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1. Combinatorics.

K simplicial complex on the set [m] = {1, . . . ,m}
(A collection of subsets in [m] closed under inclusion).

I = {i1, . . . , ik} ∈ K a simplex (or face) of dimension k − 1.
Always assume ∅ ∈ K.

fi = fi (K) the number of faces (simplices) of dimension i .
Let dimK = n − 1.

f (K) = (f0, f1, . . . , fn−1) the f -vector. f0 = m.
The h-vector h(K) = (h0, h1 . . . , hn) is de�ned from the identity

h0t
n + h1t

n−1 + · · ·+ hn = (t − 1)n + f0(t − 1)n−1 + · · ·+ fn−1.

K is a triangulated sphere if |K| ∼= Sn−1.
Example: the boundary of a convex n-dimensional simplicial polytope.
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Restrictions on the number of faces

Question: how to characterise the f -vectors (or h-vectors) for interesting
classes of simplicial complexes (e.g., polytopes, triangulated spheres or
triangulated manifolds)?

Examples of restrictions on f (K):

f0 − f1 + . . .+ (−1)n−1fn−1 = χ(K) ⇐⇒ hn − h0 = χ(K)− χ(Sn−1);

2fn−2 = nfn−1 if K is a triangulated sphere or manifold;

hi = hn−i if |K| ∼= Sn−1 (Dehn�Sommerville relations);

f1 6
(
f0
2

)
;

f0 > n + 1 ⇐⇒ h0 6 h1 if |K| ∼= Sn−1;

f1 > nf0 −
(
n+1
2

)
⇐⇒ h1 6 h2 if |K| ∼= Sn−1.
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Theorem (Billera�Lee, Stanley, 1980)

The following conditions are necessary and su�cient for a collection

(f0, f1, . . . , fn−1) to be the f -vector of a simplicial polytope:

(a) hi = hn−i for i = 0, . . . , n;
(b) h0 6 h1 6 h2 6 . . . 6 h[n/2];

(c) . . . (a restriction on the growth of hi ).

In the proof, a projective toric variety XP is assigned to a polytope P . The
cohomology of XP satis�es

dimH2i (XP ,Q) = hi (P).

Then (a) follows from Poincar�e duality, while (b) and (c) follow from the
Hard Lefschetz Theorem for projective varieties.

Problem (McMullen's conjecture)

Is it true that the same conditions (a)�(b) characterise the f -vectors of
triangulated spheres?
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How to obtain triangulations which do not arise from polytopes?

There are classical examples:

Barnette sphere and Br�uckner sphere in dimension 3;

Double suspension on the Poncar�e sphere in dimension 5.

More examples can be constructed using the operations of suspension, join,
and bistellar moves (or �ips).
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Bistellar moves in dimension 2 and 3
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Theorem (Pachner)

Two triangulated manifolds are piecewise linearly equivalent if and only if

one can be taken into another by a sequence of bistellar moves.

It follows that if we start with a non-piecewise-linear sphere triangulation
(e.g., from the double suspension of the Poincar�e sphere) and apply
bistellar moves to it, then we never end up in a polytopal triangulation.

The behaviour of the h-vector under bistellar moves is easily controlled.
There are software packages (Bistellar) executing this procedure.

However, no counterexamples to McMullen's conjecture have been found
yet on this way...
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2. Topology.

Consider a unit polydisc in Cm:

Dm =
{

(z1, . . . , zm) ∈ Cm : |zi | 6 1
}
.

For each I = {i1, . . . , ik} ⊂ [m], set

BI :=
{

(z1, . . . , zm) ∈ Dm : |zj | = 1 for j /∈ I
}
.

De�ne the moment-angle complex

ZK =
⋃
I∈K

BI ⊂ Dm

It is an invariant subset with respect to the coordinatewise action of the
standard torus

Tm =
{

(z1, . . . , zm) ∈ Cm : |zi | = 1, i = 1, . . . ,m
}
.
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Given a pair of subsets W ⊂ X and I ⊂ [m], set

(X ,W )I =
{

(x1, . . . , xm) ∈ Xm : xj ∈W for j /∈ I
} ∼= ∏

i∈I
X ×

∏
i /∈I

W ,

and de�ne the polyhedral product of the pair (X ,W ) by

(X ,W )K =
⋃
I∈K

(X ,W )I ⊂ Xm.

Then ZK = (D, S)K, where S is the unit circle.
Another example: the complement of a coordinate subspace arrangement

U(K) = Cm \
⋃

{i1,...,ik}/∈K

{z ∈ Cm : zi1 = . . . = zik = 0}

= (C,C×)K =
⋃
I∈K

(∏
i∈I

C×
∏
i /∈I

C×
)
,

where C× = C \ {0}. Clearly, ZK ⊂ U(K).

