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Moment-angle manifolds and complexes

A convex polyhedron in Rn obtained by intersecting m halfspaces:

P =
{
x ∈ Rn : 〈ai,x〉+ bi > 0 for i = 1, . . . ,m

}
.

Define an affine map

iP : Rn → Rm, iP (x) =
(
〈a1,x〉+ b1, . . . , 〈am,x〉+ bm

)
.

If P has a vertex, then iP is monomorphic, and iP (P ) is the intersection of

an n-plane with Rm> = {y = (y1, . . . , ym): yi > 0}.

Define the space ZP from the diagram

ZP
iZ−→ Cm (z1, . . . , zm)y yµ y

P
iP−→ Rm> (|z1|2, . . . , |zm|2)

ZP has a Tm-action, ZP/Tm = P , and iZ is a Tm-equivariant inclusion.
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Prop 1. If P is a simple polytope (more generally, if the presentation of P by

inequalities is generic), then ZP is a smooth manifold of dimension m+ n.

Proof. Write iP (Rn) by m − n linear equations in (y1, . . . , ym) ∈ Rm. Replace

yk by |zk|2 to obtain a presentation of ZP by quadrics.

ZP : polytopal moment-angle manifold corresponding to P .

Similarly, by considering the projection µ : Rm → Rm> instead of µ : Cm → Rm>
we obtain the real moment-angle manifold RP ⊂ Rm.

Ex 1. P = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0, −γ1x1 − γ2x2 + 1 > 0}, γ1, γ2 > 0 (a

2-simplex). Then

ZP = {(z1, z2, z3) ∈ C3 : γ1|z1|2 + γ2|z2|2 + |z3|2) = 1} (a 5-sphere),

RP = {(u1, u2, u3) ∈ R3 : γ1|u1|2 + γ2|u2|2 + |u3|2) = 1} (a 2-sphere).
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K an (abstract) simplicial complex on the set [m] = {1, . . . ,m}.

I = {i1, . . . , ik} ∈ K a simplex. Always assume ∅ ∈ K.

Consider the unit polydisc in Cm,

Dm =
{

(z1, . . . , zm) ∈ Cm : |zi| 6 1, i = 1, . . . ,m
}
.

Given I ⊂ [m], set

BI :=
{

(z1, . . . , zm) ∈ Dm : |zj| = 1 for j /∈ I
}∼= ∏

i∈I
D2 ×

∏
i/∈I

S1.

The moment-angle complex

ZK :=
⋃
I∈K

BI =
⋃
I∈K

(∏
i∈I

D2 ×
∏
i/∈I

S1
)
⊂ Dm

It is invariant under the coordinatewise action of the torus Tm.

Ex 2. K = 2 points, then ZK = D2 × S1 ∪ S1 ×D2 ∼= S3.

K = ∆, then ZK = (D2 ×D2 × S1) ∪ (D2 × S1 ×D2) ∪ (S1 ×D2 ×D2) ∼= S5.

4



More generally, let X a space, and A ⊂ X. Given I ⊂ [m], set

(X,A)I =
{

(x1, . . . , xm) ∈
m∏
i=1

X : xj ∈ A for j /∈ I
} ∼= ∏

i∈I
X ×

∏
i/∈I

A.

The K-polyhedral product of (X,A) is

ZK(X,A) =
⋃
I∈K

(X,A)I ⊂ Xm.

Another important example is the complement of the coordinate subspace

arrangement corresponding to K:

U(K) = Cm \
⋃

{i1,...,ik}/∈K
{z ∈ Cm : zi1 = . . . = zik = 0},

namely,

U(K) = ZK(C,C×),

where C× = C \ {0}.

Thm 1. ZK ⊂ U(K) is a Tm-deformation retract of U(K).
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Thm 2. If P is a simple polytope, KP = ∂(P ∗) (the dual triangulation), then

ZKP
∼= ZP (Tm-equivariantly homeomorphic).

In particular, ZKP is a manifold. More generally,

Prop 2. Assume |K| ∼= Sn−1 (a sphere triangulation with m vertices). Then

ZK is a closed manifold of dimension m+ n.
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Geometric structures I. Non-Kähler complex structures

Recall: if K = KP is the dual triangulation of a simple convex polytope P ,

then ZP = ZKP has a canonical smooth structure (e.g. as a nondegenerate

intersection of Hermitian quadrics in Cm).

Let K be a sphere triangulation, i.e. |K| ∼= Sn−1.

