldsymbol{G})^{\mathcal{K}} \to B(\boldsymbol{G}^{\mathcal{K}}). \tag{1}$$

According to [PRV], the homotopy fibre of (1) is $\operatorname{hocolim}_{I \in \mathcal{K}} \mathbf{G}^{\mathcal{K}} / \mathbf{G}^{I}$, which is homeomorphic to the identification space

$$(B_{CAT}(\mathcal{K}) \times \boldsymbol{G}^{\mathcal{K}}) / \sim .$$
 (2)

Here $B_{CAT}(\mathcal{K})$ is homeomorphic to the cone on $|\mathcal{K}|$. The equivalence relation \sim is defined as follows: $(x, gh) \sim (x, g)$ whenever $h \in \mathbf{G}^{I}$ and $x \in B(I \downarrow CAT(\mathcal{K}))$, where $I \downarrow CAT(\mathcal{K})$ is the *undercategory*, and $B(I \downarrow CAT(\mathcal{K}))$ is homeomorphic to the star of I in \mathcal{K} . When \mathcal{K} is a flag complex, the identification space (2) is contractible by [PRV]. Therefore, the map (1) is a homotopy equivalence, which implies that $(B\mathbf{G})^{\mathcal{K}}$ is aspherical when \mathcal{K} is flag.

Proof

Assume now that ${\mathcal K}$ is not flag. Choose a missing face

 $J = \{j_1, \ldots, j_k\} \subset [m]$ with $k \ge 3$ vertices. Let $\mathcal{K}_J = \{I \in \mathcal{K} \colon I \subset J\}$.

Then $(B\mathbf{G})^{\mathcal{K}_J}$ is the fat wedge of the spaces $\{BG_j, j \in J\}$, and it is a retract of $(B\mathbf{G})^{\mathcal{K}}$.

The homotopy fibre of the inclusion $(B\mathbf{G})^{\mathcal{K}_J} \to \prod_{j \in J} BG_j$ is $\Sigma^{k-1}G_{j_1} \wedge \cdots \wedge G_{j_k}$, a wedge of (k-1)-dimensional spheres. Hence, $\pi_{k-1}((B\mathbf{G})^{\mathcal{K}_J}) \neq 0$ where $k \ge 3$. Thus, $(B\mathbf{G})^{\mathcal{K}_J}$ and $(B\mathbf{G})^{\mathcal{K}}$ are non-aspherical.

The rest of the proof (the asphericity of $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ and statements (3) and (4)) follow from the homotopy exact sequence of the fibration $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}} \to (B\mathbf{G})^{\mathcal{K}} \to \prod_{k=1}^{m} BG_k.$

Specialising to the cases $G_k = \mathbb{Z}$ and $G_k = \mathbb{Z}_2$ respectively we obtain:

Corollary

Let $RA_{\mathcal{K}}$ be a right-angled Artin group.

$$1 \pi_1((S^1)^{\mathcal{K}}) \cong RA_{\mathcal{K}}.$$

3 Both $(S^1)^{\mathcal{K}}$ and $\mathcal{L}_{\mathcal{K}} = (\mathbb{R}, \mathbb{Z})^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.

•
$$\pi_i((S^1)^{\mathcal{K}}) \cong \pi_i(\mathcal{L}_{\mathcal{K}}) \text{ for } i \geq 2.$$

• $\pi_1(\mathcal{L}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $\mathsf{RA}'_{\mathcal{K}}$.

Corollary

Let $RC_{\mathcal{K}}$ be a right-angled Coxeter group.

$$1 \pi_1((\mathbb{R}P^\infty)^{\mathcal{K}}) \cong RC_{\mathcal{K}}.$$

2 Both $(\mathbb{R}P^{\infty})^{\mathcal{K}}$ and $\mathcal{R}_{\mathcal{K}} = (D^1, S^0)^{\mathcal{K}}$ are aspherical iff \mathcal{K} is flag.

• $\pi_i((\mathbb{R}P^{\infty})^{\mathcal{K}}) \cong \pi_i(\mathcal{R}_{\mathcal{K}}) \text{ for } i \geq 2.$

• $\pi_1(\mathcal{R}_{\mathcal{K}})$ is isomorphic to the commutator subgroup $\mathcal{R}C'_{\mathcal{K}}$.

