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1. Moment-angle complexes and manifolds.

K an (abstract) simplicial complex on the set [m] = {1, . . . ,m}.

I = {i1, . . . , ik} ∈ K a simplex. Always assume ∅ ∈ K.
Allow {i} /∈ K for some i (ghost vertices).

Consider the unit polydisc in Cm,

Dm =
{
(z1, . . . , zm) ∈ Cm : |zi| 6 1, i = 1, . . . ,m

}
.

Given I ⊂ [m], set

BI :=
{
(z1, . . . , zm) ∈ Dm : |zj| = 1 for j /∈ I

}
.

Define the moment-angle complex

ZK =
∪
I∈K

BI ⊂ Dm

It is invariant under the coordinatewise action of the standard torus

Tm =
{
(z1, . . . , zm) ∈ Cm : |zi| = 1, i = 1, . . . ,m

}
on Cm.
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Constr 1 (polyhedral product). Given spaces W ⊂ X and I ⊂ [m], set

(X,W )I =
{
(x1, . . . , xm) ∈ Xm : xj ∈W for j /∈ I

} ∼= ∏
i∈I

X ×
∏
i/∈I

W,

and define the polyhedral product of (X,W ) as

(X,W )K =
∪
I∈K

(X,W )I ⊂ Xm.

Then ZK = (D,T)K, where T is the unit circle.

Another example is the complement of a coordinate subspace arrangement:

U(K) = Cm \
∪

{i1,...,ik}/∈K
{z ∈ Cm : zi1 = . . . = zik = 0},

namely,

U(K) = (C,C×)K =
∪
I∈K

(∏
i∈I

C×
∏
i/∈I

C×
)
,

where C× = C \ {0}.

Clearly, ZK ⊂ U(K). Moreover, ZK is a Tm-equivariant deformation retract of
U(K) for every K [Buchstaber-P].
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Prop 1. Assume |K| ∼= Sn−1 (a sphere triangulation with m vertices). Then

ZK is a closed manifold of dimension m+ n.

We refer to such ZK as moment-angle manifolds.

If K = KP is the dual triangulation of a simple convex polytope P , then

ZP = ZKP embeds in Cm as a nondegenerate (transverse) intersection of m−n
real quadratic hypersurfaces. Therefore, ZP can be smoothed canonically.

Now assume K is the underlying complex of a complete simplicial fan Σ (a

starshaped sphere).
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A fan is a finite collection Σ = {σ1, . . . , σs} of strongly convex cones in Rn

such that every face of a cone in Σ belongs to Σ and the intersection of any

two cones in Σ is a face of each.

A fan Σ = {σ1, . . . , σs} is complete if σ1 ∪ . . . ∪ σs = Rn.

Let Σ be a simplicial fan in Rn with m one-dimensional cones generated by

a1, . . . ,am. Its underlying simplicial complex is

KΣ =
{
I ⊂ [m] : {ai : i ∈ I} spans a cone of Σ

}
Note: Σ is complete iff |KΣ| is a triangulation of Sn−1.
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Given Σ with 1-cones generated by a1, . . . ,am, define a map

A : Rm → Rn, ei 7→ ai,

where e1, . . . ,em is the standard basis of Rm. Set

Rm> = {(y1, . . . , ym) ∈ Rm : yi > 0},

and define

R := exp(KerA) =
{
(y1, . . . , ym) ∈ Rm> :

m∏
i=1

y
⟨ai,u⟩
i = 1 for all u ∈ Rn

}
,

R ⊂ Rm> acts on U(KΣ) ⊂ Cm by coordinatewise multiplications.

Thm 1. Let Σ be a complete simplicial fan in Rn with m one-dimensional

cones, and let K = KΣ be its underlying simplicial complex. Then

(a) the group R ∼= Rm−n acts on U(K) freely and properly, so the quotient

U(K)/R is a smooth (m+ n)-dimensional manifold;

(b) U(K)/R is Tm-equivariantly homeomorphic to ZK.

Therefore, ZK can be smoothed canonically.
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2. Complex-analytic structures.

We shall show that the even-dimensional moment-angle manifold ZK corre-

sponding to a complete simplicial fan admits a structure of a complex man-

ifold. The idea is to replace the action of Rm−n> on U(K) (whose quotient

is ZK) by a holomorphic action of C
m−n
2 on the same space.

Rem 1. Complex structures on polytopal moment-angle manifolds ZP were

described by Bosio and Meersseman. They identified ZP with a class of

complex manifolds known as LVM-manifolds (named after López de Medrano,

Verjovsky and Meersseman).

Assume m − n is even from now on. We can always achieve this by formally

adding an ‘empty’ one-dimensional cone to Σ; this corresponds to adding a

ghost vertex to K, or multiplying ZK by a circle.

