Geometric structures on moment-angle manifolds

Taras Panov

Moscow State University

based on joint works with with Victor Buchstaber, Andrey Mironov and Yuri Ustinovsky

> Capital Normal University Beijing, 1–6 July 2013

Topology of moment-angle manifolds and complexes

A convex polyhedron in \mathbb{R}^n obtained by intersecting m halfspaces:

$$P = \left\{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \right\}.$$

Define an affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(\mathbf{x}) = (\langle \mathbf{a}_1, \mathbf{x} \rangle + b_1, \dots, \langle \mathbf{a}_m, \mathbf{x} \rangle + b_m).$$

If P has a vertex, then i_P is monomorphic, and $i_P(P)$ is the intersection of an n-plane with $\mathbb{R}^m_{\geq} = \{ \mathbf{y} = (y_1, \dots, y_m) : y_i \geq 0 \}.$

Define the space \mathcal{Z}_P from the diagram

$$egin{array}{lll} \mathcal{Z}_P & \stackrel{i_Z}{\longrightarrow} & \mathbb{C}^m & (z_1, \dots, z_m) \ & & & \downarrow & & \downarrow \ P & \stackrel{i_P}{\longrightarrow} & \mathbb{R}^m_\geqslant & (|z_1|^2, \dots, |z_m|^2) \end{array}$$

 \mathcal{Z}_P has a \mathbb{T}^m -action, $\mathcal{Z}_P/\mathbb{T}^m = P$, and i_Z is a \mathbb{T}^m -equivariant inclusion.

Proposition 1. If P is a simple polytope (more generally, if the presentation of P by inequalities is generic), then Z_P is a smooth manifold of dimension m + n.

Proof. Write $i_P(\mathbb{R}^n)$ by m - n linear equations in $(y_1, \ldots, y_m) \in \mathbb{R}^m$. Replace y_k by $|z_k|^2$ to obtain a presentation of \mathcal{Z}_P by quadrics.

\mathcal{Z}_P : polytopal moment-angle manifold corresponding to P.

Similarly, by considering the projection $\mu \colon \mathbb{R}^m \to \mathbb{R}^m_{\geq}$ instead of $\mu \colon \mathbb{C}^m \to \mathbb{R}^m_{\geq}$ we obtain the real moment-angle manifold $\mathcal{R}_P \subset \mathbb{R}^m$.

Example 1. $P = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0, -\gamma_1 x_1 - \gamma_2 x_2 + 1 \ge 0\},\$ $\gamma_1, \gamma_2 > 0$ (a 2-simplex). Then $\mathcal{Z}_P = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : \gamma_1 |z_1|^2 + \gamma_2 |z_2|^2 + |z_3|^2) = 1\}$ (a 5-sphere), $\mathcal{R}_P = \{(u_1, u_2, u_3) \in \mathbb{R}^3 : \gamma_1 |u_1|^2 + \gamma_2 |u_2|^2 + |u_3|^2) = 1\}$ (a 2-sphere). \mathcal{K} an (abstract) simplicial complex on the set $[m] = \{1, \ldots, m\}$. $I = \{i_1, \ldots, i_k\} \in \mathcal{K}$ a simplex. Always assume $\emptyset \in \mathcal{K}$.

Consider the unit polydisc in \mathbb{C}^m ,

$$\mathbb{D}^m = \Big\{(z_1,\ldots,z_m) \in \mathbb{C}^m \colon |z_i| \leqslant 1, \quad i=1,\ldots,m \Big\}.$$
 Given $I \subset [m]$, set

$$B_I := \left\{ (z_1, \dots, z_m) \in \mathbb{D}^m \colon |z_j| = 1 \text{ for } j \notin I \right\} \cong \prod_{i \in I} D^2 \times \prod_{i \notin I} S^1.$$

The moment-angle complex

$$\mathcal{Z}_{\mathcal{K}} := \bigcup_{I \in \mathcal{K}} B_I = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} D^2 \times \prod_{i \notin I} S^1 \right) \subset \mathbb{D}^m$$

It is invariant under the coordinatewise action of the torus \mathbb{T}^m .

