Non-Kähler complex structures on moment-angle manifolds and other toric spaces

Taras Panov
joint with Yuri Ustinovsky
Moscow State University

Several Complex Variables
Steklov Institute, Moscow, 27 February-3 March 2012

1. Moment-angle complexes and manifolds.

\mathcal{K} an (abstract) simplicial complex on the set $[m]=\{1, \ldots, m\}$.
$I=\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{K}$ a simplex. Always assume $\varnothing \in \mathcal{K}$.
Allow $\{i\} \notin \mathcal{K}$ for some i (ghost vertices).

Consider the unit polydisc in \mathbb{C}^{m},

$$
\mathbb{D}^{m}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}:\left|z_{i}\right| \leqslant 1, \quad i=1, \ldots, m\right\} .
$$

Given $I \subset[m]$, set

$$
B_{I}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{D}^{m}:\left|z_{j}\right|=1 \text { for } j \notin I\right\}
$$

Define the moment-angle complex

$$
\mathcal{Z}_{\mathcal{K}}=\bigcup_{I \in \mathcal{K}} B_{I} \subset \mathbb{D}^{m}
$$

It is invariant under the coordinatewise action of the standard torus

$$
\mathbb{T}^{m}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}:\left|z_{i}\right|=1, \quad i=1, \ldots, m\right\}
$$

on \mathbb{C}^{m}.

Constr 1 (polyhedral product). Given spaces $W \subset X$ and $I \subset[m]$, set

$$
(X, W)^{I}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in X^{m}: x_{j} \in W \text { for } j \notin I\right\} \cong \prod_{i \in I} X \times \prod_{i \notin I} W
$$

and define the polyhedral product of (X, W) as

$$
(X, W)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}(X, W)^{I} \subset X^{m}
$$

Then $\mathcal{Z}_{\mathcal{K}}=(\mathbb{D}, \mathbb{T})^{\mathcal{K}}$, where \mathbb{T} is the unit circle.
Another example is the complement of a coordinate subspace arrangement:

$$
U(\mathcal{K})=\mathbb{C}^{m} \backslash \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}}\left\{z \in \mathbb{C}^{m}: z_{i_{1}}=\ldots=z_{i_{k}}=0\right\}
$$

namely,

$$
U(\mathcal{K})=\left(\mathbb{C}, \mathbb{C}^{\times}\right)^{\mathcal{K}}=\bigcup_{I \in \mathcal{K}}\left(\prod_{i \in I} \mathbb{C} \times \prod_{i \notin I} \mathbb{C}^{\times}\right)
$$

where $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$.
Clearly, $\mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$. Moreover, $\mathcal{Z}_{\mathcal{K}}$ is a \mathbb{T}^{m}-equivariant deformation retract of $U(\mathcal{K})$ for every \mathcal{K} [Buchstaber-P].

Prop 1 ([Buchstaber-P]). Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with m vertices). Then \mathcal{Z}_{K} is a closed manifold of dimension $m+n$.

We refer to such $\mathcal{Z}_{\mathcal{K}}$ as moment-angle manifolds.

If $\mathcal{K}=\mathcal{K}_{P}$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_{P}=\mathcal{Z}_{\mathcal{K}_{P}}$ embeds in \mathbb{C}^{m} as a nondegenerate (transverse) intersection of $m-n$ real quadratic hypersurfaces. Therefore, \mathcal{Z}_{P} can be smoothed canonically.

Now assume \mathcal{K} is the underlying complex of a complete simplicial fan Σ (a starshaped sphere).

A fan is a finite collection $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ of strongly convex cones in \mathbb{R}^{n} such that every face of a cone in Σ belongs to Σ and the intersection of any two cones in Σ is a face of each.

A fan $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ is complete if $\sigma_{1} \cup \ldots \cup \sigma_{s}=\mathbb{R}^{n}$.

Let Σ be a simplicial fan in \mathbb{R}^{n} with m one-dimensional cones generated by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$. Its underlying simplicial complex is

$$
\mathcal{K}_{\Sigma}=\left\{I \subset[m]:\left\{\mathbf{a}_{i}: i \in I\right\} \text { spans a cone of } \Sigma\right\}
$$

Note: Σ is complete iff $\left|\mathcal{K}_{\Sigma}\right|$ is a triangulation of S^{n-1}.

