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1. Preliminaries

Polyhedral product

(X ,A) = {(X1,A1), . . . , (Xm,Am)} a sequence of pairs of spaces, Ai ⊂ Xi .

K a simplicial complex on [m] = {1, 2, . . . ,m}, ∅ ∈ K.

Given I = {i1, . . . , ik} ⊂ [m], set

(X ,A)I = Y1 × · · · × Ym where Yi =

{
Xi if i ∈ I ,
Ai if i /∈ I .

The K-polyhedral product of (X ,A) is

(X ,A)K =
⋃
I∈K

(X ,A)I =
⋃
I∈K

(∏
i∈I

Xi ×
∏
j /∈I

Aj

)
.

Notation: (X ,A)K = (X ,A)K when all (Xi ,Ai ) = (X ,A);
X
K = (X , pt)K, XK = (X , pt)K.
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Categorical approach

Category of faces cat(K).
Objects: simplices I ∈ K. Morphisms: inclusions I ⊂ J.

top the category of topological spaces.
De�ne the cat(K)-diagram

DK(X ,A) : cat(K) −→ top,

I 7−→ (X ,A)I ,

which maps the morphism I ⊂ J of cat(K) to the inclusion of spaces
(X ,A)I ⊂ (X ,A)J .

Then we have

(X ,A)K = colimDK(X ,A) = colim
I∈K

(X ,A)I .
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Example

Let (X ,A) = (S1, pt), where S1 is a circle. Then

(S1)K =
⋃
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral product
(S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of an
(m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it is
obtained by removing the top-dimensional cell from the m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.
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Example

Let (X ,A) = (R,Z). Then

LK := (R,Z)K =
⋃
I∈K

(R,Z)I ⊂ Rm.

When K consists of m disjoint points, LK is a grid in Rm consisting of all
lines parallel to one of the coordinate axis and passing though integer
points.

When K = ∂∆m−1, the complex LK is the union of all integer hyperplanes
parallel to coordinate hyperplanes.
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Example

Let (X ,A) = (RP∞, pt), where RP∞ = BZ2. Then

(RP∞)K =
⋃
I∈K

(RP∞)I ⊂ (RP∞)m.

Example

Let (X ,A) = (D1,S0), where D1 = [−1, 1] and S0 = {1,−1}. The real
moment-angle complex is

RK := (D1, S0)K =
⋃
I∈K

(D1, S0)I .

It is a cubic subcomplex in the m-cube (D1)m = [−1, 1]m.

When K consists of m disjoint points, RK is the 1-dimensional skeleton of
the cube [−1, 1]m. When K = ∂∆m−1, RK is the boundary of the
cube [−1, 1]m. Also, RK is a topological manifold when |K| is a sphere.
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The four polyhedral products above are related by the two homotopy
�brations

(R,Z)K = LK −→ (S1)K −→ (S1)m,

(D1, S0)K = RK −→ (RP∞)K −→ (RP∞)m.
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By analogy with the polyhedral product of spaces XK = colimI∈KX
I , we

may consider the following more general construction of a discrete group.

Graph product

G = (G1, . . . ,Gm) a sequence of m discrete groups, Gi 6= {1}.
Given I = {i1, . . . , ik} ⊂ [m], set

G
I =

{
(g1, . . . , gm) ∈

m∏
k=1

Gk : gk = 1 for k /∈ I
}
.

Then consider the following cat(K)-diagram of groups:

DK(G ) : cat(K) −→ grp, I 7−→ G
I ,

which maps a morphism I ⊂ J to the canonical monomorphism G
I → G

J .

The graph product of the groups G1, . . . ,Gm is

G
K = colim

grpDK(G ) = colim
grp

I∈KG
I .
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The graph product GK depends only on the 1-skeleton (graph) of K.
Namely,

Proposition

The is an isomorphism of groups

G
K ∼=

m

?
k=1

Gk

/
(gigj = gjgi for gi ∈ Gi , gj ∈ Gj , {i , j} ∈ K),

where?m

k=1 Gk denotes the free product of the groups Gk .
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Example

Let Gi = Z. Then GK is the right-angled Artin group

RAK = F (g1, . . . , gm)
/

(gigj = gjgi for {i , j} ∈ K),

where F (g1, . . . , gm) is a free group with m generators.

When K is a full simplex, we have RAK = Zm. When K is m points, we
obtain a free group of rank m.

Example

Let Gi = Z2. Then G
K is the right-angled Coxeter group

RCK = F (g1, . . . , gm)
/

(g2i = 1, gigj = gjgi for {i , j} ∈ K).
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2. Classifying spaces

The homotopy �brations LK → (S1)K → (S1)m and
RK → (RP∞)K → (RP∞)m are generalised as follows.