Example 2. $\mathcal{K} = 2$ points, then $\mathcal{Z}_{\mathcal{K}} = D^2 \times S^1 \cup S^1 \times D^2 \cong S^3$. $\mathcal{K} = \Delta$, then $\mathcal{Z}_{\mathcal{K}} = (D^2 \times D^2 \times S^1) \cup (D^2 \times S^1 \times D^2) \cup (S^1 \times D^2 \times D^2) \cong S^5$. More generally, let X a space, and $A \subset X$. Given $I \subset [m]$, set

$$(X,A)^{I} = \left\{ (x_{1}, \dots, x_{m}) \in \prod_{i=1}^{m} X \colon x_{j} \in A \text{ for } j \notin I \right\} \cong \prod_{i \in I} X \times \prod_{i \notin I} A.$$

The \mathcal{K} -polyhedral product of (X, A) is

$$\mathcal{Z}_{\mathcal{K}}(X,A) = \bigcup_{I \in \mathcal{K}} (X,A)^{I} \subset X^{m}.$$

Another important example is the complement of the coordinate subspace arrangement corresponding to \mathcal{K} :

$$U(\mathcal{K}) = \mathbb{C}^m \setminus \bigcup_{\{i_1,\dots,i_k\} \notin \mathcal{K}} \{ \mathbf{z} \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0 \},\$$

namely,

$$U(\mathcal{K}) = \mathcal{Z}_{\mathcal{K}}(\mathbb{C}, \mathbb{C}^{\times}),$$

where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}.$

Theorem 1. $\mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$ is a \mathbb{T}^m -deformation retract of $U(\mathcal{K})$.

Theorem 2. If P is a simple polytope, $\mathcal{K}_P = \partial(P^*)$ (the dual triangulation), then $\mathcal{Z}_{\mathcal{K}_P} \cong \mathcal{Z}_P$ (\mathbb{T}^m -equivariantly homeomorphic).

In particular, $\mathcal{Z}_{\mathcal{K}_{\mathcal{P}}}$ is a manifold. More generally,

Proposition 2. Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with m vertices). Then $\mathcal{Z}_{\mathcal{K}}$ is a closed manifold of dimension m + n.

The face ring (the Stanley–Reisner ring) of \mathcal{K} is

$$\mathbb{Z}[\mathcal{K}] = \mathbb{Z}[v_1, \dots, v_m] / (v_{i_1} \cdots v_{i_k} \colon \{i_1, \dots, i_k\} \notin K), \qquad \deg v_i = 2.$$

Theorem 3. There is an isomorphism of (bi)graded algebras

$$H^*(\mathcal{Z}_{\mathcal{K}};\mathbb{Z}) \cong \operatorname{Tor}_{\mathbb{Z}[v_1,\ldots,v_m]}^{*,*}(\mathbb{Z}[\mathcal{K}],\mathbb{Z})$$
$$\cong H\Big[\wedge[u_1,\ldots,u_m]\otimes\mathbb{Z}[\mathcal{K}];d\Big],$$

where $du_i = v_i$, $dv_i = 0$ for $1 \leq i \leq m$. In particular,

$$H^{p}(\mathcal{Z}_{\mathcal{K}}) \cong \sum_{-i+2j=p} \operatorname{Tor}_{\mathbb{Z}[v_{1},...,v_{m}]}^{-i,2j}(\mathbb{Z}[\mathcal{K}],\mathbb{Z}).$$

Corollary 1.
$$H^k(\mathcal{Z}_{\mathcal{K}}) \cong \bigoplus_{I \subset [m]} \widetilde{H}^{k-|I|-1}(\mathcal{K}_I),$$

where \mathcal{K}_I is the restriction of \mathcal{K} to the subset $I \subset \{1, \ldots, m\}$.

If $\mathcal{K} = \mathcal{K}_P$, then can rewrite the above in terms of P instead of \mathcal{K} :

Corollary 2.
$$H^k(\mathcal{Z}_P) \cong \bigoplus_{I \subset [m]} \widetilde{H}^{k-|I|-1}(P_I),$$

where P_I is the union of facets F_i of P with $i \in I$.

Remark 1. Integral version of Theorem 3 was proved independently by [Baskakov–Buchstaber–P] and [Franz].

2. The product in $H^*(\mathcal{Z}_{\mathcal{K}})$ given by Theorem 3 can be also described in terms of full subcomplexes \mathcal{K}_I of Corollary 1 [Baskakov].

3. There is the stable decomposition $\Sigma Z_{\mathcal{K}} \simeq \bigvee_{I \subset [m]} \Sigma^{|I|+2} |\mathcal{K}_{I}|$ behind the isomorphism of Corollary 1 [Bahri–Bendersky–Cohen–Gitler].

Geometric structures I. Lagrangian submanifolds

 (M, ω) a symplectic Riemannian 2*n*-manifold.

An immersion $i: N \hookrightarrow M$ of an *n*-manifold N is Lagrangian if $i^*(\omega) = 0$. If *i* is an embedding, then i(N) is a Lagrangian submanifold of M.

