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1. Problems

identifying the homotopy type of the moment-angle complex ZK for
certain simplicial complexes K;
describing the multiplication and higher Massey products in the
Tor-algebra H∗(ZK) = Tork[v1,...,vm](k[K], k) of the face ring k[K];
describing the Yoneda algebra Extk[K](k, k) in terms of generators and
relations;
describing the structure of the Pontryagin algebra H∗(ΩDJ(K)) and
its commutator subalgebra H∗(ΩZK) via iterated and higher
Whitehead (Samelson) products;
identifying the homotopy type of the loop spaces ΩDJ(K) and ΩZK.
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2. Preliminaries

(X ,A) a pair of spaces.

K a simplicial complex on [m] = {1, 2, . . . ,m}, ∅ ∈ K.

Given I = {i1, . . . , ik} ⊂ [m], set

(X ,A)I = Y1 × · · · × Ym where Yi =

{
X if i ∈ I ,
A if i /∈ I .

The K-polyhedral product of (X ,A) is

(X ,A)K =
⋃
I∈K

(X ,A)I =
⋃
I∈K

(∏
i∈I

X ×
∏
i /∈I

A
)
.
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Example
1 (X ,A) = (D2, S1),
ZK := (D2, S1)K the moment-angle complex.
It has an action of the torus Tm.

2 (X ,A) = (CP∞, pt),
DJ(K) := (CP∞, pt)K the Davis–Januszkiewicz space.

3 (X ,A) = (C,C×),

U(K) := (C,C×)K = Cm∖ ⋃
{i1,...,ik}/∈K

{zi1 = · · · = zik = 0}

the complement of a coordinate subspace arrangement.

Theorem
There exists a deformation retraction

ZK ↪→ U(K)
'−→ ZK
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There exists a homotopy fibration

ZK −→ DJ(K) −→ (CP∞)m

‖ ‖ ‖
(D2, S1)K (CP∞, pt)K (CP∞,CP∞)K

which splits after looping:

ΩDJ(K) ' ΩZK × Tm

Warning: this is not an H-space splitting

Proposition
There exists an exact sequence of noncommutative algebras

1 −→ H∗(ΩZK) −→ H∗(ΩDJ(K))
Ab−→ Λ[u1, . . . , um] −→ 1

where Λ[u1, . . . , um] denotes the exterior algebra and deg ui = 1.
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Let k denote Z or a field.
The face ring (the Stanley–Reisner ring) of K is given by

k[K] := k[v1, . . . , vm]
/(

vi1 · · · vik = 0 if {i1, . . . , ik} /∈ K
)

where deg vi = 2.

Theorem
H∗(DJ(K)) ∼= k[K]

H∗(ΩDJ(K)) ∼= Extk[K](k, k) k is a field

H∗(ZK) ∼= Tork[v1,...,vm](k[K], k)

∼= H
[
Λ[u1, . . . , um]⊗ k[K], d

]
, dui = vi , dvi = 0

∼=
⊕
I∈K

H̃∗−|I |−1(KI ) KI = K|I

k[K] is a Golod ring if the multiplication and all higher Massey operations
in Tork[v1,...,vm](k[K], k) are trivial.
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3. The case of a flag complex

A missing face of K is a subset I ⊂ [m] such that I /∈ K, but every proper
subset of I is a simplex of K.

K is a flag complex if each of its missing faces has two vertices.

Equivalently, K is flag if any set of vertices of K which are pairwise
connected by edges spans a simplex.

{flag complexes on [m]} 1−1←→ {simple graphs on [m]}
K → K1 (one-skeleton)
K(Γ) ← Γ

where K(Γ) is the clique complex of Γ
(fill in each clique of Γ with a simplex).
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A graph Γ is chordal if each of its cycles with > 4 edges has a chord.

Equivalently, Γ is chordal if there are no induced cycles of length > 4.

Theorem (Fulkerson–Gross)
A graph is chordal if and only if its vertices can be ordered in such a way
that, for each vertex i , the lesser neighbours of i form a clique.

