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Polytopes and moment-angle manifolds

A convex polytope in Rn is obtained by intersecting m halfspaces:

P =
{
x ∈ Rn : 〈ai , x〉+ bi > 0 for i = 1, . . . ,m

}
,

where ai ∈ Rn and bi ∈ R.

Suppose each Fi = P ∩ {x : 〈ai , x〉+ bi = 0} is a facet (m facets in total).

De�ne an a�ne map

iP : Rn → Rm, iP(x) =
(
〈a1, x〉+ b1, . . . , 〈am, x〉+ bm

)
.

Then iP is monomorphic, and iP(P) ⊂ Rm is the intersection of an n-plane
with Rm

> = {y = (y1, . . . , ym) : yi > 0}.
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De�ne the space ZP from the diagram

ZP
iZ−−−−→ Cm (z1, . . . , zm)y yµ y

P
iP−−−−→ Rm

> (|z1|2, . . . , |zm|2)

ZP has a Tm-action, ZP/Tm = P , and iZ is a Tm-equivariant inclusion.

A polytope P is simple if exactly n = dimP facets meet at each vertex.

Proposition

If P is simple, then ZP is a smooth manifold of dimension m + n.

Proof.

Write iP(Rn) by m − n linear equations in (y1, . . . , ym) ∈ Rm. Replace yk
by |zk |2 to obtain a presentation of ZP by quadrics.
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ZP is the moment-angle manifold corresponding to P .

Similarly, by considering

RP −−−−→ Rm (u1, . . . , um)y yµ y
P

iP−−−−→ Rm
> (u21 , . . . , u

2
m)

we obtain the real moment-angle manifold RP .

Example

P = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0, −γ1x1 − γ2x2 + 1 > 0}, γ1, γ2 > 0

(a 2-simplex). Then

ZP = {(z1, z2, z3) ∈ C3 : γ1|z1|2 + γ2|z2|2 + |z3|2 = 1} (a 5-sphere),

RP = {(u1, u2, u3) ∈ R3 : γ1|u1|2 + γ2|u2|2 + |u3|2 = 1} (a 2-sphere).
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Right-angled polytopes and hyperbolic manifolds

Let P be a polytope in n-dimensional Lobachevsky space Ln with right

angles between adjacent facets (a right-angled n-polytope).

Denote by G (P) the group generated by re�ections in the facets of P .
It is a right-angled Coxeter group given by the presentation

G (P) = 〈g1, . . . , gm | g2
i = 1, gigj = gjgi if Fi ∩ Fj 6= ∅〉,

where gi denotes the re�ection in the facet Fi .

The group G (P) acts on Ln discretely with �nite isotropy subgroups and

with fundamental domain P .
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Lemma

Consider an epimorphism ϕ : G (P)→ Zk
2 . The subgroup Kerϕ ⊂ G (P)

does not contain elements of �nite order if and only if the images of the

re�ections in any 6 k facets of P that have a common vertex are linearly

independent in Zk
2 .

In this case the group Kerϕ acts freely on Ln.

The quotient N = Ln/Kerϕ is a hyperbolic n-manifold. It is composed of

|Zk
2 | = 2k copies of P and has a Riemannian metric of constant negative

curvature. Furthermore, the manifold N is aspherical (the Eilenberg�Mac

Lane space K (Kerϕ, 1)), as its universal cover Ln is contractible.
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Which combinatorial n-polytopes have right-angled realisations in Ln?

In dim 3, there is a nice criterion going back to Pogorelov's work of 1967:

Theorem (Pogorelov, Andreev)

A combinatorial 3-polytope P 6= ∆3 can be realised as a right-angled

polytope in L3 if and only if it is simple, and does not have 3- and 4-belts

of facets. Furthermore, such a realisation is unique up to isometry.

We refer to the above class of 3-polytopes as the Pogorelov class P. A
polytope from the class P does not have triangular or quadrangular facets.

The Pogorelov class contains all fullerenes (simple 3-polytopes with only

pentagonal and hexagonal facets).

There is no classi�cation of right-angled polytopes in L4. For n > 5,

right-angled polytopes in Ln do not exist (by a theorem of Vinberg).

Taras Panov (MSU) Toric Topology and Geometry 1 November 2016 7 / 27



Given a right-angled polytope P , how to �nd an epimorphism

ϕ : G (P)→ Zk
2 with Kerϕ acting freely on Ln?

One can consider the abelianisation: G (P)
ab−→ Zm

2 , with Ker ab = G ′(P),
the commutator subgroup.

The corresponding n-manifold Ln/G ′(P) is the real moment-angle manifold

RP , described as an intersection of quadrics in the beginning of this talk.