Given Σ with 1-cones generated by $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$, define a map

$$
\wedge_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \quad \mathbf{e}_{i} \mapsto \mathbf{a}_{i}
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$ is the standard basis of \mathbb{R}^{m}. Set

$$
\mathbb{R}_{>}^{m}=\left\{\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}: y_{i}>0\right\}
$$

and define

$$
R_{\Sigma}:=\exp \left(\operatorname{Ker} \wedge_{\mathbb{R}}\right)=\left\{\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}_{>}^{m}: \prod_{i=1}^{m} y_{i}^{\left\langle\mathbf{a}_{i}, \mathbf{u}\right\rangle}=1 \text { for all } \mathbf{u} \in \mathbb{R}^{n}\right\}
$$

$R_{\Sigma} \subset \mathbb{R}_{>}^{m}$ acts on $U\left(\mathcal{K}_{\Sigma}\right) \subset \mathbb{C}^{m}$ by coordinatewise multiplications.
Thm 1. Let Σ be a complete simplicial fan in \mathbb{R}^{n} with m one-dimensional cones, and let $\mathcal{K}=\mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Then
(a) the group $R_{\Sigma} \cong \mathbb{R}^{m-n}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K}) / R_{\Sigma}$ is a smooth $(m+n)$-dimensional manifold;
(b) $U(\mathcal{K}) / R_{\Sigma}$ is \mathbb{T}^{m}-equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

2. Complex-analytic structures.

We shall show that the even-dimensional moment-angle manifold $\mathcal{Z}_{\mathcal{K}}$ corresponding to a complete simplicial fan admits a structure of a complex manifold. The idea is to replace the action of $\mathbb{R}_{>}^{m-n}$ on $U(\mathcal{K})$ (whose quotient is $\mathcal{Z}_{\mathcal{K}}$) by a holomorphic action of $\mathbb{C}^{\frac{m-n}{2}}$ on the same space.

Rem 1. Complex structures on polytopal moment-angle manifolds \mathcal{Z}_{P} were described by Bosio and Meersseman. Existence of complex structure on moment-angle manifolds corresponding to complete simplicial fans has been also recently and independently established by Tambour.

Assume $m-n$ is even from now on. We can always achieve this by formally adding an 'empty' one-dimensional cone to Σ; this corresponds to adding a ghost vertex to \mathcal{K}, or multiplying $\mathcal{Z}_{\mathcal{K}}$ by a circle.

Set $\ell=\frac{m-n}{2}$.

Constr 2. Choose a linear map $\Psi: \mathbb{C}^{\ell} \rightarrow \mathbb{C}^{m}$ satisfying the two conditions:
(a) Reow: $\mathbb{C}^{\ell} \rightarrow \mathbb{R}^{m}$ is a monomorphism.
(b) $\Lambda_{\mathbb{R}} \circ \operatorname{Re} \circ \Psi=0$.

The composite map of the top line in the following diagram is zero:

where $|\cdot|$ denotes the $\operatorname{map}\left(z_{1}, \ldots, z_{m}\right) \mapsto\left(\left|z_{1}\right|, \ldots,\left|z_{m}\right|\right)$. Now set

$$
C_{\Psi, \Sigma}=\exp \Psi\left(\mathbb{C}^{\ell}\right)=\left\{\left(e^{\left\langle\psi_{1}, \mathbf{w}\right\rangle}, \ldots, e^{\left\langle\psi_{m}, \mathbf{w}\right\rangle}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\right\}
$$

where $\mathbf{w}=\left(w_{1}, \ldots, w_{\ell}\right) \in \mathbb{C}^{\ell}, \quad \psi_{i}$ denotes the i th row of the $m \times \ell$-matrix $\Psi=\left(\psi_{i j}\right)$.

