Bott Towers and Equivariant Cobordism based on joint works with Victor Buchstaber and Nigel Ray

Taras Panov

Lomonosov Moscow State University

Geometry Days in Novosibirsk—2014 International Conference dedicated to the 85th Anniversary of Yuri Grigorievich Reshetnyak 24–27 September 2014

1 / 16

1. Bounded flag manifolds and Bott towers

A bounded flag in \mathbb{C}^{n+1} is

$$\mathcal{U} = \{ U_1 \subset U_2 \subset \cdots \subset U_{n+1} = \mathbb{C}^{n+1}, \quad \dim U_i = i \}$$

such that $U_k \supset \mathbb{C}^{k-1} = \langle \boldsymbol{e}_1, \dots, \boldsymbol{e}_{k-1} \rangle$, $k = 2, \dots, n$.

Denote by BF_n the set of all bounded flags in \mathbb{C}^{n+1} .

Theorem

 BF_n is a smooth compact toric variety under the action of the torus $(\mathbb{C}^{\times})^n$ $(\mathbb{C}^{\times})^n \times BF_n \to BF_n$ $(t_1, \ldots, t_n) \cdot (w_1, \ldots, w_n, w_{n+1}) = (t_1w_1, \ldots, t_nw_n, w_{n+1}),$

BF_n bounded flag manifold.

Taras Panov (MSU)

ξ_n tautological line bundle over BF_n , whose fibre over \mathcal{U} is $U_1 \cong \mathbb{C}$.

Proposition

$$BF_n = \mathbb{C}P(\underline{\mathbb{C}} \oplus \xi_{n-1})$$
, where ξ_{n-1} is over BF_{n-1} .

Proof.

Consider

$$BF_n \to BF_{n-1}$$

$$\mathcal{U}\mapsto \mathcal{U}'=\mathcal{U}/\mathbb{C}^1$$
 in $\mathbb{C}^{2,\dots,n+1}=\mathbb{C}^n,$

where $\mathcal{U}' = \{ U'_1 \subset U'_2 \subset \cdots \subset U'_{n-1} \}$, $U'_k = U_{k+1}/\mathbb{C}^1$. To recover \mathcal{U} from \mathcal{U}' one has to choose a line U_1 in $U_2 = \mathbb{C}^1 \oplus U'_1$.

Get a sequence of fibre bundles with fibre $\mathbb{C}P^1$

$$BF_n \to BF_{n-1} \to \cdots \to BF_1 = \mathbb{C}P^1 \to pt$$

a Bott tower structure on BF_n .

A Bott tower is a sequence of fibre bundles

$$B_n \to B_{n-1} \to \cdots \to B_1 = \mathbb{C}P^1 \to pt$$

in which $B_k = \mathbb{C}P(\underline{\mathbb{C}} \oplus \eta_{k-1})$ for a line bundle η_{k-1} over B_{k-1} .

Theorem

$$H^*(B_n) \cong H^*(B_{n-1})[u_n]/(u_n^2 = c_1(\eta_{n-1})u_n),$$

where $u_n = c_1(\xi_n)$ and ξ_n is the tautological line bundle over B_n .

Example

When $\eta_k = \xi_k$ for each k, we get $B_n = BF_n$, the bounded flag manifold with the 'intrinsic' structure of a Bott tower. We have

$$H^*(BF_n) \cong H^*(BF_{n-1})[u_n]/(u_n^2 = u_{n-1}u_n).$$

2. Representing complex bordism classes

As a complex manifold BF_n , represents a 2n-dimensional class in the complex bordism ring

 $\Omega^{U} = \{ stably complex manifolds \} / complex bordism relation$

Theorem (Milnor, Novikov'1960)

$$\Omega^U \cong \mathbb{Z}[a_1, a_2, \ldots], \quad \text{dim } a_i = 2i.$$

A stably complex manifold M^{2n} can be taken as a representative of a_n iff

$$s_n[M^{2n}] = \begin{cases} \pm 1, & n \neq p^k - 1, \\ \pm p, & n = p^k - 1. \end{cases}$$

Here s_n is the characteristic class corresponding to the symmetric polynomial $x_1^n + \cdots + x_n^n$, where $c_n(\mathcal{T}M^{2n}) = (1 + x_1) \cdots (1 + x_n)$.