Corollary

If P is a right-angled polytope in Ln, then the real moment-angle manifold

RP admits a hyperbolic structure as Ln/G ′(P), where G ′(P) is the

commutator subgroup of the corresponding right-angled Coxeter group.

The manifold RP is composed of 2m copies of P .
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A more econimical way to obtain a hyperbolic manifold is to consider

ϕ : G (P)→ Zn
2. Such an epimorphism factors as G (P)

ab−→ Zm
2

Λ−→ Zn
2,

where Λ is a linear map.

The subgroup Kerϕ acts freely on Ln if and only the Λ-images of any n
facets of P that meet at a vertex form a basis of Zn

2.

Such Λ is called a Z2-characteristic function.

Proposition

Any simple 3-polytope admits a characteristic function.

Proof.

Given a 4-colouring of the facets of P , we assign to a facet of ith colour

the ith basis vector e i ∈ Z3 for i = 1, 2, 3 and the vector e1 + e2 + e3 for

i = 4. The resulting map Λ : Zm
2 → Z3

2 satis�es the required condition, as

any three of the four vectors e1, e2, e3, e1 +e2 +e3 form a basis of Z3.
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Manifolds N(P, Λ) = L3/Kerϕ obtained from right-angled 3-polytopes

P ∈ P and characteristic functions Λ : Zm
2 → Z3

2 are called hyperbolic

3-manifolds of L�obell type. They were introduced and studied by A. Vesnin

in 1987. Each N(P, Λ) is composed of |Z3
2| = 8 copies of P .

In particular, one obtains a hyperbolic 3-manifold from any 4-colouring of a

right-angled 3-polytope P . L�obell was �rst to consider a hyperbolic

3-manifold coming from a (unique) 4-colouring of the dodecahedron.
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Figure: Four non-equivalent 4-colouring of the `barell' fullerene with 14 facets.
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Pairs (P, Λ) and (P ′, Λ′) are equivalent if P and P ′ are combinatorially

equivalent, and Λ,Λ′ : Zm
2 → Zn

2 di�er by an automorphism of Zn
2.

Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let N = N(P, Λ) and N ′ = N(P ′, Λ′) be two hyperbolic 3-manifolds of

L�obell type corresponding to right-angled 3-polytopes P and P ′. Then the

following conditions are equivalent:

(a) there is a cohomology ring isomorphism

ϕ : H∗(N;Z2)
∼=−→ H∗(N ′;Z2);

(b) there is a di�eomorphism N ∼= N ′;

(c) there is an equivalence of Z2-characteristic pairs (P, Λ) ∼ (P ′, Λ′).

In particular, hyperbolic 3-manifolds corresponding to non-equivalent

4-colourings of P are not di�eomorphic.

The di�cult implication is (a)⇒(c). Its proof builds upon the wealth of

cohomological techniques of toric topology.
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Moment-angle complexes and polyhedral products

K an (abstract) simplicial complex on the set [m] = {1, . . . ,m}.
I = {i1, . . . , ik} ∈ K a simplex. Always assume ∅ ∈ K.

Consider the unit polydisc in Cm,

Dm =
{

(z1, . . . , zm) ∈ Cm : |zi | 6 1, i = 1, . . . ,m
}
.

Given I ⊂ [m], set

BI :=
{

(z1, . . . , zm) ∈ Dm : |zj | = 1 for j /∈ I
}∼= ∏

i∈I
D2 ×

∏
i /∈I

S1.

The moment-angle complex

ZK :=
⋃
I∈K

BI =
⋃
I∈K

(∏
i∈I

D2 ×
∏
i /∈I

S1
)
⊂ Dm

It is invariant under the coordinatewise action of the torus Tm.
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Example

K = • • (2 points), then ZK = D2 × S1 ∪ S1 × D2 ∼= S3.

K = 4 (the boundary of a triangle), then

ZK = (D2 × D2 × S1) ∪ (D2 × S1 × D2) ∪ (S1 × D2 × D2) ∼= S5.

More generally, let X a space, and A ⊂ X . Given I ⊂ [m], set

(X ,A)I =
{

(x1, . . . , xm) ∈
m∏
i=1

X : xj ∈ A for j /∈ I
} ∼= ∏

i∈I
X ×

∏
i /∈I

A.

The K-polyhedral product of (X ,A) is

(X ,A)K =
⋃
I∈K

(X ,A)I ⊂ Xm.

Have ZK = (D2, S1)K.
RK = (D1, S0)K the real moment-angle complex.
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Theorem

If P is a simple polytope, KP = ∂(P∗) (the dual simplicial complex), then

ZKP
∼= ZP and RKP

∼= RP .

In particular, ZKP
= (D2, S1)K and RKP

= (D1,S0)K are manifolds.

