Geometric structures on moment-angle manifolds

Taras Panov

Moscow State University

based on joint works with Victor Buchstaber, Andrey Mironov, and Yuri Ustinovsky

> 80th Transpennine Topology Triangle meeting Manchester, 14 July 2011

Intersections of quadrics.

Given a set of m vectors

$$\Gamma = \{ \gamma_k = (\gamma_{1,k}, \dots, \gamma_{m-n,k})^t \in \mathbb{R}^{m-n}, \quad k = 1, \dots, m \},\$$

and a vector $\mathbf{c} = (c_1, \ldots, c_{m-n})^t \in \mathbb{R}^{m-n}$, we consider the following intersections of m - n real quadrics \mathbb{R}^m and \mathbb{C}^m :

$$\mathcal{R}_{\Gamma} = \Big\{ \boldsymbol{u} = (u_1, \dots, u_m) \in \mathbb{R}^m \colon \sum_{k=1}^m \gamma_{jk} u_k^2 = c_j, \quad \text{for } 1 \leq j \leq m-n \Big\},$$

$$\mathcal{Z}_{\Gamma} = \Big\{ \mathbf{Z} = (z_1, \dots, z_m) \in \mathbb{C}^m \colon \sum_{k=1}^m \gamma_{jk} |z_k|^2 = c_j, \quad \text{for } 1 \leq j \leq m-n \Big\}.$$

Prop 1. Intersections of quadrics \mathcal{R}_{Γ} and \mathcal{Z}_{Γ} are nonempty and nondegenerate if and only if the following two conditions are satisfied:

(a)
$$\boldsymbol{c} \in \sigma \langle \gamma_1, \ldots, \gamma_m \rangle$$
;

(b) if
$$\boldsymbol{c} \in \sigma \langle \gamma_{i_1}, \dots \gamma_{i_k} \rangle$$
, then $k \ge m - n$.

Under these conditions, \mathcal{R}_{Γ} and \mathcal{Z}_{Γ} are smooth submanifolds in \mathbb{R}^m and \mathbb{C}^m of dimension n and m + n respectively, and the vectors $\gamma_1, \ldots, \gamma_m$ span \mathbb{R}^{m-n} .

From now on we assume that the conditions of Proposition 1 are satisfied. Moreover, we assume that

(c) the vectors $\gamma_1, \ldots, \gamma_m$ generate a lattice L in \mathbb{R}^{m-n} .

Let

$$L^* = \{\lambda^* \in \mathbb{R}^{m-n} \colon \langle \lambda^*, \lambda \rangle \in \mathbb{Z} \text{ for all } \lambda \in L\}$$

be the dual lattice.

The torus $\mathbb{T}^m = \left\{ (e^{2\pi i \chi_1}, \dots, e^{2\pi i \chi_m}) \in \mathbb{C}^m \right\}$, where $(\chi_1, \dots, \chi_m) \in \mathbb{R}^m$, acts on \mathcal{Z}_{Γ} coordinatewise. Similarly, the 'real torus' $(\mathbb{Z}/2)^m \subset \mathbb{T}^m$ (corresponding to $(\chi_1, \dots, \chi_m) \in \frac{1}{2}\mathbb{Z}^m$) acts on \mathcal{R}_{Γ} .

The vectors γ_i define an (m - n)-dimensional torus subgroup in \mathbb{T}^m whose lattice of characters is L:

$$T_{\Gamma} = \left\{ \left(e^{2\pi i \langle \gamma_1, \varphi \rangle}, \dots, e^{2\pi i \langle \gamma_m, \varphi \rangle} \right) \in \mathbb{T}^m \right\} \cong \mathbb{T}^{m-n},$$

where $\varphi \in \mathbb{R}^{m-n}$. We also define

$$D_{\Gamma} = \frac{1}{2}L^*/L^* \cong (\mathbb{Z}/2)^{m-n}$$

Note that D_{Γ} embeds canonically as a subgroup in $T_{\Gamma} = \mathbb{R}^{m-n}/L^*$.