Set ℓ = m−n
2 .
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Constr 2. Choose a linear map Ψ: Cℓ → Cm satisfying the two conditions:

(a) Re ◦Ψ: Cℓ → Rm is a monomorphism.

(b) A ◦Re ◦Ψ = 0.

The composite map of the top line in the following diagram is zero:

Cℓ Ψ−→ Cm Re−−→ Rm A−→ Rnyexp yexp yexp
(C×)m

|·|−→ Rm>
expA−−−−→ Rn>

where | · | denotes the map (z1, . . . , zm) 7→ (|z1|, . . . , |zm|). Now set

C = expΨ(Cℓ) =
{(
e⟨ψ1,w⟩, . . . , e⟨ψm,w⟩

)
∈ (C×)m

}
where w = (w1, . . . , wℓ) ∈ Cℓ, ψi denotes the ith row of the m × ℓ-matrix

Ψ = (ψij).

Then C ∼= Cℓ is a complex-analytic (but not algebraic) subgroup in (C×)m. It

acts on U(K) by holomorphic transformations.
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Ex 1. Let K be empty on 2 elements (that is, K has two ghost vertices).

We therefore have n = 0, m = 2, ℓ = 1, and A : R2 → 0 is a zero map.

Let Ψ: C→ C2 be given by z 7→ (z, αz) for some α ∈ C, so that

C =
{
(ez, eαz)} ⊂ (C×)2.

Condition (b) of Constr 2 is void, while (a) is equivalent to that α /∈ R. Then

expΨ: C→ (C×)2 is an embedding, and the quotient (C×)2/C with the natural

complex structure is a complex torus T2
C with parameter α ∈ C:

(C×)2/C ∼= C/(Z⊕ αZ) = T2
C(α).

Similarly, if K is empty on 2ℓ elements (so that n = 0, m = 2ℓ), we may obtain

any complex torus T2ℓ
C as the quotient (C×)2ℓ/C.
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Thm 2. Let Σ be a complete simplicial fan in Rn with m one-dimensional

cones, and let K = KΣ be its underlying simplicial complex. Assume that

m− n = 2ℓ. Then

(a) the holomorphic action of the group C ∼= Cℓ on U(K) is free and proper,

so the quotient U(K)/C is a compact complex (m− ℓ)-manifold;

(b) there is a Tm-equivariant diffeomorphism U(K)/C ∼= ZK defining a com-

plex structure on ZK in which Tm acts holomorphically.
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Ex 2 (Hopf manifold). Let Σ be the complete fan in Rn whose cones are

generated by all proper subsets of n+1 vectors e1, . . . ,en,−e1 − . . .− en.

To make m− n even we add one ‘empty’ 1-cone. We have m = n+2, ℓ = 1.

Then A : Rn+2 → Rn is given by the matrix (0 I −1), where I is the unit n× n
matrix, and 0, 1 are the n-columns of zeros and units respectively.

We have that K is the boundary of an n-dim simplex with n+1 vertices and

1 ghost vertex, ZK ∼= S1 × S2n+1, and U(K) = C× × (Cn+1 \ {0}).

Take Ψ: C→ Cn+2, z 7→ (z, αz, . . . , αz) for some α ∈ C, α /∈ R. Then

C =
{
(ez, eαz, . . . , eαz): z ∈ C

}
⊂ (C×)n+2,

and ZK acquires a complex structure as the quotient U(K)/C:

C× ×
(
Cn+1 \ {0}

)/
{(t,w)∼ (ezt, eαzw)} ∼=

(
Cn+1 \ {0}

)/
{w∼ e2πiαw},

where t ∈ C×, w ∈ Cn+1 \ {0}. The latter quotient of Cn+1 \ {0} is known as

the Hopf manifold.
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3. Holomorphic bundles over toric varieties.

Manifolds ZK corresponding to complete regular simplicial fans are total

spaces of holomorphic principal bundles over toric varieties with fibre a com-

plex torus. This allows us to calculate invariants of the complex structures

on ZK.

A toric variety is a normal algebraic variety X on which an algebraic torus

(C×)n acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,

complete fans ←→ compact varieties

normal fans of polytopes←→ projective varieties

regular fans ←→ nonsingular varieties

simplicial fans ←→ orbifolds
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Σ complete, simplicial, rational;

a1, . . . ,am primitive integral generators of 1-cones;

ai = (ai1, . . . , ain) ∈ Zn.

Constr 3 (‘Cox construction’). Let AC : Cm → Cn, ei 7→ ai,

expAC : (C×)m → (C×)n,

(z1, . . . , zm) 7→
( m∏
i=1

z
ai1
i , . . . ,

m∏
i=1

z
ain
i

)
Set G = Ker expAC.