More generally,

Proposition

Assume |K| ∼= Sn−1 (a sphere triangulation with m vertices). Then ZK is a

closed manifold of dimension m + n.
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Cohomology of moment-angle complexes

The face ring (the Stanley�Reisner ring) of K is given by

Z[K] := Z[v1, . . . , vm]
/(

vi1 · · · vik = 0 if {i1, . . . , ik} /∈ K
)

where deg vi = 2.

Theorem (Buchstaber-P)

There are isomorphisms of rings

H∗(ZK) ∼= TorZ[v1,...,vm](Z[K],Z)

∼= H
[
Λ[u1, . . . , um]⊗ Z[K], d

]
, dui = vi , dvi = 0

∼=
⊕
I /∈K

H̃∗−|I |−1(KI ) KI = K|I
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(Quasi)toric manifolds and small covers

Let P be a simple n-polytope with the set of facets F = {F1, . . . ,Fm}.
A characteristic function is a map Λ : F → Zn such that Λ(Fi1), . . . , Λ(Fin)
is a basis of Zn whenever the facets Fi1 , . . . ,Fin meet at a vertex.

A characteristic function de�nes a linear map Λ : ZF = Zm → Zn and the

corresponding homomorphism of tori Λ : Tm → T n.

Proposition

The subgroup KerΛ ∼= Tm−n acts freely on ZP .

The quotient M(P, Λ) = ZP/KerΛ is called a quasitoric manifold.

It is a smooth 2n-dimensional manifold with an action of the n-torus
Tm/KerΛ ∼= T n with quotient P .
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Similarly, by considering a Z2-characteristic function Λ : Zm
2 → Zn

2 one

obtains a small cover of P as the quotient RP/KerΛ.
A small cover N(P, Λ) is a smooth n-dimensional manifold with an action

of Zn
2 with quotient P .

Hyperbolic manifolds of L�obell type are small covers over 3-dimensional

polytopes from the Pogorelov class P. (Recall that P ∈ P admits a

right-angled realisation in Lobachevsky 3-space L3.)

How to produce characteristic functions Λ : Zm → Zn?

(a) A simple n-polytope P is Delzant if the normals ai1 , . . . , ain to the

facets Fi1 , . . . ,Fin form a basis of Zn whenever Fi1 , . . . ,Fin meet at a vertex.

A Delzant polytope de�nes a characteristic function Λ : Zm → Zn, Fi 7→ ai .

The quotient M = ZP/KerΛ is a (symplectic) toric manifold.

(b) For 3-dimensional polytopes P , any regular 4-colouring of facets gives a

characteristic function, like in the Z2 case.
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Theorem (Danilov�Jurkiewicz, Davis�Januszkiewicz)

Let M = M(P, Λ) be a quasitoric manifold over a simple n-polytope P .

The cohomology ring H∗(M;Z) is generated by the degree-two classes [vi ]
dual to the oriented characteristic submanifolds Mi , and is given by

H∗(M;Z) ∼= Z[v1, . . . , vm]/I, deg vi = 2,

where I is the ideal generated by elements of the following two types:

(a) vi1 · · · vik such that Fi1 ∩ · · · ∩ Fik = ∅ in P ;

(b)

m∑
i=1

〈Λ(Fi ), x〉vi , for any vector x ∈ Zn.

The Z2-cohomology ring H∗(N;Z2) of a small cover N = N(P, Λ) has a

similar description, but with generators vi of degree 1.
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Theorem (Buchstaber-Erokhovets-Masuda-P-Park)

Let M = M(P, Λ) and M ′ = M(P ′, Λ′) be two quasitoric 6-manifolds,

where P is a 3-polytope from the Pogorelov class P. The following

conditions are equivalent:

(a) there is a cohomology ring isomorphism ϕ : H∗(M;Z)
∼=−→ H∗(M ′;Z);

(b) there is a di�eomorphism M ∼= M ′;

(c) there is an equivalence of characteristic pairs (P, Λ) ∼ (P ′, Λ′).

Idea of proof (for both theorems).

We need to prove (a)⇒(c). A ring isomorphism

ϕ : H∗(N;Z2)
∼=−→ H∗(N ′;Z2) implies an isomorphism

ϕ : H∗(M;Z2)
∼=−→ H∗(M ′;Z2), which in turn implies an isomorphism

ψ : H∗(ZP ;Z2)
∼=−→ H∗(ZP′ ;Z2). Using the speci�cs of the combinatorics

of P ∈ P one can conclude that P is combinatorially equivalent to P ′, and
Λ is equivalent to Λ′.
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Complex geometry of moment-angle manifolds

Moment-angle manifolds provide a wide class of examples of non-K�ahler

compact complex manifolds. A complex moment-angle manifold Z is

constructed via certain combinatorial data, called a complete simplicial fan.