Theorem (Buchstaber�Panov)

(a) There is a deformation retraction U(K)→ ZK;
(b) Let |K| ∼= Sn−1. Then ZK is manifold.

Buchstaber, Gaifullin, Panov (MSU) Toric Topology Yaroslavl, 15.03.2012 10 / 29



3. Combinatorial commutative algebra.

K a simplicial complex on [m] = {1, 2, . . . ,m}.
The face ring (or the Stanley�Reisner ring) of K is

Z[K] = Z[v1, . . . , vm]
/(

vi1 · · · vik : {i1, . . . , ik} /∈ K
)
, deg vi = 2.

Theorem (Buchstaber�Panov)

There is an isomorphism of (bi)graded algebras

H∗(ZK) ∼= TorZ[v1,...,vm]

(
Z[K],Z

)
.

Corollary

If K is a triangulation of an (n − 1)-dimensional manifolds, then Poincar�e

duality for ZK implies the relations

hn−i − hi = (−1)i
(
χ(K)− χ(Sn−1)

)(
n
i

)
(the generalised Dehn�Sommerville relations).
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The dimensions of the bigraded components of the Tor-groups,

β−i ,2j(Z[K]) := dimTor
−i ,2j
Z[v1,...,vm]

(
Z[K],Z

)
are subtle combinatorial invariants of K.

The face numbers of K are expressed in terms of β−i ,2j(Z[K]).

The bigraded Betti numbers β−i ,2j(Z[K]) can be also computed via the
simplicial cohomology of K:

Theorem (Hochster)

Tor
−i ,2j
Z[v1,...,vm](Z[K ],Z) ∼=

⊕
J⊂[m], |J|=j

H̃ j−i−1(K |J),

where K |J is the full subcomplex (the restriction of K to J ⊂ {1, . . . ,m}).

The numbers β−i ,2j(Z[K]) can be also computed e�ectively using the
commutative algebra software package Macaulay 2.
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4. Bistellar moves in topology and geometry
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Theorem (Pachner, 1987)

For any two PL homeomorphic triangulations of the same manifold, the

�rst one can be transformed to the second one by a �nite sequence of

bistellar moves and simplicial isomorphisms.
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Applications of bistellar moves, stellar subdivisions, and
related operations

1 Construction of a local combinatorial formula for the �rst rational
Pontryagin class of a triangulated manifold (Gaifullin, 2004).

2 The well-known Gal conjecture on the properties of the face numbers
of �ag simple polytopes is proved for the case of nestohedra (Volodin,
2010). Precise lower and upper bounds for the �ag numbers are
proved for many important families of �ag simple polytopes, which
appear in di�erent areas of mathematics. (Buchstaber�Volodin, 2011).
These estimates are based on the fact that all polytopes in these
families can be obtained from a cube by conseñutive truncations of
codimension 2 faces.

3 The formulae for the numbers of multiplicative generators in a given
dimension of the rings of �ag vectors of convex polytopes
(Buchstaber-Erokhovets, 2011).
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Applications of bistellar moves, stellar subdivisions, and
related operations

4 Existence of a formula for the volume of a simplicial 4-dimensional
polyhedron from its combinatorial structure and the set of its edge
lengths. The volume of an arbitrary �exible 4-dimensional polyhedron
is constant. (Gaifullin, 2011)
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Combinatorial computation of the Pontryagin classes

Pontryagin classes are classical invariants of manifolds. Their
de�nition uses a smooth structure on the manifold.

In 1957/58 Rokhlin-Shvarts and, independently, Thom proved the
invariance of the rational Pontryagin classes under PL
homeomorphisms. This result leads naturally to the problem of
combinatorial computation of the rational Pontryagin classes of a
manifold from a triangulation of it.

Important results on this problem have been obtained by
Gabrielov�Gelfand�Losik (1975), MacPherson (1977), Levitt-Rourke
(1978), Cheeger (1983), Gelfand�MacPherson (1992). However, a
complete solution has not been achieved.
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Theorem (Gaifullin, 2004)

1 There exists an explicit algorythm that for any (oriented)

m-dimensional combinatorial manifold K, computes an

(m − 4)-dimensional simplicial cycle Z ∈ Cm−4(K ,Q) representing the

Poincar�e dual of the �rst Pontryagin class of K.

2 The cycle Z is computed from the triangulation K locally. This means

that
Z =

∑
dimσ=m−4

cσσ,

where the coe�cient cσ depends only on the combinatorial structure

of the triangulation K in a neighbourhood of a simplex σ. To be more

precise, cσ depends only on the combinatorial structure of the link Lσ
of σ in K. (Lσ is a triangulation of a 3-sphere.)

