Complex Geometry and Toric Topology

Taras Panov

joint with Yuri Ustinovsky and Misha Verbitsky

Moscow State University

International Conference on Algebraic and Geometric Topology Chern Institute, Nankai University, Tianjin, 8–12 July 2013

1. Moment-angle complexes and manifolds.

 \mathcal{K} an (abstract) simplicial complex on the set $[m] = \{1, \ldots, m\}$.

 $I = \{i_1, \ldots, i_k\} \in \mathcal{K}$ a simplex. Always assume $\emptyset \in \mathcal{K}$. Allow $\{i\} \notin \mathcal{K}$ for some *i* (ghost vertices).

Consider the unit polydisc in \mathbb{C}^m ,

$$\mathbb{D}^m = \{(z_1,\ldots,z_m) \in \mathbb{C}^m \colon |z_i| \leq 1, \quad i = 1,\ldots,m\}.$$

Given $I \subset [m]$, set

$$B_I := \left\{ (z_1, \dots, z_m) \in \mathbb{D}^m \colon |z_j| = 1 \text{ for } j \notin I \right\}.$$

Define the moment-angle complex

$$\mathcal{Z}_{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} B_I \subset \mathbb{D}^m$$

It is invariant under the coordinatewise action of the standard torus

$$\mathbb{T}^m = \left\{ (z_1, \dots, z_m) \in \mathbb{C}^m \colon |z_i| = 1, \quad i = 1, \dots, m \right\}$$

on \mathbb{C}^m .

Constr 1 (polyhedral product). Given spaces $W \subset X$ and $I \subset [m]$, set $(X, W)^I = \{(x_1, \dots, x_m) \in X^m \colon x_j \in W \text{ for } j \notin I\} \cong \prod_{i \in I} X \times \prod_{i \notin I} W,$

and define the polyhedral product of (X, W) as

$$(X,W)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (X,W)^{I} \subset X^{m}.$$

Then $\mathcal{Z}_{\mathcal{K}} = (\mathbb{D}, \mathbb{T})^{\mathcal{K}}$, where \mathbb{T} is the unit circle.

Another example is the complement of a coordinate subspace arrangement:

$$U(\mathcal{K}) = \mathbb{C}^m \setminus \bigcup_{\{i_1, \dots, i_k\} \notin \mathcal{K}} \{z \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0\},\$$

namely,

$$U(\mathcal{K}) = (\mathbb{C}, \mathbb{C}^{\times})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} \mathbb{C} \times \prod_{i \notin I} \mathbb{C}^{\times} \right),$$

where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}.$

Clearly, $\mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$. Moreover, $\mathcal{Z}_{\mathcal{K}}$ is a \mathbb{T}^m -equivariant deformation retract of $U(\mathcal{K})$ for every \mathcal{K} [Buchstaber-P].

Prop 1. Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with *m* vertices). Then $\mathcal{Z}_{\mathcal{K}}$ is a closed manifold of dimension m + n.

We refer to such $\mathcal{Z}_{\mathcal{K}}$ as moment-angle manifolds.

If $\mathcal{K} = \mathcal{K}_P$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_P = \mathcal{Z}_{\mathcal{K}_P}$ embeds in \mathbb{C}^m as a nondegenerate (transverse) intersection of m-n real quadratic hypersurfaces. Therefore, \mathcal{Z}_P can be smoothed canonically.

Now assume \mathcal{K} is the underlying complex of a complete simplicial fan Σ (a starshaped sphere).

A fan is a finite collection $\Sigma = \{\sigma_1, \ldots, \sigma_s\}$ of strongly convex cones in \mathbb{R}^n such that every face of a cone in Σ belongs to Σ and the intersection of any two cones in Σ is a face of each.

A fan $\Sigma = \{\sigma_1, \ldots, \sigma_s\}$ is complete if $\sigma_1 \cup \ldots \cup \sigma_s = \mathbb{R}^n$.