Let \mathcal{K} be an *m*-cycle (the boundary of an *m*-gon). A simple argument with Euler characteristic shows that $\mathcal{R}_{\mathcal{K}}$ is homeomorphic to a closed orientable surface of genus $(m-4)2^{m-3} + 1$. (This observation goes back to a 1938 work of Coxeter.) Therefore, the commutator subgroup of the corresponding right-angled Coxeter group $\mathcal{RC}_{\mathcal{K}}$ is a surface group.

Similarly, when $|\mathcal{K}| \cong S^2$ (which is equivalent to \mathcal{K} being the boundary of a 3-dimensional simplicial polytope), $\mathcal{R}_{\mathcal{K}}$ is a 3-dimensional manifold. Therefore, the commutator subgroup of the corresponding $RC_{\mathcal{K}}$ is a 3-manifold group.

3. The structure of the commutator subgroups

We have

$$\operatorname{Ker}\left(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$$

In the case of right-angled Artin or Coxeter groups (or when each G_k is abelian), the group above is the commutator subgroup $(\boldsymbol{G}^{\mathcal{K}})'$.

We want to study the group $\pi_1((EG, G)^{\mathcal{K}})$, identify the class of simplicial complexes \mathcal{K} for which this group is free, and describe a generator set.

A graph Γ is called chordal (in other terminology, triangulated) if each of its cycles with ≥ 4 vertices has a chord.

By a result of Fulkerson-Gross, a graph is chordal if and only if its vertices can be ordered in such a way that, for each vertex i, the lesser neighbours of i form a complete subgraph. (A perfect elimination order.)

Theorem

The following conditions are equivalent:

- Ker $(\mathbf{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k)$ is a free group;
- **2** $(E\mathbf{G}, \mathbf{G})^{\mathcal{K}}$ is homotopy equivalent to a wedge of circles;
- \mathbf{O} \mathcal{K}^1 is a chordal graph.

Proof

(2)
$$\Rightarrow$$
(1) Because Ker $\left(\boldsymbol{G}^{\mathcal{K}} \rightarrow \prod_{k=1}^{m} G_{k}\right) = \pi_{1}((\boldsymbol{E}\boldsymbol{G}, \boldsymbol{G})^{\mathcal{K}}).$

 $(3) \Rightarrow (2)$ Use induction and perfect elimination order.

 $(1)\Rightarrow(3)$ Assume that \mathcal{K}^1 is not chordal. Then, for each chordless cycle of length ≥ 4 , one can find a subgroup in $\operatorname{Ker}(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k)$ which is a surface group. Hence, $\operatorname{Ker}(\boldsymbol{G}^{\mathcal{K}} \to \prod_{k=1}^{m} G_k)$ is not a free group.

Corollary

Let $RA_{\mathcal{K}}$ and $RC_{\mathcal{K}}$ be the right-angled Artin and Coxeter groups corresponding to a simplicial complex \mathcal{K} .

- (a) The commutator subgroup $RA'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.
- (b) The commutator subgroup $RC'_{\mathcal{K}}$ is free if and only if \mathcal{K}^1 is a chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The difference between (a) and (b) is that the commutator subgroup $RA'_{\mathcal{K}}$ is infinitely generated, unless $RA_{\mathcal{K}} = \mathbb{Z}^m$, while the commutator subgroup $RC'_{\mathcal{K}}$ is finitely generated. We elaborate on this in the next theorem.

Let $(g, h) = g^{-1}h^{-1}gh$ denote the group commutator of g, h.

Theorem

The commutator subgroup $RC'_{\mathcal{K}}$ has a finite minimal generator set consisting of $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$ iterated commutators $(g_j, g_i), \quad (g_{k_1}, (g_j, g_i)), \quad \dots, \quad (g_{k_1}, (g_{k_2}, \cdots (g_{k_{m-2}}, (g_j, g_i)) \cdots)),$ where $k_1 < k_2 < \cdots < k_{\ell-2} < j > i$, $k_s \neq i$ for any s, and i is the smallest vertex in a connected component not containing j of the subcomplex $\mathcal{K}_{\{k_1,\dots,k_{\ell-2},j,i\}}$.