3 To compute the coe�cient cσ one needs to transform Lσ to the

boundary of a 4-simplex by means of bistellar moves:

Lσ = L1  L2  · · · Lk = ∂∆4

and then to take the sum of contributions of all these bistellar moves.
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Heron's formula
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Cayley�Menger formula

Let ∆ ⊂ Rn be an n-dimensional simplex with vertices p0, p1, . . . , pn and
let `ij be the length of the edge pipj .

The Cayley�Menger determinant is given by

CM(p0, . . . , pn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 · · · 1
1 0 `201 `202 · · · `20n
1 `201 0 `212 · · · `21n
1 `202 `212 0 · · · `22n
...

...
...

...
. . .

...
1 `20n `21n `22n · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Then

V 2(∆) =
(−1)n+1

2n(n!)2
CM(p0, . . . , pn).
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Computation of the volume of a simplicial polyhedron

Problem

Suppose n > 3. For a given simplicial n-dimensional polyhedron in Rn, can

we �nd a formula for its volume in terms of its edge lengths?

Equivalent problem

Suppose n > 3. For a given n-dimensional polyhedron in Rn, can we �nd a
formula for its volume in terms of the intrinsic metrics of the faces, that is,
in terms of the lengths of edges and diagonals of faces?

�There is a formula� means that the volume is a root of a polynomial

VN + a1(`)VN−1 + · · ·+ aN(`) = 0,

where aj are polynomials in the edge lengths of the polyhedron.

n = 3: YES, Sabitov, 1996.

n = 4: YES, Gaifullin, 2011.

n > 5: UNKNOWN
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What is a simplicial polyhedron in R4?

Naive answer: A region bounded by a closed 3-dimensional triangulated
polyhedral surface.

More general answer: The boundary of a polyhedron is a 3-dimensional
cycle in R4, i. e., a formal linear combination (with integral coe�cients) of
oriented convex 3-simplices in R4 such that its algebraic boundary is zero.

For any such manifold the generalised volume can be de�ned.

@
@
@
@
@�

�
�
�
�
@

@
@

@
@

�
�
�
�
�

?�
�
��

@
@
@I

�
�
��

@
@
@I

1

1

1

1

2−1 +1

Buchstaber, Gaifullin, Panov (MSU) Toric Topology Yaroslavl, 15.03.2012 21 / 29



Main ideas of the proof (n = 4)

Theorem (Gaifullin, 2011)

For each combinatorial type of polyhedra there exists a polynomial relation

Q(V , `) = VN + a1(`)VN−1 + a2(`)VN−2 + . . .+ aN(`)

between the volume V of a polyhedron and the set ` of edge lengths of a

polyhedron. Here aj(`) are polynomials in edge lengths with rational

coe�cients.

The proof of this theorem by induction on the number of vertices, then on
the smallest vertex degree, etc. To simplify a polyhedron the following
moves are used:
We can add (subtract) the boundary of a 4-dimensional convex simplex
in R4 to the boundary of the polyhedron.

These moves are natural analogues of bistellar moves.

Buchstaber, Gaifullin, Panov (MSU) Toric Topology Yaroslavl, 15.03.2012 22 / 29



Flexible polyhedra

De�nition

A �ex of a polyhedron P is a continuous family of polyhedra Pt , 0 6 t 6 1,
of the same combinatorial type such that P0 = P , the edge lengths of the
polyhedra Pt are constant, and the polyhedra Pt1 and Pt2 are not
congruent unless t1 = t2.

The Cauchy Theorem: No convex polyhedron is �exible.

Bricard, 1897: Flexible self-intersected octahedra.

Connelly, 1977: First example of a �exible embedded polyhedron.

Ste�en, 1978: The simplest known �exible embedded polyhedron.

Fogelsanger, 1988: Polyhedra in general position are not �exible.

Walz, 1998, Stachel, 2000: Flexible 4-dimensional cross-polytopes.

It is unknown if �exible polyhedra exist in Rn, n > 5.
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Bricard's �exible octahedron of the �rst type
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Bricard's �exible octahedron of the second type
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Connelly's �exible polyhedron. The �rst example of an
embedded �exible polyhedron
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Ste�en's �exible polyhedron. The simplest known embedded
�exible polyhedron
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The Bellows Conjecture

Conjecture (≈1978)
The generalized volume V (Pt) of a �exible polyhedron is constant.

Theorem
1 (Sabitov, 1996) The Bellows Conjecture is valid in dimension 3.

2 (Gaifullin, 2011) The Bellows Conjecture is valid in dimension 4.
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