E.g.,
$$s_n[\mathbb{C}P^n] = n+1$$
, so $[\mathbb{C}P^1] = a_1$, $\mathbb{C}P^2 = [a_2]$, but $\mathbb{C}P^3 \neq [a_3]$.

Given $i \leq j$, consider $\mathbb{C}^{i+1} \subset \mathbb{C}^{j+1}$ and define the Milnor hypersurface

 $H_{ij} = \{(\ell, W): \ \ell \text{ is a line in } \mathbb{C}^{i+1}, W \text{ is a hyperplane in } \mathbb{C}^{j+1}, \ \ell \subset W\}.$

It is given by the equation $z_0 w_0 + \cdots + z_i w_i = 0$ in $\mathbb{C}P^i \times \mathbb{C}P^j \subset \mathbb{C}P^{ij+i+j}$.

E.g., $H_{22} = Fl(\mathbb{C}^3)$, complete flags in \mathbb{C}^3 .

Proposition

$$s_{i+j-1}[H_{ij}] = \binom{i+j}{i}.$$

Therefore, $\{[H_{ij}], 0 \leq i \leq j\}$ generate the complex bordism ring Ω^U .

However, H_{ii} is not a toric manifold when $i \ge 2$.

Theorem (Buchstaber–Ray)

The complex bordism ring Ω^U has a generator set consisting of toric manifolds.

Proof.

Consider the manifolds

 $B_{ij} = \mathbb{C}P(\text{sum of line bundles})$, so it is toric.

Quasitoric manifolds generalise toric manifolds topologically. A quasitoric manifold M^{2n} has an action of a torus T^n with quotient a simple polytope P. Quasitoric manifolds have canonical T^n -invariant stably complex structures, but are not complex or almost complex in general.

Theorem (Buchstaber-P-Ray)

In dimensions > 2, every complex bordism class contains a quasitoric manifold.

It remains open whether ring generators a_i of the complex cobordism ring Ω^U can be represented by toric or quasitoric manifolds. A partial result on this problem has been recently obtained by A. Wilfong.

Given a T^k -manifold, one has a universal transformations between the three version of equivariant cobordism:

$U^*_{T^k}(X)$	\rightarrow	$MU^*_{T^k}(X)$	\rightarrow	$U^*(ET^k \times_{T^k} X)$
geometric		homotopic		Borel

For X = pt one gets a homomorphism of Ω_U -modules

$$\Phi\colon \Omega_{U:T^k}\to U^*(BT^k)=\Omega_U[[u_1,\ldots,u_k]]$$

called the universal toric genus.

It assigns to the equivariant cobordism class of a T^k -manifold M the 'cobordism class' of the map $ET^k \times_{T^k} M \to BT^k$.

We have

$$\varPhi(M) = [M] + \sum_{\omega : |\omega| > 0} g_{\omega}(M) u^{\omega},$$

in $U^*(BT^k) = \Omega_U[[u_1, \dots, u_k]]$, where $[M] \in \Omega_U$, $u^\omega = u_1^{\omega_1} \cdots u_k^{\omega_k}$.

What are the coefficients $g_{\omega}(M)$?

The bounded flag manifold BF_n is the quotient of

$$(S^3)^n = \{(z_1, \ldots, z_{2n}) \in \mathbb{C}^{2n} \colon |z_k|^2 + |z_{k+n}|^2 = 1, \ 1 \leq k \leq n\}$$

by the T^n -action given by

$$(z_1,\ldots,z_{2n})\mapsto (t_1z_1, t_1^{-1}t_2z_2, \ldots, t_{n-1}^{-1}t_nz_n, t_1z_{n+1}, t_2z_{n+2}, \ldots, t_nz_{2n})$$

This gives the stable splitting

$$\mathcal{T}(BF_n) \oplus \underline{\mathbb{C}}^n \cong \bar{\xi}_1 \oplus \xi_1 \bar{\xi}_2 \oplus \cdots \oplus \xi_{n-1} \bar{\xi}_n \oplus \bar{\xi}_1 \oplus \bar{\xi}_2 \oplus \cdots \oplus \bar{\xi}_n$$

where ξ_k is the tautological line bundle over BF_k pulled back to BF_n .