Then $C_{\Psi, \Sigma} \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup in $\left(\mathbb{C}^{\times}\right)^{m}$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Ex 1. Let \mathcal{K} be empty on 2 elements (that is, \mathcal{K} has two ghost vertices). We therefore have $n=0, m=2, \ell=1$, and $\wedge_{\mathbb{R}}: \mathbb{R}^{2} \rightarrow 0$ is a zero map. Let $\Psi: \mathbb{C} \rightarrow \mathbb{C}^{2}$ be given by $z \mapsto(z, \alpha z)$ for some $\alpha \in \mathbb{C}$, so that

$$
C=C_{\Psi, \Sigma}=\left\{\left(e^{z}, e^{\alpha z}\right)\right\} \subset\left(\mathbb{C}^{\times}\right)^{2}
$$

Condition (b) of Constr 2 is void, while (a) is equivalent to that $\alpha \notin \mathbb{R}$. Then $\exp \Psi: \mathbb{C} \rightarrow\left(\mathbb{C}^{\times}\right)^{2}$ is an embedding, and the quotient $\left(\mathbb{C}^{\times}\right)^{2} / C$ with the natural complex structure is a complex torus $T_{\mathbb{C}}^{2}$ with parameter $\alpha \in \mathbb{C}$:

$$
\left(\mathbb{C}^{\times}\right)^{2} / C \cong \mathbb{C} /(\mathbb{Z} \oplus \alpha \mathbb{Z})=T_{\mathbb{C}}^{2}(\alpha)
$$

Similarly, if \mathcal{K} is empty on 2ℓ elements (so that $n=0, m=2 \ell$), we may obtain any complex torus $T_{\mathbb{C}}^{2 \ell}$ as the quotient $\left(\mathbb{C}^{\times}\right)^{2 \ell} / C_{\Psi, \Sigma}$.

Thm 2. Let Σ be a complete simplicial fan in \mathbb{R}^{n} with m one-dimensional cones, and let $\mathcal{K}=\mathcal{K}_{\Sigma}$ be its underlying simplicial complex. Assume that $m-n=2 \ell$. Then
(a) the holomorphic action of the group $C_{\Psi, \Sigma} \cong \mathbb{C}^{\ell}$ on $U(\mathcal{K})$ is free and proper, so the quotient $U(\mathcal{K}) / C_{\Psi, \Sigma}$ is a compact complex $(m-\ell)$-manifold;
(b) there is a \mathbb{T}^{m}-equivariant diffeomorphism $U(\mathcal{K}) / C_{\Psi, \Sigma} \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^{m} acts holomorphically.

Ex 2 (Hopf manifold). Let Σ be the complete fan in \mathbb{R}^{n} whose cones are generated by all proper subsets of $n+1$ vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n},-\mathbf{e}_{1}-\ldots-\mathbf{e}_{n}$.

To make $m-n$ even we add one 'empty' 1-cone. We have $m=n+2, \ell=1$. Then $\wedge_{\mathbb{R}}: \mathbb{R}^{n+2} \rightarrow \mathbb{R}^{n}$ is given by the matrix $(0 I-1)$, where I is the unit $n \times n$ matrix, and $\mathbf{0 , 1}$ are the n-columns of zeros and units respectively.

We have that \mathcal{K} is the boundary of an n-dim simplex with $n+1$ vertices and 1 ghost vertex, $\mathcal{Z}_{\mathcal{K}} \cong S^{1} \times S^{2 n+1}$, and $U(\mathcal{K})=\mathbb{C}^{\times} \times\left(\mathbb{C}^{n+1} \backslash\{0\}\right)$.

Take $\psi: \mathbb{C} \rightarrow \mathbb{C}^{n+2}, z \mapsto(z, \alpha z, \ldots, \alpha z)$ for some $\alpha \in \mathbb{C}, \alpha \notin \mathbb{R}$. Then

$$
C=C_{\Psi, \Sigma}=\left\{\left(e^{z}, e^{\alpha z}, \ldots, e^{\alpha z}\right): z \in \mathbb{C}\right\} \subset\left(\mathbb{C}^{\times}\right)^{n+2}
$$

and $\mathcal{Z}_{\mathcal{K}}$ acquires a complex structure as the quotient $U(\mathcal{K}) / C$:

$$
\mathbb{C}^{\times} \times\left(\mathbb{C}^{n+1} \backslash\{0\}\right) /\left\{(t, \mathbf{w}) \sim\left(e^{z} t, e^{\alpha z} \mathbf{w}\right)\right\} \cong\left(\mathbb{C}^{n+1} \backslash\{0\}\right) /\left\{\mathbf{w} \sim e^{2 \pi i \alpha} \mathbf{w}\right\}
$$

where $t \in \mathbb{C}^{\times}, \mathbf{w} \in \mathbb{C}^{n+1} \backslash\{0\}$. The latter quotient of $\mathbb{C}^{n+1} \backslash\{0\}$ is known as the Hopf manifold.