Let Σ be a simplicial fan in \mathbb{R}^n with m one-dimensional cones generated by $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Its underlying simplicial complex is

$$\mathcal{K}_{\Sigma} = \left\{ I \subset [m] \colon \{ \mathbf{a}_i \colon i \in I \} \text{ spans a cone of } \Sigma \right\}$$

Note: Σ is complete iff $|\mathcal{K}_{\Sigma}|$ is a triangulation of S^{n-1} .

Given Σ with 1-cones generated by $\mathbf{a}_1, \ldots, \mathbf{a}_m$, define a map

$$A \colon \mathbb{R}^m \to \mathbb{R}^n, \quad \mathbf{e}_i \mapsto \mathbf{a}_i,$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ is the standard basis of \mathbb{R}^m . Set

$$\mathbb{R}^m_{>} = \{(y_1,\ldots,y_m) \in \mathbb{R}^m \colon y_i > 0\},\$$

and define

$$R := \exp(\operatorname{Ker} A) = \{(y_1, \dots, y_m) \in \mathbb{R}^m : \prod_{i=1}^m y_i^{\langle \mathbf{a}_i, \mathbf{u} \rangle} = 1 \text{ for all } \mathbf{u} \in \mathbb{R}^n \},\$$

 $R \subset \mathbb{R}^m_>$ acts on $U(\mathcal{K}_{\Sigma}) \subset \mathbb{C}^m$ by coordinatewise multiplications.

Thm 1. Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Then

(a) the group $R \cong \mathbb{R}^{m-n}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K})/R$ is a smooth (m+n)-dimensional manifold;

(b) $U(\mathcal{K})/R$ is \mathbb{T}^m -equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

2. Complex-analytic structures.

We shall show that the even-dimensional moment-angle manifold $\mathcal{Z}_{\mathcal{K}}$ corresponding to a complete simplicial fan admits a structure of a complex manifold. The idea is to replace the action of $\mathbb{R}^{m-n}_{>}$ on $U(\mathcal{K})$ (whose quotient is $\mathcal{Z}_{\mathcal{K}}$) by a holomorphic action of $\mathbb{C}^{\frac{m-n}{2}}$ on the same space.

Rem 1. Complex structures on *polytopal* moment-angle manifolds Z_P were described by Bosio and Meersseman. They identified Z_P with a class of complex manifolds known as LVM-manifolds (named after López de Medrano, Verjovsky and Meersseman).

Assume m - n is even from now on. We can always achieve this by formally adding an 'empty' one-dimensional cone to Σ ; this corresponds to adding a ghost vertex to \mathcal{K} , or multiplying $\mathcal{Z}_{\mathcal{K}}$ by a circle.

Set $\ell = \frac{m-n}{2}$.

Constr 2. Choose a linear map $\Psi : \mathbb{C}^{\ell} \to \mathbb{C}^m$ satisfying the two conditions: (a) $\operatorname{Re} \circ \Psi : \mathbb{C}^{\ell} \to \mathbb{R}^m$ is a monomorphism.

(b) $A \circ \operatorname{Re} \circ \Psi = 0$.

The composite map of the top line in the following diagram is zero:

where $|\cdot|$ denotes the map $(z_1, \ldots, z_m) \mapsto (|z_1|, \ldots, |z_m|)$. Now set

$$C = \exp \Psi(\mathbb{C}^{\ell}) = \left\{ \left(e^{\langle \psi_1, \mathbf{w} \rangle}, \dots, e^{\langle \psi_m, \mathbf{w} \rangle} \right) \in (\mathbb{C}^{\times})^m \right\}$$

where $\mathbf{w} = (w_1, \dots, w_\ell) \in \mathbb{C}^\ell$, ψ_i denotes the *i*th row of the $m \times \ell$ -matrix $\Psi = (\psi_{ij})$.