Given a subset $I \subset [m] = \{1, \ldots, m\}$, define the sublattice

 $L_I = \mathbb{Z} \langle \gamma_i \colon i \notin I \rangle \subset L.$

Given $\boldsymbol{u} = (u_1, \ldots, u_m) \in \mathbb{R}^m$, define its zero set as

$$I_{\boldsymbol{u}} = \{i \colon u_i = 0\} \subset [m],$$

and define $I_{\mathbf{Z}}$ similarly for $\mathbf{Z} = (z_1, \ldots, z_m) \in \mathbb{C}^m$.

A G-action is almost free if all isotropy subgroups are finite.

Prop 2. The torus T_{Γ} acts on \mathcal{Z}_{Γ} almost freely. The isotropy subgroup of $z \in \mathcal{Z}_{\Gamma}$ is given by $L_{I_z}^*/L^*$, where $L_{I_z} = \mathbb{Z}\langle \gamma_k : k \notin I_z \rangle \subset L$.

Proof. An element $(e^{2\pi i \langle \gamma_1, \varphi \rangle}, \ldots, e^{2\pi i \langle \gamma_m, \varphi \rangle}) \in T_{\Gamma}$ fixes the given $z \in \mathcal{Z}_{\Gamma}$ whenever $e^{2\pi i \langle \gamma_k, \varphi \rangle} = 1$ for every $k \notin I_z$. The latter condition is equivalent to $\langle \gamma_k, \varphi \rangle \in \mathbb{Z}$, that is, $\varphi \in L_{I_z}^*$. Since $\varphi \in L^*$ maps to $1 \in T_{\Gamma}$, the isotropy subgroup of z is indeed $L_{I_z}^*/L^*$.

Lagrangian immersions.

Let (M, ω) be a symplectic 2*n*-manifold. An immersion $i: N \oplus M$ of an *n*-manifold N is Lagrangian if $i^*(\omega) = 0$. If *i* is an embedding, then i(N) is a Lagrangian submanifold of M. A vector field ξ on M is Hamiltonian if the 1-form $\omega(\cdot, \xi)$ is exact.

Assume that a compatible Riemannian metric is chosen on M. A Lagrangian immersion $i: N \hookrightarrow M$ is Hamiltonian minimal (H-minimal) if the variations of the volume of i(N) along all Hamiltonian vector fields with compact support are zero, that is,

$$\frac{d}{dt}\operatorname{vol}(i_t(N))\Big|_{t=0} = 0,$$

where $i_0(N) = i(N)$, $i_t(N)$ is a deformation of i(N) along a Hamiltonian vector field, and $vol(i_t(N))$ is the volume of the deformed part of $i_t(N)$. An immersion is *minimal* if the variations of the volume of i(N) along *all* vector fields are zero.

Consider the map

$$j \colon \mathcal{R}_{\Gamma} \times T_{\Gamma} \longrightarrow \mathbb{C}^{m},$$

$$(\boldsymbol{u}, \varphi) \mapsto \boldsymbol{u} \cdot \varphi = (u_{1}e^{2\pi i \langle \gamma_{1}, \varphi \rangle}, \dots, u_{m}e^{2\pi i \langle \gamma_{m}, \varphi \rangle}).$$

Note that $j(\mathcal{R}_{\Gamma} \times T_{\Gamma}) \subset \mathcal{Z}_{\Gamma}$. The quotient

$$N_{\Gamma} = \mathcal{R}_{\Gamma} \times_{D_{\Gamma}} T_{\Gamma}$$

is an *m*-dimensional manifold.

Lemma 1. The map $j: \mathcal{R}_{\Gamma} \times T_{\Gamma} \to \mathbb{C}^m$ induces an immersion $i_{\Gamma}: N_{\Gamma} \hookrightarrow \mathbb{C}^m$.

Thm 1 (Mironov). The immersion $i_{\Gamma} \colon N_{\Gamma} \hookrightarrow \mathbb{C}^m$ is H-minimal Lagrangian. Moreover, if $\sum_{k=1}^m \gamma_k = 0$, then i_{Γ} is a minimal Lagrangian immersion.

Lagrangian embeddings and moment-angle manifolds.