3. Holomorphic bundles over toric varieties, and Hodge numbers.

Manifolds $\mathcal{Z}_{\mathcal{K}}$ corresponding to complete regular simplicial fans are total spaces of holomorphic principal bundles over toric varieties with fibre a complex torus. This allows us to calculate invariants of the complex structures on $\mathcal{Z}_{\mathcal{K}}$.

A toric variety is a normal algebraic variety X on which an algebraic torus $\left(\mathbb{C}^{\times}\right)^{n}$ acts with a dense (Zariski open) orbit.

Toric varieties are classified by rational fans. Under this correspondence,
complete fans \longleftrightarrow compact varieties
normal fans of polytopes \longleftrightarrow projective varieties
regular fans \longleftrightarrow nonsingular varieties
simplicial fans \longleftrightarrow orbifolds
Σ complete, simplicial, rational;
$\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ primitive integral generators of 1 -cones.

Constr 3 ('Cox construction'). Let $\wedge_{\mathbb{C}}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}, \mathbf{e}_{i} \mapsto \mathbf{a}_{i}$,

$$
\begin{aligned}
\exp \wedge_{\mathbb{C}}:\left(\mathbb{C}^{\times}\right)^{m} & \rightarrow\left(\mathbb{C}^{\times}\right)^{n} \\
\left(z_{1}, \ldots, z_{m}\right) & \mapsto\left(\prod_{i=1}^{m} z_{i}^{a_{i 1}}, \ldots, \prod_{i=1}^{m} z_{i}^{a_{i n}}\right)
\end{aligned}
$$

Set $G_{\Sigma}=\operatorname{Ker} \exp \wedge_{\mathbb{C}}$. This is an $(m-n)$-dimensional algebraic subgroup in $\left(\mathbb{C}^{\times}\right)^{m}$. It acts almost freely (with finite isotropy subgroups) on $U\left(\mathcal{K}_{\Sigma}\right)$. If Σ is regular, then $G_{\Sigma} \cong\left(\mathbb{C}^{\times}\right)^{m-n}$ and the action is free.
$X_{\Sigma}=U\left(\mathcal{K}_{\Sigma}\right) / G_{\Sigma}$ the toric variety associated to Σ.
The quotient torus $\left(\mathbb{C}^{\times}\right)^{m} / G_{\Sigma} \cong\left(\mathbb{C}^{\times}\right)^{n}$ acts on X_{Σ} with a dense orbit.

Observe that $\mathbb{C}^{\ell} \cong C_{\Psi, \Sigma} \subset G_{\Sigma} \cong\left(\mathbb{C}^{\times}\right)^{m}$ as a complex subgroup.

Prop 2.

(a) The toric variety X_{Σ} is homeomorphic to the quotient of $\mathcal{Z}_{\mathcal{K}_{\Sigma}}$ by the holomorphic action of $G_{\Sigma} / C_{\Psi, \Sigma}$.
(b) If Σ is regular, then there is a holomorphic principal bundle $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \rightarrow X_{\Sigma}$ with fibre the compact complex torus $G_{\Sigma} / C_{\Psi, \Sigma}$ of dimension ℓ.

Rem 2. For singular varieties X_{Σ} the quotient projection $\mathcal{Z}_{\mathcal{K}_{\Sigma}} \rightarrow X_{\Sigma}$ is a holomorphic principal Seifert bundle for an appropriate orbifold structure on X_{Σ}.
$h^{p, q}(M)=\operatorname{dim} H_{\bar{\partial}}^{p, q}(M)$: the Hodge numbers of a complex manifold M.
The Dolbeault cohomology of a complex torus is given by

$$
H_{\bar{\partial}}^{*, *}\left(T_{\mathbb{C}}^{2 \ell}\right) \cong \wedge\left[\xi_{1}, \ldots, \xi_{\ell}, \eta_{1}, \ldots, \eta_{\ell}\right],
$$