A realisation |K| ⊂ Rn is starshaped if there is a point x /∈ |K| such that any

ray from x intersects |K| in exactly one point.

A convex triangulation KP is starshaped, but not vice versa!

K has a starshaped realisation if and only if it is the underlying complexes of

a complete simplicial fan Σ.

Also recall U(K) = Cm \
⋃
{i1,...,ik}/∈K{z ∈ Cm : zi1 = . . . = zik = 0}.
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a1, . . . ,am ∈ Rn the generators of the 1-dim cones of Σ. Define a map

A : Rm → Rn, ei 7→ ai,

where e1, . . . ,em is the standard basis of Rm. Set

Rm> = {(y1, . . . , ym) ∈ Rm : yi > 0},

and define

R := exp(KerA) =
{

(y1, . . . , ym) ∈ Rm> :
m∏
i=1

y
〈ai,u〉
i = 1 for all u ∈ Rn

}
,

R ⊂ Rm> acts on U(K) ⊂ Cm by coordinatewise multiplications.

Thm 3. Let Σ be a complete simplicial fan in Rn with m one-dimensional

cones, and let K = KΣ be its underlying simplicial complex. Then

(a) the group R ∼= Rm−n acts on U(K) freely and properly, so the quotient

U(K)/R is a smooth (m+ n)-dimensional manifold;

(b) U(K)/R is Tm-equivariantly homeomorphic to ZK.

Therefore, ZK can be smoothed canonically.
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Assume m− n is even and set ` = m−n
2 .

Choose a linear map Ψ: C` → Cm satisfying the two conditions:

(a) Re ◦Ψ: C` → Rm is a monomorphism.

(b) A ◦Re ◦Ψ = 0.

The composite map of the top line in the following diagram is zero:

C` Ψ−→ Cm Re−−→ Rm A−→ Rnyexp

yexp

yexp

(C×)m
|·|−→ Rm>

expA−−−−→ Rn>
where | · | denotes the map (z1, . . . , zm) 7→ (|z1|, . . . , |zm|).

Now set

C = exp Ψ(C`) =
{(
e〈ψ1,w〉, . . . , e〈ψm,w〉

)
∈ (C×)m

}

Then C ∼= C` is a complex-analytic (but not algebraic) subgroup in (C×)m. It
acts on U(K) by holomorphic transformations.
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Ex 3. Let K be empty on 2 elements (that is, K has two ghost vertices).

We therefore have n = 0, m = 2, ` = 1, and A : R2 → 0 is a zero map.

Let Ψ: C→ C2 be given by z 7→ (z, αz) for some α ∈ C, so that

C =
{

(ez, eαz)} ⊂ (C×)2.

Condition (b) above is void, while (a) is equivalent to that α /∈ R. Then

exp Ψ: C→ (C×)2 is an embedding, and the quotient (C×)2/C with the natural

complex structure is a complex torus T2
C with parameter α ∈ C:

(C×)2/C ∼= C/(Z⊕ αZ) = T2
C(α).

Similarly, if K is empty on 2` elements (so that n = 0, m = 2`), we may obtain

any complex torus T2`
C as the quotient (C×)2`/C.
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Thm 4. Let Σ be a complete simplicial fan in Rn with m one-dimensional

cones, and let K = KΣ be its underlying simplicial complex. Assume that

m− n = 2`. Then

(a) the holomorphic action of the group C ∼= C` on U(K) is free and proper,

so the quotient U(K)/C is a compact complex (m− `)-manifold;

(b) there is a Tm-equivariant diffeomorphism U(K)/C ∼= ZK defining a com-

plex structure on ZK in which Tm acts holomorphically.
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Ex 4 (Hopf manifold). Let Σ be the complete fan in Rn whose cones are

generated by all proper subsets of n+ 1 vectors e1, . . . ,en,−e1 − . . .− en.

To make m− n even we add one ‘empty’ 1-cone. We have m = n+ 2, ` = 1.

Then A : Rn+2 → Rn is given by the matrix (0 I −1), where I is the unit n× n
matrix, and 0, 1 are the n-columns of zeros and units respectively.

We have that K is the boundary of an n-dim simplex with n+ 1 vertices and

1 ghost vertex, ZK ∼= S1 × S2n+1, and U(K) = C× × (Cn+1 \ {0}).