Thm 2. The following conditions are equivalent:

- (1) $i_{\Gamma}: N_{\Gamma} \to \mathbb{C}^m$ is an embedding of an H-minimal Lagrangian submanifold;
- (2) $L_{I_{\boldsymbol{u}}} = L$ for every $\boldsymbol{u} \in \mathcal{R}_{\Gamma}$;

(3) T_{Γ} acts on \mathcal{Z}_{Γ} freely.

This result opens a way to construct explicitly new families of H-minimal Lagrangian submanifolds, once we have an effective method to produce nondegenerate intersections of quadrics \mathcal{R}_{Γ} satisfying conditions (2) or (3) of Theorem 2. Toric topology provides such a method.

The quotient of \mathcal{R}_{Γ} by the action of $(\mathbb{Z}/2)^m$ (or the quotient of \mathcal{Z}_{Γ} by the action of \mathbb{T}^m) is identified with the set of nonnegative solutions of the following system of m - n linear equations:

$$\sum_{k=1}^m \gamma_k y_k = \boldsymbol{c}.$$

This set may be described as a convex polyhedron obtained by intersecting m halfspaces in \mathbb{R}^n :

$$P = \left\{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \right\},$$
(1)

Note that P may be unbounded; in fact P is bounded if and only if \mathcal{R}_{Γ} is bounded (compact). Bounded polyhedra are known as *polytopes*.

We refer to (1) as a *presentation* of *P* by inequalities. A presentation is *generic* if *P* is *n*-dimensional, has at least one vertex, and the hyperplanes defined by the equations $\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i = 0$ are in general position at every point of *P*. If *P* is a polytope, then the existence of a generic presentation implies that *P* is *simple*. Given a generic presentation of a polyhedron P, we may reconstruct the intersections of quadrics \mathcal{R}_{Γ} and \mathcal{Z}_{Γ} as follows.

Consider the affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(\mathbf{x}) = (\langle \mathbf{a}_1, \mathbf{x} \rangle + b_1, \dots, \langle \mathbf{a}_m, \mathbf{x} \rangle + b_m).$$

It is monomorphic onto a certain *n*-dimensional plane in \mathbb{R}^m (because *P* has a vertex), and $i_P(P)$ is the intersection of this plane with \mathbb{R}^m_{\geq} .

We define the space \mathcal{Z}_P from the commutative diagram

where $\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)$. Note that \mathbb{T}^m acts on \mathcal{Z}_P with quotient P, and i_Z is a \mathbb{T}^m -equivariant embedding.

If the presentation of P is generic, then \mathcal{Z}_P is a smooth manifold of dimension m + n, known as the *(polytopal) moment-angle manifold* corresponding to P.

Now we can write the *n*-dimensional plane $i_P(\mathbb{R}^n)$ by m - n linear equations in \mathbb{R}^m . Replacing each y_k by $|z_k|^2$ we obtain a presentation of the moment-angle manifold \mathcal{Z}_P as an intersection of quadrics.

By replacing \mathbb{C}^m by \mathbb{R}^m we obtain the *real moment-angle manifold* \mathcal{R}_P .

Clearly, $\gamma_1, \ldots, \gamma_m$ generate a lattice L in \mathbb{R}^{m-n} if and only if a_1, \ldots, a_m generate a lattice Λ in \mathbb{R}^n . The corresponding P are called *rational*.

If P is rational, then we have a map of lattices

$$A_P \colon \Lambda^* \to \mathbb{Z}^m, \quad \boldsymbol{x} \mapsto (\langle \boldsymbol{a}_1, \boldsymbol{x} \rangle, \dots, \langle \boldsymbol{a}_m, \boldsymbol{x} \rangle).$$

Its conjugate gives rise to a map of tori $\mathbb{R}^m/\mathbb{Z}^m \to \mathbb{R}^n/\Lambda$, whose kernel we denote by T_P . It becomes T_{Γ} under the identification of \mathcal{Z}_P with \mathcal{Z}_{Γ} . We also have $D_P \cong (\mathbb{Z}/2)^{m-n}$ and $N_P = \mathcal{R}_P \times_{D_P} T_P$.