Proposition

There is a homotopy �bration

(EG,G)K −→ (BG)K −→
m∏

k=1

BGk .

A missing face (a minimal non-face) of K is a subset I ⊂ [m] such that
I /∈ K, but J ∈ K for each J ( I .

K a �ag complex if each of its missing faces consists of two vertices.
Equivalently, K is �ag if any set of vertices of K which are pairwise
connected by edges spans a simplex.

Every �ag complex K is determined by its 1-skeleton K1.
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Theorem

Let GK be a graph product group.

1 π1((BG)K) ∼= G
K.

2 Both spaces (BG)K and (EG,G)K are aspherical if and only if K is

�ag. Hence, B(GK) = (BG)K whenever K is �ag.

3 πi ((BG)K) ∼= πi ((EG,G)K) for i > 2.

4 π1((EG,G)K) is isomorphic to the kernel of the canonical projection

G
K →

∏m
k=1 Gk .

Proof

(1) Proceed inductively by adding simplices to K one by one and use
van Kampen's Theorem. The base of the induction is K consisting of m
disjoint points. Then (BG )K is the wedge BG1 ∨ · · · ∨ BGm, and
π1((BG )K) is the free product G1 ? · · · ? Gm.
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Proof

(2) To see that B(GK) = (BG )K when K is �ag, consider the map

colimI∈K BG
I = (BG )K → B(GK). (1)

According to [PRV], the homotopy �bre of (1) is hocolimI∈KG
K/G I ,

which is homeomorphic to the identi�cation space(
Bcat(K)× GK

)/
∼ . (2)

Here Bcat(K) is homeomorphic to the cone on |K|. The equivalence
relation ∼ is de�ned as follows: (x , gh)∼(x , g) whenever h ∈ G I and
x ∈ B(I ↓cat(K)), where I ↓cat(K) is the undercategory, and
B(I ↓cat(K)) is homeomorphic to the star of I in K.
When K is a �ag complex, the identi�cation space (2) is contractible
by [PRV]. Therefore, the map (1) is a homotopy equivalence, which implies
that (BG )K is aspherical when K is �ag.
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Proof

Assume now that K is not �ag. Choose a missing face
J = {j1, . . . , jk} ⊂ [m] with k > 3 vertices. Let KJ = {I ∈ K : I ⊂ J}.
Then (BG )KJ is the fat wedge of the spaces {BGj , j ∈ J}, and it is a
retract of (BG )K.

The homotopy �bre of the inclusion (BG )KJ →
∏

j∈J BGj is

Σk−1Gj1 ∧ · · · ∧ Gjk , a wedge of (k − 1)-dimensional spheres.
Hence, πk−1((BG )KJ ) 6= 0 where k > 3.
Thus, (BG )KJ and (BG )K are non-aspherical.

The rest of the proof (the asphericity of (EG ,G )K and statements (3)
and (4)) follow from the homotopy exact sequence of the �bration
(EG ,G )K → (BG )K →

∏m
k=1 BGk .
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Specialising to the cases Gk = Z and Gk = Z2 respectively we obtain:

Corollary

Let RAK be a right-angled Artin group.

1 π1((S1)K) ∼= RAK.

2 Both (S1)K and LK = (R,Z)K are aspherical i� K is �ag.

3 πi ((S1)K) ∼= πi (LK) for i > 2.

4 π1(LK) is isomorphic to the commutator subgroup RA′K.

Corollary

Let RCK be a right-angled Coxeter group.

1 π1((RP∞)K) ∼= RCK.

2 Both (RP∞)K and RK = (D1,S0)K are aspherical i� K is �ag.

3 πi ((RP∞)K) ∼= πi (RK) for i > 2.

4 π1(RK) is isomorphic to the commutator subgroup RC ′K.
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Example

Let K be an m-cycle (the boundary of an m-gon).
A simple argument with Euler characteristic shows that RK is
homeomorphic to a closed orientable surface of genus (m − 4)2m−3 + 1.
(This observation goes back to a 1938 work of Coxeter.)
Therefore, the commutator subgroup of the corresponding right-angled
Coxeter group RCK is a surface group.

Similarly, when |K| ∼= S2 (which is equivalent to K being the boundary of a
3-dimensional simplicial polytope), RK is a 3-dimensional manifold.
Therefore, the commutator subgroup of the corresponding RCK is a
3-manifold group.
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3. The structure of the commutator subgroups

We have

Ker

(
G
K →

m∏
k=1

Gk

)
= π1((EG ,G )K).

In the case of right-angled Artin or Coxeter groups (or when each Gk is
abelian), the group above is the commutator subgroup (GK)

′
.

