Non-Kähler complex structures on moment-angle manifolds and other toric spaces

Taras Panov joint with Yuri Ustinovsky

Moscow State University

Several Complex Variables Steklov Institute, Moscow, 27 February–3 March 2012

1. Moment-angle complexes and manifolds.

 \mathcal{K} an (abstract) simplicial complex on the set $[m] = \{1, \ldots, m\}$.

 $I = \{i_1, \ldots, i_k\} \in \mathcal{K}$ a simplex. Always assume $\emptyset \in \mathcal{K}$. Allow $\{i\} \notin \mathcal{K}$ for some *i* (ghost vertices).

Consider the unit polydisc in \mathbb{C}^m ,

$$\mathbb{D}^m = \{(z_1,\ldots,z_m) \in \mathbb{C}^m \colon |z_i| \leq 1, \quad i = 1,\ldots,m\}.$$

Given $I \subset [m]$, set

$$B_I := \left\{ (z_1, \dots, z_m) \in \mathbb{D}^m \colon |z_j| = 1 \text{ for } j \notin I \right\}.$$

Define the moment-angle complex

$$\mathcal{Z}_{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} B_I \subset \mathbb{D}^m$$

It is invariant under the coordinatewise action of the standard torus

$$\mathbb{T}^m = \left\{ (z_1, \dots, z_m) \in \mathbb{C}^m \colon |z_i| = 1, \quad i = 1, \dots, m \right\}$$

on \mathbb{C}^m .

Constr 1 (polyhedral product). Given spaces $W \subset X$ and $I \subset [m]$, set $(X, W)^I = \{(x_1, \dots, x_m) \in X^m \colon x_j \in W \text{ for } j \notin I\} \cong \prod_{i \in I} X \times \prod_{i \notin I} W,$

and define the polyhedral product of (X, W) as

$$(X,W)^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} (X,W)^{I} \subset X^{m}.$$

Then $\mathcal{Z}_{\mathcal{K}} = (\mathbb{D}, \mathbb{T})^{\mathcal{K}}$, where \mathbb{T} is the unit circle.

Another example is the complement of a coordinate subspace arrangement:

$$U(\mathcal{K}) = \mathbb{C}^m \setminus \bigcup_{\{i_1, \dots, i_k\} \notin \mathcal{K}} \{ z \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0 \},\$$

namely,

$$U(\mathcal{K}) = (\mathbb{C}, \mathbb{C}^{\times})^{\mathcal{K}} = \bigcup_{I \in \mathcal{K}} \left(\prod_{i \in I} \mathbb{C} \times \prod_{i \notin I} \mathbb{C}^{\times} \right),$$

where $\mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}.$

Clearly, $\mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$. Moreover, $\mathcal{Z}_{\mathcal{K}}$ is a \mathbb{T}^m -equivariant deformation retract of $U(\mathcal{K})$ for every \mathcal{K} [Buchstaber-P].

Prop 1 ([Buchstaber-P]). Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with *m* vertices). Then \mathcal{Z}_K is a closed manifold of dimension m + n.

We refer to such $\mathcal{Z}_{\mathcal{K}}$ as moment-angle manifolds.

If $\mathcal{K} = \mathcal{K}_P$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_P = \mathcal{Z}_{\mathcal{K}_P}$ embeds in \mathbb{C}^m as a nondegenerate (transverse) intersection of m-n real quadratic hypersurfaces. Therefore, \mathcal{Z}_P can be smoothed canonically.

Now assume \mathcal{K} is the underlying complex of a complete simplicial fan Σ (a starshaped sphere).

A fan is a finite collection $\Sigma = \{\sigma_1, \ldots, \sigma_s\}$ of strongly convex cones in \mathbb{R}^n such that every face of a cone in Σ belongs to Σ and the intersection of any two cones in Σ is a face of each.

A fan $\Sigma = \{\sigma_1, \ldots, \sigma_s\}$ is complete if $\sigma_1 \cup \ldots \cup \sigma_s = \mathbb{R}^n$.