A vector field ξ on M is Hamiltonian if the 1-form $\omega(\cdot,\xi)$ is exact.

A Lagrangian immersion $i: N \hookrightarrow M$ is Hamiltonian minimal (*H*-minimal) if the variations of the volume of i(N) along all Hamiltonian vector fields with compact support are zero, i.e.

$$\frac{d}{dt}\operatorname{vol}(i_t(N))\Big|_{t=0}=0,$$

where $i_0(N) = i(N)$, $i_t(N)$ is a Hamiltonian deformation of i(N), and $vol(i_t(N))$ is the volume of the deformed part of $i_t(N)$.

Recall: *P* a simple polytope

$$P = \left\{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \right\}.$$

The polytopal moment-angle manifold \mathcal{Z}_P ,

can be written as the intersection of m-n real quadrics,

$$\mathcal{Z}_P = \Big\{ \mathbf{Z} = (z_1, \dots, z_m) \in \mathbb{C}^m \colon \sum_{k=1}^m \gamma_{jk} |z_k|^2 = c_j, \quad \text{for } 1 \leq j \leq m-n \Big\}.$$

10

Also have the real moment-angle manifold,

$$\mathcal{R}_P = \Big\{ \boldsymbol{u} = (u_1, \dots, u_m) \in \mathbb{R}^m \colon \sum_{k=1}^m \gamma_{jk} u_k^2 = c_j, \quad \text{for } 1 \leq j \leq m-n \Big\}.$$

Set $\gamma_k = (\gamma_{1k}, \dots, \gamma_{m-n,k}) \in \mathbb{R}^{m-n}$ for $1 \leq k \leq m$.

Assume that the polytope P is rational. Then have two lattices:

$$\Lambda = \mathbb{Z} \langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_m \rangle \subset \mathbb{R}^n \quad \text{and} \quad L = \mathbb{Z} \langle \gamma_1, \dots, \gamma_m \rangle \subset \mathbb{R}^{m-n}.$$

Consider the (m-n)-torus

$$T_P = \left\{ \left(e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, e^{2\pi i \langle \gamma_m, \varphi \rangle} \right) \in \mathbb{T}^m \right\},\$$

i.e. $T_P = \mathbb{R}^{m-n}/L^*$, and set

$$D_P = \frac{1}{2}L^*/L^* \cong (\mathbb{Z}/2)^{m-n}.$$

Proposition 3. The (m-n)-torus T_P acts on \mathcal{Z}_P almost freely.

Consider the map

$$f: \mathcal{R}_P \times T_P \longrightarrow \mathbb{C}^m,$$

$$(\boldsymbol{u}, \varphi) \mapsto \boldsymbol{u} \cdot \varphi = (u_1 e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, u_m e^{2\pi i \langle \gamma_m, \varphi \rangle}).$$

Note $f(\mathcal{R}_P \times T_P) \subset \mathcal{Z}_P$ is the set of T_P -orbits through $\mathcal{R}_P \subset \mathbb{C}^m$.

Have an *m*-dimensional manifold

$$N_P = \mathcal{R}_P \times_{D_P} T_P.$$

Lemma 1. $f: \mathcal{R}_P \times T_P \to \mathbb{C}^m$ induces an immersion $j: N_P \hookrightarrow \mathbb{C}^m$.

Theorem 4 (Mironov). The immersion $i_{\Gamma} : N_{\Gamma} \hookrightarrow \mathbb{C}^m$ is H-minimal Lagrangian.

When it is an embedding?

A simple rational polytope P is Delzant if for any vertex $v \in P$ the set of vectors $\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}$ normal to the facets meeting at v forms a basis of the lattice $\Lambda = \mathbb{Z} \langle \mathbf{a}_1, \ldots, \mathbf{a}_m \rangle$:

$$\mathbb{Z}\langle \boldsymbol{a}_1,\ldots,\boldsymbol{a}_m\rangle = \mathbb{Z}\langle \boldsymbol{a}_{i_1},\ldots,\boldsymbol{a}_{i_n}\rangle$$
 for any $v = F_{i_1}\cap\cdots\cap F_{i_n}$.

Theorem 5. The following conditions are equivalent:

- 1) $j: N_P \to \mathbb{C}^m$ is an embedding of an H-minimal Lagrangian submanifold;
- 2) the (m-n)-torus T_P acts on \mathcal{Z}_P freely.
- 3) P is a Delzant polytope.