where $\xi_{1}, \ldots, \xi_{\ell} \in H_{\bar{\partial}}^{1,0}\left(T_{\mathbb{C}}^{2 \ell}\right), \eta_{1}, \ldots, \eta_{\ell} \in H_{\bar{\partial}}^{0,1}\left(T_{\mathbb{C}}^{2 \ell}\right)$. Hence, $h^{p, q}\left(T_{\mathbb{C}}^{2 \ell}\right)=\binom{\ell}{p}\binom{\ell}{q}$.
The Dolbeault cohomology of a complete nonsingular toric variety X_{Σ} is given by [Danilov-Jurkiewicz]:

$$
H_{\bar{\partial}}^{*, *}\left(X_{\Sigma}\right) \cong \mathbb{C}\left[v_{1}, \ldots, v_{m}\right] /\left(\mathcal{I}_{\mathcal{K}_{\Sigma}}+\mathcal{J}_{\Sigma}\right),
$$

where $v_{i} \in H_{\bar{\partial}}^{1,1}\left(X_{\Sigma}\right)$,
$\mathcal{I}_{\mathcal{K}_{\Sigma}}=\left(v_{i_{1}} \cdots v_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}_{\Sigma}\right)$ (the Stanley-Reisner ideal),
$\mathcal{J}_{\Sigma}=\left(\sum_{k=1}^{m} a_{k j} v_{k}, \quad 1 \leqslant j \leqslant n\right)$.
We have $h^{p, p}\left(X_{\Sigma}\right)=h_{p}$, where $\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ is the h-vector of \mathcal{K}_{Σ}, and $h^{p, q}\left(X_{\Sigma}\right)=0$ for $p \neq q$.

By an application of the Borel spectral sequence to the holomorphic bundle $\mathcal{Z}_{\mathcal{K}} \rightarrow X_{\Sigma}$ we obtain the following description of the Dolbeault cohomology.

Thm 3. Let Σ be a complete rational nonsingular fan. Then the Dolbeault cohomology group $H_{\bar{\partial}}^{p, q}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is isomorphic to the (p, q)-th cohomology group of the differential bigraded algebra

$$
\left[\wedge\left[\xi_{1}, \ldots, \xi_{\ell}, \eta_{1}, \ldots, \eta_{\ell}\right] \otimes H_{\bar{\partial}}^{*, *}\left(X_{\Sigma}\right), d\right]
$$

whose differential d of bidegree $(0,1)$ is defined on the generators as

$$
d v_{i}=d \eta_{j}=0, \quad d \xi_{j}=c\left(\xi_{j}\right), \quad 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant \ell
$$

where $c: H_{\bar{\partial}}^{1,0}\left(T_{\mathbb{C}}^{2 \ell}\right) \rightarrow H^{2}\left(X_{\Sigma}, \mathbb{C}\right)=H_{\bar{\partial}}^{1,1}\left(X_{\Sigma}\right)$ is the first Chern class map of the torus principal bundle $\mathcal{Z}_{\mathcal{K}} \rightarrow X_{\Sigma}$.

This result may be compared to the analogous description of the ordinary cohomology of $\mathcal{Z}_{\mathcal{K}}$ from [Buchstaber-P]:
Thm 4. $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ is isomorphic to the cohomology of the dga

$$
\left[\wedge\left[u_{1}, \ldots, u_{m-n}\right] \otimes H^{*}\left(X_{\Sigma}\right), d\right]
$$

with deg $u_{j}=1$, deg $v_{i}=2$, and differential d defined on the generators as

$$
d v_{i}=0, \quad d u_{j}=\gamma_{j 1} v_{1}+\ldots+\gamma_{j m} v_{m}, \quad 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant m-n
$$

Thm 5. Let $\mathcal{Z}_{\mathcal{K}}$ be as in above, and let k be the number of ghost vertices in \mathcal{K}. Then the Hodge numbers $h^{p, q}=h^{p, q}\left(\mathcal{Z}_{\mathcal{K}}\right)$ satisfy
(a) $\binom{k-\ell}{p} \leqslant h^{p, 0} \leqslant\binom{[k / 2]}{p}$ for $p \geqslant 0$;
(b) $h^{0, q}=\binom{\ell}{q}$ for $q \geqslant 0$;
(c) $h^{1, q}=(\ell-k)\binom{\ell}{q-1}+h^{1,0}\binom{\ell+1}{q}$ for $q \geqslant 1$;
(d) $\frac{\ell(3 \ell+1)}{2}-h_{2}(\mathcal{K})-\ell k+(\ell+1) h^{2,0} \leqslant h^{2,1} \leqslant \frac{\ell(3 \ell+1)}{2}-\ell k+(\ell+1) h^{2,0}$.