Let Σ be a simplicial fan in \mathbb{R}^n with m one-dimensional cones generated by $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Its underlying simplicial complex is

$$\mathcal{K}_{\Sigma} = \left\{ I \subset [m] \colon \{ \mathbf{a}_i \colon i \in I \} \text{ spans a cone of } \Sigma \right\}$$

Note: Σ is complete iff $|\mathcal{K}_{\Sigma}|$ is a triangulation of S^{n-1} .

Given Σ with 1-cones generated by $\mathbf{a}_1, \ldots, \mathbf{a}_m$, define a map

$$\Lambda_{\mathbb{R}} \colon \mathbb{R}^m \to \mathbb{R}^n, \quad \mathbf{e}_i \mapsto \mathbf{a}_i,$$

where $\mathbf{e}_1, \ldots, \mathbf{e}_m$ is the standard basis of \mathbb{R}^m . Set

$$\mathbb{R}^m_{>} = \{(y_1,\ldots,y_m) \in \mathbb{R}^m \colon y_i > 0\},\$$

and define

$$R_{\Sigma} := \exp(\operatorname{Ker} \Lambda_{\mathbb{R}}) = \{(y_1, \dots, y_m) \in \mathbb{R}^m : \prod_{i=1}^m y_i^{\langle \mathbf{a}_i, \mathbf{u} \rangle} = 1 \text{ for all } \mathbf{u} \in \mathbb{R}^n \},\$$

 $R_{\Sigma} \subset \mathbb{R}^m_>$ acts on $U(\mathcal{K}_{\Sigma}) \subset \mathbb{C}^m$ by coordinatewise multiplications.

Thm 1. Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Then

(a) the group $R_{\Sigma} \cong \mathbb{R}^{m-n}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K})/R_{\Sigma}$ is a smooth (m+n)-dimensional manifold;

(b) $U(\mathcal{K})/R_{\Sigma}$ is \mathbb{T}^m -equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

2. Complex-analytic structures.

We shall show that the even-dimensional moment-angle manifold $\mathcal{Z}_{\mathcal{K}}$ corresponding to a complete simplicial fan admits a structure of a complex manifold. The idea is to replace the action of $\mathbb{R}^{m-n}_{>}$ on $U(\mathcal{K})$ (whose quotient is $\mathcal{Z}_{\mathcal{K}}$) by a holomorphic action of $\mathbb{C}^{\frac{m-n}{2}}$ on the same space.

Rem 1. Complex structures on *polytopal* moment-angle manifolds Z_P were described by Bosio and Meersseman. Existence of complex structure on moment-angle manifolds corresponding to complete simplicial fans has been also recently and independently established by Tambour.

Assume m - n is even from now on. We can always achieve this by formally adding an 'empty' one-dimensional cone to Σ ; this corresponds to adding a ghost vertex to \mathcal{K} , or multiplying $\mathcal{Z}_{\mathcal{K}}$ by a circle.

Set $\ell = \frac{m-n}{2}$.

Constr 2. Choose a linear map $\Psi \colon \mathbb{C}^{\ell} \to \mathbb{C}^m$ satisfying the two conditions: (a) $\operatorname{Re} \circ \Psi \colon \mathbb{C}^{\ell} \to \mathbb{R}^m$ is a monomorphism.

(b) $\Lambda_{\mathbb{R}} \circ \operatorname{Re} \circ \Psi = 0.$

The composite map of the top line in the following diagram is zero:

where $|\cdot|$ denotes the map $(z_1, \ldots, z_m) \mapsto (|z_1|, \ldots, |z_m|)$. Now set

$$C_{\Psi,\Sigma} = \exp \Psi(\mathbb{C}^{\ell}) = \left\{ \left(e^{\langle \psi_1, \mathbf{W} \rangle}, \dots, e^{\langle \psi_m, \mathbf{W} \rangle} \right) \in (\mathbb{C}^{\times})^m \right\}$$

where $\mathbf{w} = (w_1, \dots, w_\ell) \in \mathbb{C}^\ell$, ψ_i denotes the *i*th row of the $m \times \ell$ -matrix $\Psi = (\psi_{ij})$.