Explicit constructions of families of Delzant polytopes are known in toric geometry and topology:

- simplices and cubes in all dimensions;
- products and face cuts;
- associahedra (Stasheff ptopes), permutahedra, and generalisations.

Example 3 (one quadric). Let $P = \Delta^{m-1}$ (a simplex), i.e. m - n = 1 and $\mathcal{R}_{\Lambda^{m-1}}$ is given by a single quadric

$$\gamma_1 u_1^2 + \dots + \gamma_m u_m^2 = c \tag{1}$$

with $\gamma_i > 0$, i.e. $\mathcal{R}_{\Delta^{m-1}} \cong S^{m-1}$. Then

 $N \cong S^{m-1} \times_{\mathbb{Z}/2} S^1 \cong \begin{cases} S^{m-1} \times S^1 & \text{if } \tau \text{ preserves the orient. of } S^{m-1}, \\ \mathcal{K}^m & \text{if } \tau \text{ reverses the orient. of } S^{m-1}, \end{cases}$

where τ is the involution and \mathcal{K}^m is an *m*-dimensional Klein bottle.

Proposition 4. We obtain an H-minimal Lagrangian embedding of $N_{\Delta^{m-1}} \cong S^{n-1} \times_{\mathbb{Z}/2} S^1$ in \mathbb{C}^m if and only if $\gamma_1 = \cdots = \gamma_m$ in (1). The topological type of $N_{\Delta^{m-1}} = N(m)$ depends only on the parity of m:

$N(m) \cong S^{m-1} \times S^1$	if m is even,
$N(m) \cong \mathcal{K}^m$	if m is odd.

The Klein bottle \mathcal{K}^m with even m does *not* admit Lagrangian embeddings in \mathbb{C}^m [Nemirovsky, Shevchishin].

Example 4 (two quadrics).

Theorem 6. Let m - n = 2, i.e. $P \simeq \Delta^{p-1} \times \Delta^{q-1}$. (a) \mathcal{R}_P is diffeomorphic to $\mathcal{R}(p,q) \cong S^{p-1} \times S^{q-1}$ given by

$$u_1^2 + \dots + u_k^2 + u_{k+1}^2 + \dots + u_p^2 = 1,$$

$$u_1^2 + \dots + u_k^2 + \dots + u_k^2 + \dots + u_m^2 = 2,$$

where p + q = m, $0 and <math>0 \le k \le p$. (b) If $N_P \to \mathbb{C}^m$ is an embedding, then N_P is diffeomorphic to

$$N_k(p,q) = \mathcal{R}(p,q) \times_{\mathbb{Z}/2 \times \mathbb{Z}/2} (S^1 \times S^1),$$

where the two involutions act on $\mathcal{R}(p,q)$ by

$$\psi_1: (u_1, \dots, u_m) \mapsto (-u_1, \dots, -u_k, -u_{k+1}, \dots, -u_p, u_{p+1}, \dots, u_m), \\ \psi_2: (u_1, \dots, u_m) \mapsto (-u_1, \dots, -u_k, u_{k+1}, \dots, u_p, -u_{p+1}, \dots, -u_m).$$
(2)

There is a fibration $N_k(p,q) \to S^{q-1} \times_{\mathbb{Z}/2} S^1 = N(q)$ with fibre N(p) (the manifold from the previous example), which is trivial for k = 0.

Example 5 (three quadrics).

In the case m - n = 3 the topology of compact manifolds \mathcal{R}_P and \mathcal{Z}_P was fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a product of three spheres, or to a connected sum of products of spheres, with two spheres in each product.

The simplest P with m - n = 3 is a (Delzant) pentagon, e.g.

$$P = \left\{ (x_1, x_2) \in \mathbb{R}^2 \colon x_1 \ge 0, \ x_2 \ge 0, \ -x_1 + 2 \ge 0, \ -x_2 + 2 \ge 0, \ -x_1 - x_2 + 3 \ge 0 \right\}$$

In this case \mathcal{R}_P is an oriented surface of genus 5, and \mathcal{Z}_P is diffeomorphic to a connected sum of 5 copies of $S^3 \times S^4$.

Get an H-minimal Lagrangian submanifold $N_P \subset \mathbb{C}^5$ which is the total space of a bundle over T^3 with fibre a surface of genus 5.

Proposition 5. Let P be an m-gon. Then \mathcal{R}_P is an orientable surface S_g of genus $g = 1 + 2^{m-3}(m-4)$.