We want to study the group π1((EG ,G )K), identify the class of simplicial
complexes K for which this group is free, and describe a generator set.

A graph Γ is called chordal (in other terminology, triangulated) if each of
its cycles with > 4 vertices has a chord.

By a result of Fulkerson�Gross, a graph is chordal if and only if its vertices
can be ordered in such a way that, for each vertex i , the lesser neighbours
of i form a complete subgraph. (A perfect elimination order.)
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Theorem

The following conditions are equivalent:

1 Ker(GK →
∏m

k=1 Gk) is a free group;

2 (EG,G)K is homotopy equivalent to a wedge of circles;

3 K1 is a chordal graph.

Proof

(2)⇒(1) Because Ker

(
G
K →

∏m
k=1 Gk

)
= π1((EG ,G )K).

(3)⇒(2) Use induction and perfect elimination order.

(1)⇒(3) Assume that K1 is not chordal. Then, for each chordless cycle of
length > 4, one can �nd a subgroup in Ker(GK →

∏m
k=1 Gk) which is a

surface group. Hence, Ker(GK →
∏m

k=1 Gk) is not a free group.
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Corollary

Let RAK and RCK be the right-angled Artin and Coxeter groups

corresponding to a simplicial complex K.
(a) The commutator subgroup RA′K is free if and only if K1 is a chordal

graph.

(b) The commutator subgroup RC ′K is free if and only if K1 is a chordal

graph.

Part (a) is the result of Servatius, Droms and Servatius.

The di�erence between (a) and (b) is that the commutator subgroup RA′K
is in�nitely generated, unless RAK = Zm, while the commutator subgroup
RC ′K is �nitely generated. We elaborate on this in the next theorem.
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Let (g , h) = g−1h−1gh denote the group commutator of g , h.

Theorem

The commutator subgroup RC ′K has a �nite minimal generator set

consisting of
∑

J⊂[m] rank H̃0(KJ) iterated commutators

(gj , gi ), (gk1 , (gj , gi )), . . . , (gk1 , (gk2 , · · · (gkm−2 , (gj , gi )) · · · )),

where k1 < k2 < · · · < k`−2 < j > i , ks 6= i for any s, and i is the smallest

vertex in a connected component not containing j of the subcomplex

K{k1,...,k`−2,j ,i}.

Idea of proof

First consider the case K = m points. Then RK is the 1-skeleton of an
m-cube and RC ′K = π1(RK) is a free group of rank

∑m
`=2(`− 1)

(m
`

)
. It

agrees with the total number of nested commutators in the list.

Then eliminate the extra nested commutators using the commutation
relations (gi , gj) = 1 for {i , j} ∈ K.
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Idea of proof

To see that the given generating set is minimal, argue as follows. The �rst
homology group H1(RK) is RC ′K/RC

′′
K. On the other hand,

H1(RK) ∼=
∑
J⊂[m]

H̃0(KJ).

Hence, the number of generators in the abelian group
H1(RK) ∼= RC ′K/RC

′′
K is

∑
J⊂[m] rank H̃0(KJ), and the latter number

agrees with the number of iterated commutators in the in generator set
for RC ′K constructed above.
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Example

Let K = s s
s

1 2

3 s
4

Then the commutator subgroup RC ′K is free with the following basis:

(g3, g1), (g4, g1), (g4, g2), (g4, g3),

(g2, (g4, g1)), (g3, (g4, g1)), (g1, (g4, g3)), (g3, (g4, g2)),

(g2, (g3, (g4, g1))).

Example

Let K be an m-cycle with m > 4 vertices.
Then K1 is not a chordal graph, so the group RC ′K is not free.

In fact, RK is an orientable surface of genus (m − 4)2m−3 + 1, so
RC ′K

∼= π1(RK) is a one-relator group.
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The are similar results of Grbic, P., Theriault and Wu describing the
commutator subalgebra of the graded Lie algebra given by

LK = FL〈u1, . . . , um〉
/(

[ui , ui ] = 0, [ui , uj ] = 0 for {i , j} ∈ K
)
,

where FL〈u1, . . . , um〉 is the free graded Lie algebra on generators ui of
degree one, and [a, b] = −(−1)|a||b|[b, a] denotes the graded Lie bracket.

The commutator subalgebra is the kernel of the Lie algebra homomorphism
LK → CL〈u1, . . . , um〉 to the commutative (trivial) Lie algebra.

The graded Lie algebra LK is a graph product similar to the right-angled
Coxeter group RCK.

It has a similar colimit decomposition, with each Gi = Z2 replaced by the
trivial Lie algebra CL〈u〉 = FL〈u〉/([u, u] = 0) and the colimit taken in the
category of graded Lie algebras.
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