Then $C \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup in $(\mathbb{C}^{\times})^m$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Ex 1. Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have n = 0, m = 2, $\ell = 1$, and $A \colon \mathbb{R}^2 \to 0$ is a zero map. Let $\Psi \colon \mathbb{C} \to \mathbb{C}^2$ be given by $z \mapsto (z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$C = \left\{ (e^z, e^{\alpha z}) \right\} \subset (\mathbb{C}^{\times})^2.$$

Condition (b) of Constr 2 is void, while (a) is equivalent to that $\alpha \notin \mathbb{R}$. Then exp $\Psi \colon \mathbb{C} \to (\mathbb{C}^{\times})^2$ is an embedding, and the quotient $(\mathbb{C}^{\times})^2/C$ with the natural complex structure is a complex torus $T_{\mathbb{C}}^2$ with parameter $\alpha \in \mathbb{C}$:

$$(\mathbb{C}^{\times})^2/C \cong \mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z}) = T^2_{\mathbb{C}}(\alpha).$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that n = 0, $m = 2\ell$), we may obtain any complex torus $T_{\mathbb{C}}^{2\ell}$ as the quotient $(\mathbb{C}^{\times})^{2\ell}/C$.

- **Thm 2.** Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Assume that $m n = 2\ell$. Then
- (a) the holomorphic action of the group $C \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K})/C$ is a compact complex $(m \ell)$ -manifold;
- (b) there is a \mathbb{T}^m -equivariant diffeomorphism $U(\mathcal{K})/C \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^m acts holomorphically.

Ex 2 (Hopf manifold). Let Σ be the complete fan in \mathbb{R}^n whose cones are generated by all proper subsets of n + 1 vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n, -\mathbf{e}_1 - \ldots - \mathbf{e}_n$.

To make m - n even we add one 'empty' 1-cone. We have m = n + 2, $\ell = 1$. Then $A \colon \mathbb{R}^{n+2} \to \mathbb{R}^n$ is given by the matrix $(0 \ I - 1)$, where I is the unit $n \times n$ matrix, and 0, 1 are the *n*-columns of zeros and units respectively.

We have that \mathcal{K} is the boundary of an *n*-dim simplex with n + 1 vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^1 \times S^{2n+1}$, and $U(\mathcal{K}) = \mathbb{C}^{\times} \times (\mathbb{C}^{n+1} \setminus \{0\})$.

Take $\Psi : \mathbb{C} \to \mathbb{C}^{n+2}$, $z \mapsto (z, \alpha z, \dots, \alpha z)$ for some $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{R}$. Then

$$C = \left\{ (e^z, e^{\alpha z}, \dots, e^{\alpha z}) \colon z \in \mathbb{C} \right\} \subset (\mathbb{C}^{\times})^{n+2},$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K})/C$:

$$\mathbb{C}^{\times} \times \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ (t, \mathbf{w}) \sim (e^{z}t, e^{\alpha z} \mathbf{w}) \right\} \cong \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ \mathbf{w} \sim e^{2\pi i \alpha} \mathbf{w} \right\},$$

where $t \in \mathbb{C}^{\times}$, $\mathbf{w} \in \mathbb{C}^{n+1} \setminus \{0\}$. The latter quotient of $\mathbb{C}^{n+1} \setminus \{0\}$ is known as the Hopf manifold.

3. Holomorphic bundles over toric varieties.

Manifolds $\mathcal{Z}_{\mathcal{K}}$ corresponding to complete *regular* simplicial fans are total spaces of holomorphic principal bundles over toric varieties with fibre a complex torus. This allows us to calculate invariants of the complex structures on $\mathcal{Z}_{\mathcal{K}}$.

A toric variety is a normal algebraic variety X on which an algebraic torus $(\mathbb{C}^{\times})^n$ acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,

complete fans $\leftrightarrow \rightarrow$ compact varieties

- normal fans of polytopes $\leftrightarrow \rightarrow$ projective varieties
 - regular fans \leftrightarrow nonsingular varieties

simplicial fans \leftrightarrow orbifolds

 Σ complete, simplicial, rational; $\mathbf{a}_1, \dots, \mathbf{a}_m$ primitive integral generators of 1-cones; $\mathbf{a}_i = (a_{i1}, \dots, a_{in}) \in \mathbb{Z}^n$.