The manifolds $\mathcal{R}_P, \mathcal{Z}_P, N_P$ represent the same geometric objects as $\mathcal{R}_{\Gamma}, \mathcal{Z}_{\Gamma}, N_{\Gamma}$, although a different initial data is used in their definition.

P is *Delzant* if it is rational and for every vertex $\mathbf{x} \in P$ the vectors $\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_n}$ normal to the facets meeting at \mathbf{x} constitute a basis of $\Lambda = \mathbb{Z} \langle \mathbf{a}_1, \ldots, \mathbf{a}_m \rangle$.

Thm 3. The map $N_P = \mathcal{R}_P \times_{D_P} T_P \to \mathbb{C}^m$ is an embedding if and only if *P* is a Delzant polyhedron.

Topology of Lagrangian submanifolds *N*.

Toric topology provides large families of explicitly constructed Delzant polytopes:

- simplices and cubes in all dimensions;
- products and face cuts;
- associahedra (Stasheff polytopes), permutahedra, and general nestohedra.

Nevertheless, the topology of Z_P (and therefore of N_P) is very complicated in general. Cohomology rings of Z_P are described by [Buchstaber-P.], and explicit homotopy and diffeomorphism type for some particular families of P are given by [Bahri–Bendersky–Cohen–Gitler], [Gitler–Lopez de Medrano], [Grbić–Theriault], and others.

Prop 3. (a) The immersion of N in \mathbb{C}^m factors as $N \hookrightarrow \mathcal{Z} \hookrightarrow \mathbb{C}^m$;

- (b) N is the total space of a bundle over a torus T^{m-n} with fibre \mathcal{R} ;
- (c) if $N \to \mathbb{C}^m$ is an embedding, then N is the total space of a principal T^{m-n} -bundle over the n-dimensional manifold \mathcal{R}/D_P .

Proof. Statement (a) is clear. Since D_P acts freely on T_P , the projection $N = \mathcal{R} \times_{D_P} T_P \to T_P/D_P$ onto the second factor is a fibre bundle with fibre \mathcal{R} . Then (b) follows from the fact that $T_P/D_P \cong T^{m-n}$.

If $N \to \mathbb{C}^m$ is an embedding, then T_P acts freely on \mathcal{Z} . The action of D_P on \mathcal{R} is also free. Therefore, the projection $N = \mathcal{R} \times_{D_P} T_P \to \mathcal{R}/D_P$ onto the first factor is a principal T_P -bundle, which proves (c).

Ex 1 (one quadric). Let m - n = 1, that is, \mathcal{R} is given by

$$\gamma_1 u_1^2 + \ldots + \gamma_m u_m^2 = c. \tag{2}$$

If \mathcal{R} is compact, then $\mathcal{R} \cong S^{m-1}$, and

 $N \cong S^{m-1} \times_{\mathbb{Z}/2} S^1 \cong \begin{cases} S^{m-1} \times S^1 & \text{if } \tau \text{ preserves the orientation of } S^{m-1}, \\ \mathcal{K}^m & \text{if } \tau \text{ reverses the orientation of } S^{m-1}, \end{cases}$ where \mathcal{K}^m is an *m*-dimensional Klein bottle.

Prop 4. We obtain an H-minimal Lagrangian embedding of $N \cong S^{n-1} \times_{\mathbb{Z}/2} S^1$ in \mathbb{C}^m if and only if $\gamma_1 = \ldots = \gamma_m$ in (2). The topological type of N = N(m) depends only on the parity of m, and is given by

$N(m) \cong S^{m-1} \times S^1$	if m is even,
$N(m) \cong \mathcal{K}^m$	if m is odd.

The Klein bottle \mathcal{K}^m with even m does *not* admit Lagrangian embeddings in \mathbb{C}^m [Nemirovsky, Shevchishin]. **Ex 2** (two quadrics). **Thm 4.** *Let* m - n = 2.