Take Ψ: C→ Cn+2, z 7→ (z, αz, . . . , αz) for some α ∈ C, α /∈ R. Then

C =
{

(ez, eαz, . . . , eαz): z ∈ C
}
⊂ (C×)n+2,

and ZK acquires a complex structure as the quotient U(K)/C:

C× ×
(
Cn+1 \ {0}

)/
{(t,w)∼ (ezt, eαzw)} ∼=

(
Cn+1 \ {0}

)/
{w∼ e2πiαw},

where t ∈ C×, w ∈ Cn+1 \ {0}. The latter quotient of Cn+1 \ {0} is known as

the Hopf manifold.
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Holomorphic bundles over toric varieties.

Manifolds ZK corresponding to complete regular (in particular, rational) sim-

plicial fans are total spaces of holomorphic principal bundles over toric varieties

with fibre a complex torus. This allows us to calculate invariants of the com-

plex structures on ZK, such as Hodge numbers and Dolbeault cohomology.

A toric variety is a normal algebraic variety X on which an algebraic torus

(C×)n acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,

complete fans ←→ compact varieties

normal fans of polytopes←→ projective varieties

regular fans ←→ nonsingular varieties

simplicial fans ←→ orbifolds
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Σ complete, simplicial, rational;

a1, . . . ,am primitive integral generators of 1-cones;

ai = (ai1, . . . , ain) ∈ Zn.

Constr 1 (‘Cox construction’). Let AC : Cm → Cn, ei 7→ ai,

expAC : (C×)m → (C×)n,

(z1, . . . , zm) 7→
( m∏
i=1

z
ai1
i , . . . ,

m∏
i=1

z
ain
i

)
Set G = Ker expAC.

This is an (m− n)-dimensional algebraic subgroup in (C×)m.

It acts almost freely (with finite isotropy subgroups) on U(KΣ).

If Σ is regular, then G ∼= (C×)m−n and the action is free.

VΣ = U(KΣ)/G the toric variety associated to Σ.

The quotient torus (C×)m/G ∼= (C×)n acts on VΣ with a dense orbit.
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Observe that C` ∼= C ⊂ G ∼= (C×)m−n as a complex subgroup.

Prop 3.

(a) The toric variety VΣ is homeomorphic to the quotient of ZKΣ
by the holo-

morphic action of G/C.

(b) If Σ is regular, then there is a holomorphic principal bundle ZKΣ
→ VΣ

with fibre the compact complex torus G/C of dimension `.

Rem 1. For singular varieties VΣ the quotient projection ZKΣ
→ VΣ is a holo-

morphic principal Seifert bundle for an appropriate orbifold structure on VΣ.
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Submanifolds and analytic subsets.

The complex structure on ZK is determined by two pieces of data:

– the complete simplicial fan Σ with generators a1, . . . ,am;

– the `-dimensional holomorphic subgroup C ⊂ (C×)m.

If this data is generic (in particular, the fan Σ is not rational), then there is

no holomorphic principal torus fibration ZK → VΣ over a toric variety VΣ.

However, there still exists a holomorphic `-dimensional foliation F with a

transverse Kähler form ωF . This form can be used to describe submanifolds

and analytic subsets in ZK.
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Consider the complexified map AC : Cm → Cn, ei 7→ ai, and the following

complex (m− n)-dimensional subgroup in (C×)m:

G = exp(KerAC) =
{(
ez1, . . . , ezm

)
∈ (C×)m : (z1, . . . , zm) ∈ KerAC

}
.

Note C ⊂ G.

The group G acts on U(K), and its orbits define a holomorphic foliation

on U(K). Since G ⊂ (C×)m, this action is free on open subset (C×)m ⊂ U(K),

so that the generic leaf of the foliation has complex dimension m− n = 2`.

The `-dimensional closed subgroup C ⊂ G acts on U(K) freely and properly

by Theorem 4, so that U(K)/C carries a holomorphic action of the quotient

group D = G/C.

F: the holomorphic foliation on U(K)/C ∼= ZK by the orbits of D.
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The subgroup G ⊂ (C×)m is closed if and only if it is isomorphic to (C×)2`;

in this case the subspace KerA ⊂ Rm is rational. Then Σ is a rational fan

and VΣ is the quotient U(K)/G. The foliation F gives rise to a holomorphic

principal Seifert fibration π : ZK → VΣ with fibres compact complex tori G/C.