Then $C_{\Psi,\Sigma} \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup in $(\mathbb{C}^{\times})^m$. It acts on $U(\mathcal{K})$ by holomorphic transformations. **Ex 1.** Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have n = 0, m = 2, $\ell = 1$, and $\Lambda_{\mathbb{R}} \colon \mathbb{R}^2 \to 0$ is a zero map. Let $\Psi \colon \mathbb{C} \to \mathbb{C}^2$ be given by $z \mapsto (z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$C = C_{\Psi,\Sigma} = \left\{ (e^z, e^{\alpha z}) \right\} \subset (\mathbb{C}^{\times})^2.$$

Condition (b) of Constr 2 is void, while (a) is equivalent to that $\alpha \notin \mathbb{R}$. Then exp $\Psi : \mathbb{C} \to (\mathbb{C}^{\times})^2$ is an embedding, and the quotient $(\mathbb{C}^{\times})^2/C$ with the natural complex structure is a complex torus $T_{\mathbb{C}}^2$ with parameter $\alpha \in \mathbb{C}$:

$$(\mathbb{C}^{\times})^2/C \cong \mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z}) = T^2_{\mathbb{C}}(\alpha).$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that $n = 0, m = 2\ell$), we may obtain any complex torus $T_{\mathbb{C}}^{2\ell}$ as the quotient $(\mathbb{C}^{\times})^{2\ell}/C_{\Psi,\Sigma}$.

- **Thm 2.** Let Σ be a complete simplicial fan in \mathbb{R}^n with m one-dimensional cones, and let $\mathcal{K} = \mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Assume that $m n = 2\ell$. Then
- (a) the holomorphic action of the group $C_{\Psi,\Sigma} \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K})/C_{\Psi,\Sigma}$ is a compact complex $(m \ell)$ -manifold;
- (b) there is a \mathbb{T}^m -equivariant diffeomorphism $U(\mathcal{K})/C_{\Psi,\Sigma} \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^m acts holomorphically.

Ex 2 (Hopf manifold). Let Σ be the complete fan in \mathbb{R}^n whose cones are generated by all proper subsets of n + 1 vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n, -\mathbf{e}_1 - \ldots - \mathbf{e}_n$.

To make m - n even we add one 'empty' 1-cone. We have m = n + 2, $\ell = 1$. Then $\Lambda_{\mathbb{R}} \colon \mathbb{R}^{n+2} \to \mathbb{R}^n$ is given by the matrix (0 I - 1), where I is the unit $n \times n$ matrix, and 0, 1 are the *n*-columns of zeros and units respectively.

We have that \mathcal{K} is the boundary of an *n*-dim simplex with n + 1 vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^1 \times S^{2n+1}$, and $U(\mathcal{K}) = \mathbb{C}^{\times} \times (\mathbb{C}^{n+1} \setminus \{0\})$.

Take $\Psi : \mathbb{C} \to \mathbb{C}^{n+2}$, $z \mapsto (z, \alpha z, \dots, \alpha z)$ for some $\alpha \in \mathbb{C}$, $\alpha \notin \mathbb{R}$. Then

$$C = C_{\Psi,\Sigma} = \left\{ (e^z, e^{\alpha z}, \dots, e^{\alpha z}) \colon z \in \mathbb{C} \right\} \subset (\mathbb{C}^{\times})^{n+2},$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K})/C$:

$$\mathbb{C}^{\times} \times \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ (t, \mathbf{w}) \sim (e^{z}t, e^{\alpha z} \mathbf{w}) \right\} \cong \left(\mathbb{C}^{n+1} \setminus \{0\} \right) / \left\{ \mathbf{w} \sim e^{2\pi i \alpha} \mathbf{w} \right\},$$

where $t \in \mathbb{C}^{\times}$, $\mathbf{w} \in \mathbb{C}^{n+1} \setminus \{0\}$. The latter quotient of $\mathbb{C}^{n+1} \setminus \{0\}$ is known as the Hopf manifold.