In the case of rational fans, the manifold Z is the total space of a

holomorphic bundle over a toric variety with �bres compact complex tori.

In general, a complex moment-angle manifold Z is equipped with a

canonical holomorphic foliation F which is equivariant with respect to the

(C×)m-action. Examples of moment-angle manifolds include Hopf

manifolds, Calabi�Eckmann manifolds, and their deformations.

We construct transversely K�ahler metrics on moment-angle manifolds,

under some restriction on the combinatorial data. We prove that any

K�ahler submanifold in a moment-angle manifold is contained in a leaf of

the foliation F . For a generic moment-angle manifold Z, we prove that all

subvarieties are moment-angle manifolds of smaller dimension and there are

only �nitely many of them. This implies, in particular, that Z does not

support non-constant meromorphic functions.
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Recall: if K = KP is the dual triangulation of a simple convex polytope P ,
then ZP = ZKP

has a canonical smooth structure as a nondegenerate

intersection of Hermitian quadrics in Cm.

Let K be a sphere triangulation, i.e. |K| ∼= Sn−1.

A realisation |K| ⊂ Rn is starshaped if there is a point x /∈ |K| such that

any ray from x intersects |K| in exactly one point.

A convex triangulation KP is starshaped, but not vice versa!

K has a starshaped realisation if and only if it is the underlying complexes

of a complete simplicial fan Σ.
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The complement of the coordinate subspace arrangement de�ned by K

U(K) = (C,C \ {0})K

= Cm \
⋃

{i1,...,ik}/∈K

{z ∈ Cm : zi1 = · · · = zik = 0}.

Theorem (P-Ustinovsky)

Let Σ be a complete simplicial fan in Rn with m one-dimensional cones, and

let K be its underlying simplicial complex. Assume that m− n = 2`. Then

(a) the holomorphic action of the group C ∼= C` on U(K) is free and

proper, so the quotient U(K)/C is a compact complex manifold of

dimension (m − `);
(b) there is a Tm-equivariant di�eomorphism U(K)/C ∼= ZK de�ning a

complex structure on ZK in which Tm acts holomorphically.

Taras Panov (MSU) Toric Topology and Geometry 1 November 2016 22 / 27



Example (complex tori)

Let K be empty complex on 2 elements. Then n = 0, m = 2, ` = 1. Set

C =
{

(ez , eαz)} ⊂ (C×)2

with α /∈ R. Then C→ (C×)2 is an embedding, and the quotient

(C×)2/C is a complex torus T 2
C with parameter α ∈ C:

(C×)2/C ∼= C/(Z⊕ αZ) = T 2
C(α).

Similarly, if K is empty on 2` elements (so that n = 0, m = 2`), we obtain

any complex torus T 2`
C as the quotient (C×)2`/C .
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Example (Hopf manifold)

Let K be the boundary of an n-dim simplex with n + 1 vertices and 1 ghost

vertex. Then

ZK ∼= S1 × S2n+1, U(K) = C× × (Cn+1 \ {0}).

Set

C =
{

(ez , eαz , . . . , eαz) : z ∈ C
}
⊂ (C×)n+2

with α ∈ C, α /∈ R.

Then and ZK acquires a complex structure as the quotient U(K)/C :

C××
(
Cn+1\{0}

)/
{(t,w)∼ (ez t, eαzw)} ∼=

(
Cn+1\{0}

)/
{w∼ e2πiαw},

where t ∈ C×, w ∈ Cn+1 \ {0}. This is known as the Hopf manifold.
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Assume that Σ is a rational fan, i. e. the generators a1, . . . , am span a

lattice. It de�nes an algebraic subgroup G ⊂ (C×)m, G ∼= (C×)m−n.

The corresponding toric variety VΣ is the quotient U(K)/G .

Proposition

(a) The toric variety VΣ is homeomorphic to the quotient of ZKΣ
by the

holomorphic action of G/C .

(b) If Σ is a nonsingular fan, then there is a holomorphic principal bundle

ZKΣ
→ VΣ with �bre the compact complex torus G/C of dimension `.

For singular varieties VΣ the quotient projection ZKΣ
→ VΣ is a

holomorphic principal Seifert bundle for an appropriate orbifold structure

on VΣ.
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Theorem (P-Ustinovsky-Verbitsky)

Assume that the data de�ning a complex structure on ZK = U(K)/C is

generic. Then any divisor of ZK is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible

analytic subset Y ⊂ ZK of positive dimension is a coordinate submanifold.

Corollary

Under generic assumptions, there are no non-constant meromorphic

functions on ZK, i. e. its algebraic dimension is zero.
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