E.g., for n = 1 we obtain the standard isomorphism $\mathcal{T}\mathbb{C}P^1 \oplus \underline{\mathbb{C}} \cong \overline{\xi} \oplus \overline{\xi}$, where $\xi = \xi_1$ is the tautological line bundle. Now we twist the torus action on $(S^3)^n$ as follows:

$$(z_1,\ldots,z_{2n})\mapsto (t_1z_1,t_1^{-1}t_2z_2,\ldots,t_{n-1}^{-1}t_nz_n,t_1^{-1}z_{n+1},t_2^{-1}z_{n+2},\ldots,t_n^{-1}z_{2n}).$$

This gives the splitting

$$\mathcal{T}(BF_n) \oplus \underline{\mathbb{R}}^{2n} \cong \overline{\xi}_1 \oplus \xi_1 \overline{\xi}_2 \oplus \cdots \oplus \xi_{n-1} \overline{\xi}_n \oplus \xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_n,$$

and the corresponding complex bordism class is zero in Ω_{2n}^U , as an iterated sphere bundle.

We denote by
$$\beta_n \in \Omega_{2n}(\mathbb{C}P^{\infty})$$
 the bordism class of $\widetilde{BF}_n \xrightarrow{\xi_n} \mathbb{C}P^{\infty}$

Theorem (Ray)

The bordism classes $\{\beta_n: n \ge 0\}$ form a basis of the free Ω_U -module $U_*(\mathbb{C}P^{\infty})$ which is dual to the basis $\{u^k: k \ge 0\}$ of the Ω_U -module $U^*(\mathbb{C}P^{\infty}) = \Omega_U[[u]].$

Similarly, define
$$\beta_{\omega} \in \Omega_{2|\omega|}(BT^k)$$
 the bordism class of $\widetilde{BF}_{\omega} = \widetilde{BF}_{\omega_1} \times \cdots \times \widetilde{BF}_{\omega_n} \to BT^k$.

Given a T^k -manifold M, define the bundle $G_{\omega}(M) = (S^3)^{\omega} \times_{T^{\omega}} M \longrightarrow \widetilde{BF}_{\omega} = (S^3)^{\omega} / T^{\omega}.$

Theorem (Buchstaber-P-Ray)

The manifold $G_{\omega}(M)$ represents the coefficient $g_{\omega}(M)$ in the expansion of the universal toric genus.

Taras Panov (MSU)

A genus is a homomorphism $\varphi \colon \Omega_U \to R$ where R is a commutative ring with unit (usually \mathbb{Z}).

By the Hirzebruch correspondence, a genus arphi is determined by a series

$$f(x) = x + \cdots \in R \otimes \mathbb{Q}[[x]].$$

Namely,

$$\varphi(M) = \Big\langle \prod_{i=1}^n \frac{x_i}{f(x_i)}, [M] \Big\rangle,$$

where $c(TM) = (1 + x_1) \cdots (1 + x_n)$.

Given a genus $\varphi \colon \Omega_U \to R$, define its equivariant extension $\varphi^T \colon \Omega_{U:T^k} \xrightarrow{\Phi} \Omega_U[[u_1, \dots, u_k]] \xrightarrow{h_{\varphi}} R \otimes \mathbb{Q}[[x_1, \dots, x_k]]$ mapping $[M] \mapsto \varphi(M)$ and $u_i \mapsto f(x_i)$.

Definition

A genus φ is rigid on M if $\varphi^T = \varphi$ (a constant). A genus φ is fibre multiplicative with respect to M if

 $\varphi(N) = \varphi(M)\varphi(B)$

for any fibre bundle $N \rightarrow M \rightarrow B$ with structure group G of positive rank.

Theorem (Buchstaber-P-Ray)

A genus φ is rigid on M iff it is fibre multiplicative with respect to M.

Proof.

Use the expansion $\Phi(M) = [M] + \cdots$ with coefficients represented by $G_{\omega}(M)$, a bundle over null-bordant base \widetilde{BF}_{ω} .

- Victor M. Buchstaber and Taras E. Panov. *Toric Topology*. A book project; arXiv:1210.2368.
- Victor M. Buchstaber, Taras E. Panov and Nigel Ray. *Toric genera*. Internat. Math. Res. Notices 2010, no. 16, 3207–3262.
- Victor M. Buchstaber, Taras E. Panov and Nigel Ray. Spaces of polytopes and cobordism of quasitoric manifolds. Moscow Math. J. 7 (2007), no. 2, 219–242.