For a generic configuration of nonzero vectors a1, . . . ,am, G is biholomorphic

to C2` and D = G/C is biholomorphic to C`.
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A (1,1)-form ωF on the complex manifold ZK is called transverse Kähler with

respect to the foliation F if

(a) ωF is closed, i.e. dωF = 0;

(b) ωF is nonnegative and the zero space of ωF is the tangent space of F.

A complete simplicial fan Σ in Rn is called weakly normal if there exists a

(not necessarily simple) n-dimensional polytope P such that Σ is a simplicial

subdivision of the normal fan ΣP .

Thm 5. Assume that Σ is a weakly normal fan. Then there exists an exact

(1,1)-form ωF on ZK = U(K)/C which is transverse Kähler for the foliation F
on the dense open subset (C×)m/C ⊂ U(K)/C.
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For each J ⊂ [m], define the corresponding coordinate submanifold in ZK by

ZKJ = {(z1, . . . , zm) ∈ ZK : zi = 0 for i /∈ J}.

Obviously, ZKJ is identified with the quotient of

U(KJ) = {(z1, . . . , zm) ∈ U(K): zi = 0 for i /∈ J}

by C ∼= C`. In particular, U(KJ)/C is a complex submanifold in ZK = U(K)/C.

Observe that the closure of any (C×)m-orbit of U(K) has the form U(KJ) for

some J ⊂ [m] (in particular, the dense orbit corresponds to J = [m]). Similarly,

the closure of any (C×)m/C-orbit of ZK ∼= U(K)/C has the form ZKJ .
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Thm 6. Assume that the data defining a complex structure on ZK = U(K)/C

is generic. Then any divisor of ZK is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible analytic

subset Y ⊂ ZK of positive dimension is a coordinate submanifold.

Cor 1. Under generic assumptions, there are no non-constant meromorphic

functions on ZK.
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Geometric structures II. Lagrangian submanifolds

M a Kähler manifold with symplectic form ω, dimRM = 2n.

An immersion i : N #M of an n-manifold N is Lagrangian if i∗(ω) = 0. If i is

an embedding, then i(N) is a Lagrangian submanifold of M .

A vector field ξ on M is Hamiltonian if the 1-form ω( · , ξ) is exact.

A Lagrangian immersion i : N # M is Hamiltonian minimal

(H-minimal) if the variations of the volume of i(N) along all Hamiltonian

vector fields with compact support are zero, i.e.

d

dt
vol(it(N))

∣∣∣
t=0

= 0,

where i0(N) = i(N), it(N) is a Hamiltonian deformation of i(N), and

vol(it(N)) is the volume of the deformed part of it(N).
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Recall: P a simple polytope

P =
{
x ∈ Rn : 〈ai,x〉+ bi > 0 for i = 1, . . . ,m

}
.

The polytopal moment-angle manifold ZP ,

ZP
iZ−→ Cm (z1, . . . , zm)y yµ y

P
iP−→ Rm> (|z1|2, . . . , |zm|2)

can be written as the intersection of m− n real quadrics,

ZP =
{
z = (z1, . . . , zm) ∈ Cm :

m∑
k=1

γjk|zk|2 = cj, for 1 6 j 6 m− n
}
.
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Also have the real moment-angle manifold,

RP =
{
u = (u1, . . . , um) ∈ Rm :

m∑
k=1

γjku
2
k = cj, for 1 6 j 6 m− n

}
.

Set γk = (γ1k, . . . , γm−n,k) ∈ Rm−n for 1 6 k 6 m.

Assume that the polytope P is rational. Then have two lattices:

Λ = Z〈a1, . . . ,am〉 ⊂ Rn and L = Z〈γ1, . . . , γm〉 ⊂ Rm−n.

Consider the (m− n)-torus

TP =
{(
e2πi〈γ1,ϕ〉, . . . , e2πi〈γm,ϕ〉

)
∈ Tm

}
,

i.e. TP = Rm−n/L∗, and set

DP =
1

2
L∗/L∗ ∼= (Z/2)m−n.

Prop 4. The (m− n)-torus TP acts on ZP almost freely.
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Consider the map

f : RP × TP −→ Cm,
(u, ϕ) 7→ u · ϕ = (u1e

2πi〈γ1,ϕ〉, . . . , ume2πi〈γm,ϕ〉).

Note f(RP × TP ) ⊂ ZP is the set of TP -orbits through RP ⊂ Cm.

Have an m-dimensional manifold

NP = RP ×DP TP .

Lemma 1. f : RP × TP → Cm induces an immersion j : NP # Cm.