This is an (m− n)-dimensional algebraic subgroup in (C×)m.

It acts almost freely (with finite isotropy subgroups) on U(KΣ).

If Σ is regular, then G ∼= (C×)m−n and the action is free.

VΣ = U(KΣ)/G the toric variety associated to Σ.

The quotient torus (C×)m/G ∼= (C×)n acts on VΣ with a dense orbit.
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Observe that Cℓ ∼= C ⊂ GΣ
∼= (C×)m as a complex subgroup.

Prop 2.

(a) The toric variety VΣ is homeomorphic to the quotient of ZKΣ
by the holo-

morphic action of G/C.

(b) If Σ is regular, then there is a holomorphic principal bundle ZKΣ
→ VΣ

with fibre the compact complex torus G/C of dimension ℓ.

Rem 2. For singular varieties VΣ the quotient projection ZKΣ
→ VΣ is a holo-

morphic principal Seifert bundle for an appropriate orbifold structure on VΣ.
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4. Submanifolds and analytic subsets.

The complex structure on ZK is determined by two pieces of data:

– the complete simplicial fan Σ with generators a1, . . . ,am;

– the ℓ-dimensional holomorphic subgroup C ⊂ (C×)m.

If this data is generic (in particular, the fan Σ is not rational), then there is

no holomorphic principal torus fibration ZK → VΣ over a toric variety VΣ.

However, there still exists a holomorphic ℓ-dimensional foliation F with a

transverse Kähler form ωF . This form can be used to describe submanifolds

and analytic subsets in ZK.
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Consider the complexified map AC : Cm → Cn, ei 7→ ai. and the following

complex (m− n)-dimensional subgroup in (C×)m:

G = exp(KerAC) =
{(
ez1, . . . , ezm

)
∈ (C×)m : (z1, . . . , zm) ∈ KerAC

}
.

Note C ⊂ G.

The group G acts on U(K), and its orbits define a holomorphic foliation

on U(K). Since G ⊂ (C×)m, this action is free on open subset (C×)m ⊂ U(K),
so that the generic leaf of the foliation has complex dimension m− n = 2ℓ.

The ℓ-dimensional closed subgroup C ⊂ G acts on U(K) freely and properly

by Theorem 2, so that U(K)/C carries a holomorphic action of the quotient

group D = G/C.

F: the holomorphic foliation on U(K)/C ∼= ZK by the orbits of D.

16



The subgroup G ⊂ (C×)m is closed if and only if it is isomorphic to (C×)2ℓ;
in this case the subspace KerA ⊂ Rm is rational. Then Σ is a rational fan

and VΣ is the quotient U(K)/G. The foliation F gives rise to a holomorphic

principal Seifert fibration π : ZK → VΣ with fibres compact complex tori G/C.

For a generic configuration of nonzero vectors a1, . . . ,am, G is biholomorphic

to C2ℓ and D = G/C is biholomorphic to Cℓ.
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A (1,1)-form ωF on the complex manifold ZK is called transverse Kähler with

respect to the foliation F if

(a) ωF is closed, i.e. dωF = 0;

(b) ωF is nonnegative and the zero space of ωF is the tangent space of F.

A complete simplicial fan Σ in Rn is called weakly normal if there exists a

(not necessarily simple) n-dimensional polytope P such that Σ is a simplicial

subdivision of the normal fan ΣP .

Thm 3. Assume that Σ is a weakly normal fan. Then there exists an exact

(1,1)-form ωF on ZK = U(K)/C which is transverse Kähler for the foliation F
on the dense open subset (C×)m/C ⊂ U(K)/C.
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For each J ⊂ [m], define the corresponding coordinate submanifold in ZK by

ZKJ = {(z1, . . . , zm) ∈ ZK : zi = 0 for i /∈ J}.

Obviously, ZKJ is identified with the quotient of

U(KJ) = {(z1, . . . , zm) ∈ U(K): zi = 0 for i /∈ J}

by C ∼= Cℓ. In particular, U(KJ)/C is a complex submanifold in ZK = U(K)/C.

Observe that the closure of any (C×)m-orbit of U(K) has the form U(KJ) for

some J ⊂ [m] (in particular, the dense orbit corresponds to J = [m]). Similarly,

the closure of any (C×)m/C-orbit of ZK ∼= U(K)/C has the form ZKJ .
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Thm 4.Assume that the data defining a complex structure on ZK = U(K)/C
is generic. Then any divisor of ZK is a union of coordinate divisors.

Furthermore, if Σ is a weakly normal fan, then any compact irreducible analytic

subset Y ⊂ ZK of positive dimension is a coordinate submanifold.

Cor 1. Under generic assumptions, there are no non-constant meromorphic

functions on ZK.
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