(a) \mathcal{R}_{Γ} is diffeormorphic to $\mathcal{R}(p,q) \cong S^{p-1} \times S^{q-1}$ given by

$$u_{1}^{2} + \ldots + u_{k}^{2} + u_{k+1}^{2} + \ldots + u_{p}^{2} = 1,$$

$$u_{1}^{2} + \ldots + u_{k}^{2} + \ldots + u_{k}^{2} = 2,$$

$$(3)$$

where p + q = m, $0 and <math>0 \leq k \leq p$.

(b) If $N_{\Gamma} \to \mathbb{C}^m$ is an embedding, then N_{Γ} is diffeomorphic to

$$N_k(p,q) = \mathcal{R}(p,q) \times_{\mathbb{Z}/2 \times \mathbb{Z}/2} (S^1 \times S^1), \tag{4}$$

where R(p,q) is given by (3) and the two involutions act on it by

$$\psi_{1} \colon (u_{1}, \dots, u_{m}) \mapsto (-u_{1}, \dots, -u_{k}, -u_{k+1}, \dots, -u_{p}, u_{p+1}, \dots, u_{m}), \\ \psi_{2} \colon (u_{1}, \dots, u_{m}) \mapsto (-u_{1}, \dots, -u_{k}, u_{k+1}, \dots, u_{p}, -u_{p+1}, \dots, -u_{m}).$$
(5)

There is a fibration $N_k(p,q) \to S^{q-1} \times_{\mathbb{Z}/2} S^1 = N(q)$ with fibre N(p) (the manifold from the previous Example), which is trivial for k = 0.

Ex 3 (three quadrics). In the case m - n = 3 the topology of compact manifolds \mathcal{R} and \mathcal{Z} was fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a product of three spheres, or to a connected sum of products of spheres, with two spheres in each product.

The simplest polytope P with m - n = 3 is a pentagon. It has many Delzant realisations, for instance,

 $P = \{(x_1, x_2) \in \mathbb{R}^2 \colon x_1 \ge 0, \ x_2 \ge 0, \ -x_1 + 2 \ge 0, \ -x_2 + 2 \ge 0, \ -x_1 - x_2 + 3 \ge 0\}$

In this case \mathcal{R}_P is an oriented surface of genus 5, and \mathcal{Z}_P is diffeomorphic to a connected sum of 5 copies of $S^3 \times S^4$.

We therefore obtain an H-minimal Lagrangian submanifold $N_P \subset \mathbb{C}^5$ which is the total space of a bundle over T^3 with fibre a surface of genus 5. Manifolds \mathcal{R}_P corresponding to polygons are described as follows.

Prop 5. Assume that n = 2 the 2-dimensional polytope P corresponding to \mathcal{R} is an m-gon. Then \mathcal{R} is an orientable surface S_g of genus $g = 1 + 2^{m-3}(m-4)$.

The H-minimal Lagrangian submanifold $N \subset \mathbb{C}^m$ corresponding to \mathcal{R} from Proposition 5 is a total space of a bundle over T^{m-2} with fibre S_g . It is an aspherical manifold (for $m \ge 4$) whose fundamental group enters the short exact sequence

$$1 \longrightarrow \pi_1(S_g) \longrightarrow \pi_1(N) \longrightarrow \mathbb{Z}^{m-2} \longrightarrow 1.$$

For n > 2 and m - n > 3 the topology of \mathcal{R} and \mathcal{Z} is even more complicated.

Other geometric structures on moment-angle manifolds \mathcal{Z}_P include

- non-Kähler complex-analytic structures [Bosio–Meersseman, P.-Ustinovsky, Tambour]
- T^m -invariant metrics of positive Ricci curvature [Bazaikin]

- Victor Buchstaber and Taras Panov. Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24, Amer. Math. Soc., Providence, R.I., 2002.
- [2] Andrey Mironov and Taras Panov. *Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings.* Preprint (2011); arXiv:1103.4970.
- [3] Taras Panov. Moment-angle manifolds and complexes. Trends in Mathematics - New Series. Information Center for Mathematical Sciences, KAIST. Vol. 12 (2010), no. 1, pp. 43–69; arXiv:1008.5047.
- [4] Taras Panov and Yuri Ustinovsky. *Complex-analytic structures on moment-angle manifolds*. Moscow Math. J. (2011), to appear (2010); arXiv:1008.4764.