Get an H-minimal Lagrangian submanifold $N_P \subset \mathbb{C}^m$ which is the total space of a bundle over T^{m-2} with fibre S_g . It is an aspherical manifold (for $m \ge 4$) whose fundamental group enters into the short exact sequence

$$1 \longrightarrow \pi_1(S_g) \longrightarrow \pi_1(N) \longrightarrow \mathbb{Z}^{m-2} \longrightarrow 1.$$

For n > 2 and m - n > 3 the topology of \mathcal{R}_P and \mathcal{Z}_P is even more complicated.

Geometric structures II. Non-Kähler complex structures

Recall: if $\mathcal{K} = \mathcal{K}_P$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_P = \mathcal{Z}_{\mathcal{K}_P}$ has a canonical smooth structure (e.g. as a nondegenerate intersection of Hermitian quadrics in \mathbb{C}^m).

Let \mathcal{K} be a sphere triangulation, i.e. $|\mathcal{K}| \cong S^{n-1}$.

A realisation $|\mathcal{K}| \subset \mathbb{R}^n$ is starshaped if there is a point $\mathbf{x} \notin |\mathcal{K}|$ such that any ray from \mathbf{x} intersects $|\mathcal{K}|$ in exactly one point.

A convex triangulation \mathcal{K}_P is starshaped, but not vice versa!

 \mathcal{K} has a starshaped realisation if and only if it is the underlying complexes of a complete simplicial fan Σ .

Also recall
$$U(\mathcal{K}) = \mathbb{C}^m \setminus \bigcup_{\{i_1,\dots,i_k\} \notin \mathcal{K}} \{ \mathbf{z} \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0 \}.$$

Let $a_1, \ldots, a_m \in \mathbb{R}^n$ be the generators of the 1-dimensional cones of Σ . Consider the linear map

$$\Lambda_{\mathbb{R}} \colon \mathbb{R}^m \to \mathbb{R}^n, \quad \boldsymbol{e}_i \mapsto \boldsymbol{a}_i,$$

where e_1, \ldots, e_m is the standard basis of \mathbb{R}^m . Define

$$R_{\Sigma} := \exp(\operatorname{Ker} \Lambda_{\mathbb{R}}) = \left\{ (y_1, \dots, y_m) \in \mathbb{R}^m : \prod_{i=1}^m y_i^{\langle \boldsymbol{a}_i, \boldsymbol{u} \rangle} = 1 \text{ for all } \boldsymbol{u} \in \mathbb{R}^n \right\},\$$

 $R_{\Sigma} \subset \mathbb{R}^m_{>}$ acts on $U(\mathcal{K}_{\Sigma}) \subset \mathbb{C}^m$ by coordinatewise multiplications.

Theorem 7. Let \mathcal{K} be the underlying complex of a complete simplicial fan Σ . Then

(a) R_{Σ} acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K})/R_{\Sigma}$ has a canonical structure of a smooth (m + n)-manifold;

(b) $U(\mathcal{K})/R_{\Sigma}$ is \mathbb{T}^m -equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

Assume m - n is even and set $\ell = \frac{m - n}{2}$.

Choose a linear map $\Psi : \mathbb{C}^{\ell} \to \mathbb{C}^{m}$ satisfying the two conditions: (a) $\operatorname{Re} \circ \Psi : \mathbb{C}^{\ell} \to \mathbb{R}^{m}$ is a monomorphism. (b) $\Lambda_{\mathbb{R}} \circ \operatorname{Re} \circ \Psi = 0$. Now set

$$C_{\Psi,\Sigma} = \exp \Psi(\mathbb{C}^{\ell}) = \left\{ \left(e^{\langle \psi_1, \boldsymbol{w} \rangle}, \dots, e^{\langle \psi_m, \boldsymbol{w} \rangle} \right) \in (\mathbb{C}^{\times})^m \right\}.$$

Then $C_{\Psi,\Sigma} \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup of $(\mathbb{C}^{\times})^m$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Theorem 8. Let \mathcal{K} be as before. Then

- (a) $C_{\Psi,\Sigma}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K})/C_{\Psi,\Sigma}$ is a compact complex manifold of complex dimension $m \ell$;
- (b) there is a \mathbb{T}^m -equivariant diffeomorphism $U(\mathcal{K})/C_{\Psi,\Sigma} \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^m acts holomorphically.

- [1] Victor Buchstaber and Taras Panov. *Toric Topology*. A book project; arXiv:1210.2368.
- [2] Andrey Mironov and Taras Panov. Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings. Funct. Anal. and Appl. 47 (2013), no. 1, 38–49; arXiv:1103.4970.
- [3] Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. 12 (2012), no. 1, 149–172; arXiv:1008.4764.