3. Holomorphic bundles over toric varieties, and Hodge numbers.

Manifolds $\mathcal{Z}_{\mathcal{K}}$ corresponding to complete *regular* simplicial fans are total spaces of holomorphic principal bundles over toric varieties with fibre a complex torus. This allows us to calculate invariants of the complex structures on $\mathcal{Z}_{\mathcal{K}}$.

A toric variety is a normal algebraic variety X on which an algebraic torus $(\mathbb{C}^{\times})^n$ acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,

complete fans $\leftrightarrow \rightarrow$ compact varieties

- normal fans of polytopes $\leftrightarrow \rightarrow$ projective varieties
 - regular fans \leftrightarrow nonsingular varieties

simplicial fans \leftrightarrow orbifolds

 Σ complete, simplicial, rational;

 $\mathbf{a}_1, \ldots, \mathbf{a}_m$ primitive integral generators of 1-cones.

Constr 3 ('Cox construction'). Let $\Lambda_{\mathbb{C}} \colon \mathbb{C}^m \to \mathbb{C}^n$, $\mathbf{e}_i \mapsto \mathbf{a}_i$,

$$\exp \Lambda_{\mathbb{C}} \colon (\mathbb{C}^{\times})^m \to (\mathbb{C}^{\times})^n,$$
$$(z_1, \dots, z_m) \mapsto \left(\prod_{i=1}^m z_i^{a_{i1}}, \dots, \prod_{i=1}^m z_i^{a_{in}}\right)$$

Set $G_{\Sigma} = \operatorname{Ker} \exp \Lambda_{\mathbb{C}}$.

This is an (m - n)-dimensional algebraic subgroup in $(\mathbb{C}^{\times})^m$. It acts almost freely (with finite isotropy subgroups) on $U(\mathcal{K}_{\Sigma})$. If Σ is regular, then $G_{\Sigma} \cong (\mathbb{C}^{\times})^{m-n}$ and the action is free.

 $X_{\Sigma} = U(\mathcal{K}_{\Sigma})/G_{\Sigma}$ the toric variety associated to Σ . The quotient torus $(\mathbb{C}^{\times})^m/G_{\Sigma} \cong (\mathbb{C}^{\times})^n$ acts on X_{Σ} with a dense orbit. Observe that $\mathbb{C}^{\ell} \cong C_{\Psi,\Sigma} \subset G_{\Sigma} \cong (\mathbb{C}^{\times})^m$ as a complex subgroup.

Prop 2.

- (a) The toric variety X_{Σ} is homeomorphic to the quotient of $\mathcal{Z}_{\mathcal{K}_{\Sigma}}$ by the holomorphic action of $G_{\Sigma}/C_{\Psi,\Sigma}$.
- (b) If Σ is regular, then there is a holomorphic principal bundle $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \to X_{\Sigma}$ with fibre the compact complex torus $G_{\Sigma}/C_{\Psi,\Sigma}$ of dimension ℓ .

Rem 2. For singular varieties X_{Σ} the quotient projection $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \to X_{\Sigma}$ is a holomorphic principal Seifert bundle for an appropriate orbifold structure on X_{Σ} .

 $h^{p,q}(M) = \dim H^{p,q}_{\overline{\partial}}(M)$: the Hodge numbers of a complex manifold M.

The Dolbeault cohomology of a complex torus is given by

.1. .1.

$$H^{*,*}_{\overline{\partial}}(T^{2\ell}_{\mathbb{C}}) \cong \Lambda[\xi_1,\ldots,\xi_\ell,\eta_1,\ldots,\eta_\ell],$$

where $\xi_1, \ldots, \xi_\ell \in H^{1,0}_{\overline{\partial}}(T^{2\ell}_{\mathbb{C}}), \eta_1, \ldots, \eta_\ell \in H^{0,1}_{\overline{\partial}}(T^{2\ell}_{\mathbb{C}}).$ Hence, $h^{p,q}(T^{2\ell}_{\mathbb{C}}) = {\ell \choose p} {\ell \choose q}.$