Thm 7 (Mironov). The immersion iΓ : NΓ # Cm is H-minimal Lagrangian.

When it is an embedding?
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A simple rational polytope P is Delzant if for any vertex v ∈ P the set of

vectors ai1, . . . ,ain normal to the facets meeting at v forms a basis of the

lattice Λ = Z〈a1, . . . ,am〉:

Z〈a1, . . . ,am〉 = Z〈ai1, . . . ,ain〉 for any v = Fi1 ∩ · · · ∩ Fin.

Thm 8. The following conditions are equivalent:

1) j : NP → Cm is an embedding of an H-minimal Lagrangian submanifold;

2) the (m− n)-torus TP acts on ZP freely.

3) P is a Delzant polytope.

Explicit constructions of families of Delzant polytopes are known in toric

geometry and topology:

- simplices and cubes in all dimensions;

- products and face cuts;

- associahedra (Stasheff ptopes), permutahedra, and generalisations.
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Ex 5 (one quadric). Let P = ∆m−1 (a simplex), i.e. m− n = 1 and R∆m−1 is

given by a single quadric

γ1u
2
1 + · · ·+ γmu

2
m = c (1)

with γi > 0, i.e. R∆m−1
∼= Sm−1. Then

N ∼= Sm−1 ×Z/2 S
1 ∼=

Sm−1 × S1 if τ preserves the orient. of Sm−1,

Km if τ reverses the orient. of Sm−1,

where τ is the involution and Km is an m-dimensional Klein bottle.

Prop 5. We obtain an H-minimal Lagrangian embedding of N∆m−1
∼=

Sn−1 ×Z/2 S
1 in Cm if and only if γ1 = · · · = γm in (1). The topological

type of N∆m−1 = N(m) depends only on the parity of m:

N(m) ∼= Sm−1 × S1 if m is even,

N(m) ∼= Km if m is odd.

The Klein bottle Km with even m does not admit Lagrangian embeddings

in Cm [Nemirovsky, Shevchishin].
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Ex 6 (two quadrics).

Thm 9. Let m− n = 2, i.e. P '∆p−1 ×∆q−1.

(a) RP is diffeomorphic to R(p, q) ∼= Sp−1 × Sq−1 given by

u2
1 + . . .+ u2

k + u2
k+1 + · · ·+ u2

p = 1,

u2
1 + . . .+ u2

k +u2
p+1 + · · ·+ u2

m = 2,

where p+ q = m, 0 < p < m and 0 6 k 6 p.

(b) If NP → Cm is an embedding, then NP is diffeomorphic to

Nk(p, q) = R(p, q)×Z/2×Z/2 (S1 × S1),

where the two involutions act on R(p, q) by

ψ1 : (u1, . . . , um) 7→ (−u1, . . . ,−uk,−uk+1, . . . ,−up, up+1, . . . , um),

ψ2 : (u1, . . . , um) 7→ (−u1, . . . ,−uk, uk+1, . . . , up,−up+1, . . . ,−um).
(2)

There is a fibration Nk(p, q) → Sq−1 ×Z/2 S
1 = N(q) with fibre N(p) (the

manifold from the previous example), which is trivial for k = 0.
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Ex 7 (three quadrics).

In the case m − n = 3 the topology of compact manifolds RP and ZP was

fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a

product of three spheres, or to a connected sum of products of spheres, with

two spheres in each product.

The simplest P with m− n = 3 is a (Delzant) pentagon, e.g.

P =
{

(x1, x2) ∈ R2 : x1 > 0, x2 > 0, −x1+2 > 0, −x2+2 > 0, −x1−x2+3 > 0
}
.

In this case RP is an oriented surface of genus 5, and ZP is diffeomorphic to

a connected sum of 5 copies of S3 × S4.

Get an H-minimal Lagrangian submanifold NP ⊂ C5 which is the total space

of a bundle over T3 with fibre a surface of genus 5.
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Prop 6. Let P be an m-gon. Then RP is an orientable surface Sg of genus

g = 1 + 2m−3(m− 4).

Get an H-minimal Lagrangian submanifold NP ⊂ Cm which is the total space

of a bundle over Tm−2 with fibre Sg. It is an aspherical manifold (for m > 4)

whose fundamental group enters into the short exact sequence

1 −→ π1(Sg) −→ π1(N) −→ Zm−2 −→ 1.

For n > 2 and m−n > 3 the topology of RP and ZP is even more complicated.
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