Rem 3. At most one ghost vertex is required to make $\operatorname{dim} \mathcal{Z}_{\mathcal{K}}=m+n$ even. Note that $k \leqslant 1$ implies $h^{p, 0}\left(\mathcal{Z}_{\mathcal{K}}\right)=0$, so that $\mathcal{Z}_{\mathcal{K}}$ does not have holomorphic forms of any degree in this case.

If $\mathcal{Z}_{\mathcal{K}}$ is a torus, then $m=k=2 \ell$, and $h^{1,0}\left(\mathcal{Z}_{\mathcal{K}}\right)=h^{0,1}\left(\mathcal{Z}_{\mathcal{K}}\right)=\ell$. Otherwise Thm 5 implies that $h^{1,0}\left(\mathcal{Z}_{\mathcal{K}}\right)<h^{0,1}\left(\mathcal{Z}_{\mathcal{K}}\right)$, and therefore $\mathcal{Z}_{\mathcal{K}}$ is not Kähler.

Ex 3 (Calabi-Eckmann manifold). Let $\mathcal{K}_{\Sigma}=\partial \Delta^{p} \times \partial \Delta^{q}$ with $p \leqslant q$, so $n=$ $p+q, m=n+2$ and $\ell=1$.

Then $U(\mathcal{K})=\left(\mathbb{C}^{p+1} \backslash\{0\}\right) \times\left(\mathbb{C}^{q+1} \backslash\{0\}\right)$. Choose $\psi=(1, \ldots, 1, \alpha, \ldots, \alpha)^{t}$ where the number of units is $p+1$ and $\alpha \notin \mathbb{R}$. Have $\exp \Psi: \mathbb{C} \rightarrow\left(\mathbb{C}^{\times}\right)^{m}$.

This gives $\mathcal{Z}_{\mathcal{K}}=U(\mathcal{K}) / \mathbb{C} \cong S^{2 p+1} \times S^{2 q+1}$ a structure of a complex manifold. It is the total space of a holomorphic principal bundle over $X_{\Sigma}=\mathbb{C} P^{p} \times \mathbb{C} P^{q}$ with fibre a complex torus $\mathbb{C} /(\mathbb{Z} \oplus \alpha \mathbb{Z})$, a Calabi-Eckmann manifold $\operatorname{CE}(p, q)$.

By Thm 3, $\quad H_{\vec{\partial}}^{*, *}(C E(p, q)) \cong H\left[\wedge[\xi, \eta] \otimes \mathbb{C}[x, y] /\left(x^{p+1}, y^{q+1}\right), d\right]$, where $d x=d y=d \eta=0$ and $d \xi=x-y$ for an appropriate choice of x, y. We therefore obtain

$$
H_{\bar{\partial}}^{*, *}(C E(p, q)) \cong \wedge[\omega, \eta] \otimes \mathbb{C}[x] /\left(x^{p+1}\right),
$$

where $\omega \in H_{\overline{\bar{\partial}}}^{\underline{q}+1, q}(C E(p, q))$ is the cohomology class of the cocycle $\xi \frac{x^{q+1}-y^{q+1}}{x-y}$. This calculation is originally due to Borel.

Ex 4. The product $S^{3} \times S^{3} \times S^{5} \times S^{5}$ has has two complex structures as a product of Calabi-Eckmann manifolds, namely, $\operatorname{CE}(1,1) \times \operatorname{CE}(2,2)$ and $C E(1,2) \times C E(1,2)$.

In the first case $h^{2,1}=1$, and $h^{2,1}=0$ in the second.
[BM] Frédéric Bosio and Laurent Meersseman. Real quadrics in \mathbb{C}^{n}, complex manifolds and convex polytopes. Acta Math. 197 (2006), no. 1, 53-127.
[BP] Victor Buchstaber and Taras Panov. Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
[LV] Santiago López de Medrano and Alberto Verjovsky. A new family of complex, compact, non-symplectic manifolds. Bol. Soc. Mat. Brasil. 28 (1997), 253-269.
[PU] Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. 12 (2012), no. 1; arXiv:1008.476
[Ta] Jérôme Tambour. LVMB manifolds and simplicial spheres. Preprint (2010); arXiv:1006.1797.