(perfect elimination ordering)
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Theorem (Grbic-P-Theriault-Wu)
K is flag, k a field. The following are equivalent:

1 k[K] is a Golod ring;
2 the multiplication in H∗(ZK) is trivial;
3 Γ = K1 is a chordal graph;
4 ZK has homotopy type of a wedge of spheres.

The equivalence (1)⇔ (2)⇔ (3) was proved by Berglund and Jöllenbeck
in 2007.

Implications (1)⇒ (2), (2)⇒ (3) and (4)⇒ (1) are valid for arbitrary K.

However, (3)⇒(4) fails in the non-flag case.
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The nonzero cohomology groups of ZK are

H0 = Z, H5 = Z10, H6 = Z15, H7 = Z6

H9 = Z/2.

All Massey products vanish for dimensional
reasons, so K is Golod (over any field).

Nevertheless, ZK is not homotopy equivalent to a wedge of spheres
because of the torsion. In fact,

ZK ' (S5)∨10 ∨ (S6)∨15 ∨ (S7)∨6 ∨Σ7RP2.

Question
Assume that H∗(ZK) has trivial multiplication, so that K is Golod, over
any field. Is it true that ZK is a co-H-space, or even a suspension, as in the
previous example?
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How many spheres in the wedge? What if ZK is not a wedge of spheres?

Theorem
For any flag complex K, there is an isomorphism

H∗
(
ΩDJ(K)

) ∼= T 〈u1, . . . , um〉
/(

u2
i = 0, uiuj + ujui = 0 for {i , j} ∈ K

)
where T 〈u1, . . . , um〉 is the free algebra on m generators of degree 1.

Remember the exact sequence of non-commutative algebras

1 −→ H∗(ΩZK) −→ H∗(ΩDJ(K))
Ab−→ Λ[u1, . . . , um] −→ 1

Proposition
For any flag complex K, the Poincaré series of H∗(ΩZK) is given by

P
(
H∗(ΩZK); t

)
=

1
(1 + t)m−n(1− h1t + · · ·+ (−1)nhntn)

,

where h(K) = (h0, h1 . . . , hn) is the h-vector of K.
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Theorem
Assume that K is flag. The algebra H∗(ΩZK), viewed as the commutator
subalgebra of H∗(ΩDJ(K)), is multiplicatively generated by∑

I⊂[m] dim H̃0(KI ) iterated commutators of the form

[uj , ui ], [uk1 , [uj , ui ]], . . . , [uk1 , [uk2 , · · · [ukm−2 , [uj , ui ]] · · · ]]

where k1 < k2 < · · · < kp < j > i , ks 6= i for any s, and i is the smallest
vertex in a connected component not containing j of the subcomplex
K{k1,...,kp ,j ,i}.

Furthermore, this multiplicative generating set is minimal.
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Here is an important particular case (corresponding to K = m points).
It is an analogue of the description of a basis in the commutator subalgebra
of a free algebra, given by Cohen and Neisendorfer:

Lemma
Let A be the commutator subalgebra of T 〈u1, . . . , um〉/(u2

i = 0):

1 −→ A −→ T 〈u1, . . . , um〉/(u2
i = 0) −→ Λ[u1, . . . , um] −→ 1

where deg ui = 1.
Then A is a free associative algebra.
It is minimally generated by the iterated commutators of the form

[uj , ui ], [uk1 , [uj , ui ]], . . . , [uk1 , [uk2 , · · · [ukm−2 , [uj , ui ]] · · · ]]

where k1 < k2 < · · · < kp < j > i and ks 6= i for any s.
The number of commutators of length ` is equal to (`− 1)

(m
`

)
.
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Corollary
Assume that K is flag and ZK has homotopy type of a wedge of spheres.
Then the number of spheres of dimension `+ 1 in the wedge is given by∑
|I |=` dim H̃0(KI ), for 2 6 ` 6 m.

In particular, H i (KI ) = 0 for i > 0 and all I .
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