The Dolbeault cohomology of a complete nonsingular toric variety X_{Σ} is given by [Danilov–Jurkiewicz]:

$$H_{\overline{\partial}}^{*,*}(X_{\Sigma}) \cong \mathbb{C}[v_1, \dots, v_m]/(\mathcal{I}_{\mathcal{K}_{\Sigma}} + \mathcal{J}_{\Sigma}),$$

where $v_i \in H_{\overline{\partial}}^{1,1}(X_{\Sigma}),$
 $\mathcal{I}_{\mathcal{K}_{\Sigma}} = \left(v_{i_1} \cdots v_{i_k} \colon \{i_1, \dots, i_k\} \notin \mathcal{K}_{\Sigma}\right)$ (the Stanley–Reisner ideal),
 $\mathcal{J}_{\Sigma} = \left(\sum_{k=1}^m a_{kj} v_k, \quad 1 \leq j \leq n\right).$
We have $h^{p,p}(X_{\Sigma}) = h_p$, where (h_0, h_1, \dots, h_n) is the *h*-vector of \mathcal{K}_{Σ} , and $h^{p,q}(X_{\Sigma}) = 0$ for $p \neq q$.

By an application of the Borel spectral sequence to the holomorphic bundle $\mathcal{Z}_{\mathcal{K}} \to X_{\Sigma}$ we obtain the following description of the Dolbeault cohomology.

Thm 3. Let Σ be a complete rational nonsingular fan. Then the Dolbeault cohomology group $H^{p,q}_{\overline{\partial}}(\mathcal{Z}_{\mathcal{K}})$ is isomorphic to the (p,q)-th cohomology group of the differential bigraded algebra

 $\left[\Lambda[\xi_1,\ldots,\xi_\ell,\eta_1,\ldots,\eta_\ell]\otimes H^{*,*}_{\overline{\partial}}(X_{\Sigma}),d\right]$

whose differential d of bidegree (0,1) is defined on the generators as

$$dv_i = d\eta_j = 0, \quad d\xi_j = c(\xi_j), \quad 1 \leq i \leq m, \ 1 \leq j \leq \ell,$$

where $c: H^{1,0}_{\overline{\partial}}(T^{2\ell}_{\mathbb{C}}) \to H^2(X_{\Sigma}, \mathbb{C}) = H^{1,1}_{\overline{\partial}}(X_{\Sigma})$ is the first Chern class map of the torus principal bundle $\mathcal{Z}_{\mathcal{K}} \to X_{\Sigma}$.

This result may be compared to the analogous description of the ordinary cohomology of $\mathcal{Z}_{\mathcal{K}}$ from [Buchstaber-P]:

Thm 4. $H^*(\mathcal{Z}_{\mathcal{K}})$ is isomorphic to the cohomology of the dga

$$[\Lambda[u_1,\ldots,u_{m-n}]\otimes H^*(X_{\Sigma}),d],$$

with deg $u_i = 1$, deg $v_i = 2$, and differential d defined on the generators as

$$dv_i = 0, \quad du_j = \gamma_{j1}v_1 + \ldots + \gamma_{jm}v_m, \quad 1 \leq i \leq m, \ 1 \leq j \leq m - n.$$

Thm 5. Let $\mathcal{Z}_{\mathcal{K}}$ be as in above, and let k be the number of ghost vertices in \mathcal{K} . Then the Hodge numbers $h^{p,q} = h^{p,q}(\mathcal{Z}_{\mathcal{K}})$ satisfy

(a)
$$\binom{k-\ell}{p} \leq h^{p,0} \leq \binom{[k/2]}{p}$$
 for $p \geq 0$;
(b) $h^{0,q} = \binom{\ell}{q}$ for $q \geq 0$;
(c) $h^{1,q} = (\ell - k)\binom{\ell}{q-1} + h^{1,0}\binom{\ell+1}{q}$ for $q \geq 1$;
(d) $\frac{\ell(3\ell+1)}{2} - h_2(\mathcal{K}) - \ell k + (\ell+1)h^{2,0} \leq h^{2,1} \leq \frac{\ell(3\ell+1)}{2} - \ell k + (\ell+1)h^{2,0}$.