Constr 3 ('Cox construction'). Let $A_{\mathbb{C}} \colon \mathbb{C}^m \to \mathbb{C}^n$, $\mathbf{e}_i \mapsto \mathbf{a}_i$,

$$\exp A_{\mathbb{C}} \colon (\mathbb{C}^{\times})^m \to (\mathbb{C}^{\times})^n,$$
$$(z_1, \dots, z_m) \mapsto \left(\prod_{i=1}^m z_i^{a_{i1}}, \dots, \prod_{i=1}^m z_i^{a_{in}}\right)$$

Set $G = \operatorname{Ker} \exp A_{\mathbb{C}}$.

This is an (m - n)-dimensional algebraic subgroup in $(\mathbb{C}^{\times})^m$. It acts almost freely (with finite isotropy subgroups) on $U(\mathcal{K}_{\Sigma})$. If Σ is regular, then $G \cong (\mathbb{C}^{\times})^{m-n}$ and the action is free.

 $V_{\Sigma} = U(\mathcal{K}_{\Sigma})/G$ the toric variety associated to Σ . The quotient torus $(\mathbb{C}^{\times})^m/G \cong (\mathbb{C}^{\times})^n$ acts on V_{Σ} with a dense orbit. Observe that $\mathbb{C}^{\ell} \cong C \subset G_{\Sigma} \cong (\mathbb{C}^{\times})^m$ as a complex subgroup.

Prop 2.

- (a) The toric variety V_{Σ} is homeomorphic to the quotient of $\mathcal{Z}_{\mathcal{K}_{\Sigma}}$ by the holomorphic action of G/C.
- (b) If Σ is regular, then there is a holomorphic principal bundle $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \to V_{\Sigma}$ with fibre the compact complex torus G/C of dimension ℓ .

Rem 2. For singular varieties V_{Σ} the quotient projection $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \to V_{\Sigma}$ is a holomorphic principal Seifert bundle for an appropriate orbifold structure on V_{Σ} .

4. Submanifolds and analytic subsets.

The complex structure on $\mathcal{Z}_{\mathcal{K}}$ is determined by two pieces of data: – the complete simplicial fan Σ with primitive generators $\mathbf{a}_1, \ldots, \mathbf{a}_m$; – the ℓ -dimensional holomorphic subgroup $C \subset (\mathbb{C}^{\times})^m$.

If this data is *generic* (in particular, the fan Σ is not rational), then there is no holomorphic principal torus fibration $\mathcal{Z}_{\mathcal{K}} \to V_{\Sigma}$ over a toric variety V_{Σ} .

However, there still exists a holomorphic ℓ -dimensional foliation \mathcal{F} with a transverse Kähler form $\omega_{\mathcal{F}}$. This form can be used to describe submanifolds and analytic subsets in $\mathcal{Z}_{\mathcal{K}}$.

Consider the complexified map $A_{\mathbb{C}}: \mathbb{C}^m \to \mathbb{C}^n$, $\mathbf{e}_i \mapsto \mathbf{a}_i$. and the following complex (m-n)-dimensional subgroup in $(\mathbb{C}^{\times})^m$:

$$G = \exp(\operatorname{Ker} A_{\mathbb{C}}) = \left\{ \left(e^{z_1}, \dots, e^{z_m} \right) \in (\mathbb{C}^{\times})^m \colon (z_1, \dots, z_m) \in \operatorname{Ker} A_{\mathbb{C}} \right\}.$$

Note $C \subset G$.

The group G acts on $U(\mathcal{K})$, and its orbits define a holomorphic foliation on $U(\mathcal{K})$. Since $G \subset (\mathbb{C}^{\times})^m$, this action is free on open subset $(\mathbb{C}^{\times})^m \subset U(\mathcal{K})$, so that the generic leaf of the foliation has complex dimension $m - n = 2\ell$.

The ℓ -dimensional closed subgroup $C \subset G$ acts on $U(\mathcal{K})$ freely and properly by Theorem 2, so that $U(\mathcal{K})/C$ carries a holomorphic action of the quotient group D = G/C.