Idea of proof

First consider the case $\mathcal{K} = m$ points. Then $\mathcal{R}_{\mathcal{K}}$ is the 1-skeleton of an *m*-cube and $RC'_{\mathcal{K}} = \pi_1(\mathcal{R}_{\mathcal{K}})$ is a free group of rank $\sum_{\ell=2}^m (\ell-1)\binom{m}{\ell}$. It agrees with the total number of nested commutators in the list.

Then eliminate the extra nested commutators using the commutation relations $(g_i, g_j) = 1$ for $\{i, j\} \in \mathcal{K}$.

Idea of proof

To see that the given generating set is minimal, argue as follows. The first homology group $H_1(\mathcal{R}_{\mathcal{K}})$ is $RC'_{\mathcal{K}}/RC''_{\mathcal{K}}$. On the other hand,

$$H_1(\mathcal{R}_{\mathcal{K}})\cong \sum_{J\subset [m]}\widetilde{H}_0(\mathcal{K}_J).$$

Hence, the number of generators in the abelian group $H_1(\mathcal{R}_{\mathcal{K}}) \cong RC'_{\mathcal{K}}/RC''_{\mathcal{K}}$ is $\sum_{J \subset [m]} \operatorname{rank} \widetilde{H}_0(\mathcal{K}_J)$, and the latter number agrees with the number of iterated commutators in the in generator set for $RC'_{\mathcal{K}}$ constructed above.

Let $\mathcal{K} = \frac{3}{2} \bullet 4$

Then the commutator subgroup $RC'_{\mathcal{K}}$ is free with the following basis:

 $(g_3, g_1), (g_4, g_1), (g_4, g_2), (g_4, g_3),$ $(g_2, (g_4, g_1)), (g_3, (g_4, g_1)), (g_1, (g_4, g_3)), (g_3, (g_4, g_2)),$ $(g_2, (g_3, (g_4, g_1))).$

Example

Let \mathcal{K} be an *m*-cycle with $m \ge 4$ vertices.

Then \mathcal{K}^1 is not a chordal graph, so the group $\mathcal{RC}'_{\mathcal{K}}$ is not free.

In fact, $\mathcal{R}_{\mathcal{K}}$ is an orientable surface of genus $(m-4)2^{m-3} + 1$, so $RC'_{\mathcal{K}} \cong \pi_1(\mathcal{R}_{\mathcal{K}})$ is a one-relator group.

The are similar results of Grbic, P., Theriault and Wu describing the commutator subalgebra of the graded Lie algebra given by

$$L_{\mathcal{K}} = FL\langle u_1, \ldots, u_m \rangle \big/ \big([u_i, u_i] = 0, \ [u_i, u_j] = 0 \text{ for } \{i, j\} \in \mathcal{K} \big),$$

where $FL\langle u_1, \ldots, u_m \rangle$ is the free graded Lie algebra on generators u_i of degree one, and $[a, b] = -(-1)^{|a||b|}[b, a]$ denotes the graded Lie bracket.

The commutator subalgebra is the kernel of the Lie algebra homomorphism $L_{\mathcal{K}} \rightarrow CL\langle u_1, \ldots, u_m \rangle$ to the commutative (trivial) Lie algebra.

The graded Lie algebra $L_{\mathcal{K}}$ is a graph product similar to the right-angled Coxeter group $RC_{\mathcal{K}}$.

It has a similar colimit decomposition, with each $G_i = \mathbb{Z}_2$ replaced by the trivial Lie algebra $CL\langle u \rangle = FL\langle u \rangle / ([u, u] = 0)$ and the colimit taken in the category of graded Lie algebras.

- T. Panov, N. Ray and R. Vogt. *Colimits, Stanley-Reiner algebras, and loop spaces*, in: "Categorical Decomposition Techniques in Algebraic Topology" (G. Arone et al eds.), Progress in Mathematics, vol. 215, Birkhauser, Basel, 2004, pp. 261–291; arXiv:math.AT/0202081.
- J. Grbic, T. Panov, S. Theriault and J. Wu. *The homotopy types of moment-angle complexes for flag complexes*. Trans. of the Amer. Math. Soc. **368** (2016), no. 9, 6663–6682; arXiv:1211.0873.
- [3] T. Panov and Ya. Veryovkin. Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups. Preprint (2016); arXiv:1603.06902.