Rem 3. At most one ghost vertex is required to make dim $\mathcal{Z}_{\mathcal{K}} = m + n$ even. Note that $k \leq 1$ implies $h^{p,0}(\mathcal{Z}_{\mathcal{K}}) = 0$, so that $\mathcal{Z}_{\mathcal{K}}$ does not have holomorphic forms of any degree in this case.

If $\mathcal{Z}_{\mathcal{K}}$ is a torus, then $m = k = 2\ell$, and $h^{1,0}(\mathcal{Z}_{\mathcal{K}}) = h^{0,1}(\mathcal{Z}_{\mathcal{K}}) = \ell$. Otherwise Thm 5 implies that $h^{1,0}(\mathcal{Z}_{\mathcal{K}}) < h^{0,1}(\mathcal{Z}_{\mathcal{K}})$, and therefore $\mathcal{Z}_{\mathcal{K}}$ is not Kähler. **Ex 3** (Calabi-Eckmann manifold). Let $\mathcal{K}_{\Sigma} = \partial \Delta^p \times \partial \Delta^q$ with $p \leq q$, so n = p + q, m = n + 2 and $\ell = 1$.

Then $U(\mathcal{K}) = (\mathbb{C}^{p+1} \setminus \{0\}) \times (\mathbb{C}^{q+1} \setminus \{0\})$. Choose $\Psi = (1, \dots, 1, \alpha, \dots, \alpha)^t$ where the number of units is p+1 and $\alpha \notin \mathbb{R}$. Have $\exp \Psi \colon \mathbb{C} \to (\mathbb{C}^{\times})^m$.

This gives $\mathcal{Z}_{\mathcal{K}} = U(\mathcal{K})/\mathbb{C} \cong S^{2p+1} \times S^{2q+1}$ a structure of a complex manifold. It is the total space of a holomorphic principal bundle over $X_{\Sigma} = \mathbb{C}P^p \times \mathbb{C}P^q$ with fibre a complex torus $\mathbb{C}/(\mathbb{Z} \oplus \alpha \mathbb{Z})$, a Calabi–Eckmann manifold CE(p,q).

By Thm 3, $H^{*,*}_{\overline{\partial}}(CE(p,q)) \cong H[\Lambda[\xi,\eta] \otimes \mathbb{C}[x,y]/(x^{p+1},y^{q+1}),d],$ where $dx = dy = d\eta = 0$ and $d\xi = x - y$ for an appropriate choice of x, y. We therefore obtain

$$H^{*,*}_{\overline{\partial}}(CE(p,q)) \cong \Lambda[\omega,\eta] \otimes \mathbb{C}[x]/(x^{p+1}),$$

where $\omega \in H^{q+1,q}_{\overline{\partial}}(CE(p,q))$ is the cohomology class of the cocycle $\xi \frac{x^{q+1}-y^{q+1}}{x-y}$. This calculation is originally due to Borel. **Ex 4.** The product $S^3 \times S^3 \times S^5 \times S^5$ has has two complex structures as a product of Calabi–Eckmann manifolds, namely, $CE(1,1) \times CE(2,2)$ and $CE(1,2) \times CE(1,2)$.

In the first case $h^{2,1} = 1$, and $h^{2,1} = 0$ in the second.

- [BM] Frédéric Bosio and Laurent Meersseman. Real quadrics in \mathbb{C}^n , complex manifolds and convex polytopes. Acta Math. **197** (2006), no. 1, 53–127.
- [BP] Victor Buchstaber and Taras Panov. Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
- [LV] Santiago López de Medrano and Alberto Verjovsky. A new family of complex, compact, non-symplectic manifolds. Bol. Soc. Mat. Brasil. 28 (1997), 253–269.
- [PU] Taras Panov and Yuri Ustinovsky. *Complex-analytic structures on moment-angle manifolds*. Moscow Math. J. **12** (2012), no. 1; arXiv:1008.476
- [Ta] Jérôme Tambour. *LVMB manifolds and simplicial spheres.* Preprint (2010); arXiv:1006.1797.