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1. Bounded flag manifolds and Bott towers

A bounded flag in C™1 is

U={UCUyC- CUp1=C"  dimU; =i}

such that Uy D CK1 = (eq,...,ex_1), k=2,...,n.

Denote by BF, the set of all bounded flags in C™+1. J

BF , is a smooth compact toric variety under the action of the torus (C*)"
(C*)" x BF, — BF,

(tl,... ; t,,) . (Wl,.. .y Whp, W,,_|_1) = (t1W1,.. 5 g t,,W,,,W,H_l),

BF , bounded flag manifold.

)
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&, tautological line bundle over BF ,, whose fibre over U is Uy = C. J

Proposition
BF,=CP(C®&,—1), where §,_1 is over BF,_;.

Proof.

Consider
BF, — BF,_1

U—U =U/C" in C>"H =C",

where U/ = {U; C U5 C --- C U1}, U; = Ux41/CL.
To recover U from U’ one has to choose a line U; in U, = Cl @ Us. O]

Get a sequence of fibre bundles with fibre CP!
BF,— BF,_1 —---— BF, =CP! — pt

a Bott tower structure on BF .
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A Bott tower is a sequence of fibre bundles
By, — By_1 — -+ — B = CP! — pt

in which By = CP(C @ nk_1) for a line bundle nx_1 over By_1.

| \

Theorem

H*(By) = H*(Bn—l)[un]/(uﬁ = c1(77,,_1)u,,),

where u, = c1(&€,) and &, is the tautological line bundle over By,.

| A\

Example

When 7y = & for each k, we get B, = BF,,, the bounded flag manifold
with the ‘intrinsic’ structure of a Bott tower. We have

H*(BF ») = H*(BF p—1)[un] /(u} = un—1up).
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2. Representing complex bordism classes

As a complex manifold BF ,,, represents a 2n-dimensional class in the
complex bordism ring

Y = {stably complex manifolds} /complex bordism relation

Theorem (Milnor, Novikov'1960)

QV=7Zlay,a,..], dima;=2i.
A stably complex manifold M?" can be taken as a representative of a,, iff
+1, n#pk—1,
Sn[Mzn] = 7 k
+p, n=p*—1.

Here s, is the characteristic class corresponding to the symmetric
polynomial x{! + - - - + x[, where c,(TM?") = (1 +x1) - - - (1 + x,).

E.g., soi[CP"] = n+1, so [CP!] = a1, CP? = [ay], but CP? # [as3]. J
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Given i < j, consider C'*t1 ¢ C/*! and define the Milnor hypersurface

Hj = {(¢,W): (is alinein C"*', W is a hyperplane in C/*1, ¢ c W}.

It is given by the equation zowy + - -+ z;w; = 0 in CP' x CP/ ¢ CPI+*J,

E.g., Hp = F/((C3), complete flags in Cs. J

Proposition

I+J
Si+j*1[HiJ'] - < i >

Therefore, {[H;], 0 < i < j} generate the complex bordism ring £2Y.

However, Hj; is not a toric manifold when i > 2. J
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Theorem (Buchstaber—Ray)
The complex bordism ring 2V has a generator set consisting of toric

manifolds.

Proof.

Consider the manifolds

Bj = {(U,W): U is a bounded flag in C'**,
W is a hyperplane in ¢/, U; C W}

B,'j — H,'j (1/{, W) — (U1, W)
! L ! !
BF; — CP U — Ui
Bjj = CP(sum of line bundles), so it is toric. O
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Quasitoric manifolds generalise toric manifolds topologically. A quasitoric
manifold M?" has an action of a torus T" with quotient a simple
polytope P. Quasitoric manifolds have canonical T -invariant stably
complex structures, but are not complex or almost complex in general.

Theorem (Buchstaber—P—Ray)

In dimensions > 2, every complex bordism class contains a quasitoric
manifold.

It remains open whether ring generators a; of the complex cobordism ring
Y can be represented by toric or quasitoric manifolds. A partial result on
this problem has been recently obtained by A. Wilfong.
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3. The universal toric genus

Given a T*-manifold, one has a universal transformations between the
three version of equivariant cobordism:

(X)) — MUL(X) — U*(ETk x 7« X)
geometric homotopic Borel

For X = pt one gets a homomorphism of £2-modules
D .QU:Tk — U*(BTk) = Qu[[ul, 500 Uk]]

called the universal toric genus.

It assigns to the equivariant cobordism class of a T*-manifold M the
‘cobordism class’ of the map ETX x 1« M — BTk.
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We have
(M) = M+ Y gu(M)u,

w: |w|>0

in U*(BT*) = Quy[u, . .., uk]], where [M] € 2y, u® = uf* - Uk

What are the coefficients g,(M)? ]
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The bounded flag manifold BF ,, is the quotient of
(53)" ={(z1,...,22n) € (O2LE \zklz 4 ‘Zk+n‘2 =1, 1< k<n}
by the T"-action given by

~1 1
(21, R ,22,7) — (tlzl, ty "z, ..., t, 1thZn, L1Zpy1, 2Znyo, .., Z‘nZQn)

This gives the stable splitting
T(BFn)@C' 26 845@ - Béi&ndbbd- ¢,

where £ is the tautological line bundle over BF ;. pulled back to BF,,.

E.g., for n =1 we obtain the standard isomorphism TCP! & C = £ @ ¢,
where £ = & is the tautological line bundle.
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Now we twist the torus action on (53)" as follows:

-1 -1 —1 —1 —1
(21, Sooy 22,,) — (tlzl, ty “tozo, ...t 1thZn, Yy T Zpg1, b T Zpt2, .-, t, 22,,).

<

This gives the splitting

T(BF) @R =26, 0866 @ ®En1bn®E1 D@ - @ &,

and the corresponding complex bordism class is zero in £2¥ . as an iterated

sphere bundle.
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We denote by (5, € 2,,(CP°) the bordism class of §7:n LI CP=.

D

Theorem (Ray)

The bordism classes {3,: n > 0} form a basis of the free {2y-module
U.(CP>) which is dual to the basis {u*: k > 0} of the £2y-module
U*(CP*>) = Qyl[u]].

S|m|IarIy, define 3, € (22|w|(BT") the bordism class of
BF,, = BF,, x --- x BF,, — BT*.

Given a T*-manifold M, define the bundle
Gu(M) = (53)” x 7w M —s BF,, = (S3)*/T¥.

Theorem (Buchstaber-P-Ray)

The manifold G,,(M) represents the coefficient g, (M) in the expansion of
the universal toric genus.

v
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4. Rigidity and fibre multiplicativity

A genus is a homomorphism ¢: 2y — R where R is a commutative ring
with unit (usually Z).

By the Hirzebruch correspondence, a genus ¢ is determined by a series

f(x) =x+--- € R Q]

Namely,

(M) = @I%,[Mw,

where ¢(TM) = (1+x1)--- (1 + xp).
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Given a genus p: 2y — R, define its equivariant extension

he
0T Qure 25 Qullun, . ud]l =2 R Qllxa, - -, xil]
mapping [M] — ¢(M) and u; — f(x;).

Definition

| A\

A genus ¢ is rigid on M if o7 = ¢ (a constant).
A genus ¢ is fibre multiplicative with respect to M if

p(N) = o(M)e(B)
for any fibre bundle N — M — B with structure group G of positive rank.

Theorem (Buchstaber-P-Ray)

A genus ¢ is rigid on M iff it is fibre multiplicative with respect to M.

Use the expansion &(M) = [M] + - - - with coefficients represented by
G, (M), a bundle over null-bordant base BF,,. O
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