 \mathcal{F} : the holomorphic foliation on $U(\mathcal{K})/C \cong \mathcal{Z}_{\mathcal{K}}$ by the orbits of D.

The subgroup $G \subset (\mathbb{C}^{\times})^m$ is closed if and only if it is isomorphic to $(\mathbb{C}^{\times})^{2\ell}$; in this case the subspace Ker $A \subset \mathbb{R}^m$ is rational. Then Σ is a rational fan and V_{Σ} is the quotient $U(\mathcal{K})/G$. The foliation \mathcal{F} gives rise to a holomorphic principal Seifert fibration $\pi: \mathcal{Z}_{\mathcal{K}} \to V_{\Sigma}$ with fibres compact complex tori G/C.

For a generic configuration of nonzero vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m$, G is biholomorphic to $\mathbb{C}^{2\ell}$ and D = G/C is biholomorphic to \mathbb{C}^{ℓ} .

A (1,1)-form $\omega_{\mathcal{F}}$ on the complex manifold $\mathcal{Z}_{\mathcal{K}}$ is called transverse Kähler with respect to the foliation \mathcal{F} if

(a) $\omega_{\mathcal{F}}$ is closed, i.e. $d\omega_{\mathcal{F}} = 0$;

(b) $\omega_{\mathcal{F}}$ is nonnegative and the zero space of $\omega_{\mathcal{F}}$ is the tangent space of \mathcal{F} .

A complete simplicial fan Σ in \mathbb{R}^n is called weakly normal if there exists a (not necessarily simple) *n*-dimensional polytope *P* such that Σ is a simplicial subdivision of the normal fan Σ_P .

Thm 3. Assume that Σ is a weakly normal fan. Then there exists an exact (1,1)-form $\omega_{\mathcal{F}}$ on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$ which is transverse Kähler for the foliation \mathcal{F} on the dense open subset $(\mathbb{C}^{\times})^m/C \subset U(\mathcal{K})/C$.

For each $J \subset [m]$, define the corresponding coordinate submanifold in $\mathcal{Z}_{\mathcal{K}}$ by

$$\mathcal{Z}_{\mathcal{K}_J} = \{(z_1, \dots, z_m) \in \mathcal{Z}_{\mathcal{K}} \colon z_i = 0 \quad \text{for } i \notin J\}.$$

Obviously, $\mathcal{Z}_{\mathcal{K}_{\mathcal{I}}}$ is identified with the quotient of

$$U(\mathcal{K}_J) = \{(z_1, \dots, z_m) \in U(\mathcal{K}) \colon z_i = 0 \quad \text{for } i \notin J\}$$

by $C \cong \mathbb{C}^{\ell}$. In particular, $U(\mathcal{K}_J)/C$ is a complex submanifold in $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$.

Observe that the closure of any $(\mathbb{C}^{\times})^m$ -orbit of $U(\mathcal{K})$ has the form $U(\mathcal{K}_J)$ for some $J \subset [m]$ (in particular, the dense orbit corresponds to J = [m]). Similarly, the closure of any $(\mathbb{C}^{\times})^m/C$ -orbit of $\mathcal{Z}_{\mathcal{K}} \cong U(\mathcal{K})/C$ has the form $\mathcal{Z}_{\mathcal{K}_I}$. **Thm 4.** Assume that the data defining a complex structure on $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/C$ is generic. Then any divisor of $\mathcal{Z}_{\mathcal{K}}$ is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible analytic subset $Y \subset \mathcal{Z}_{\mathcal{K}}$ of positive dimension is a coordinate submanifold.

Cor 1. Under generic assumptions, there are no non-constant meromorphic functions on $\mathcal{Z}_{\mathcal{K}}$.

- [BP] Victor Buchstaber and Taras Panov. Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
- [PU] Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. 12 (2012), no. 1; arXiv:1008.476
- [PUV] Taras Panov, Yuri Ustinovsky and Misha Verbitsky. *SubmanifoldsComplexanalytic structures on moment-angle manifolds*. Preprint (2013).