Geometric structures on moment-angle manifolds

Taras Panov

Moscow State University

based on joint works with
Victor Buchstaber, Andrey Mironov, and Yuri Ustinovsky

80th Transpennine Topology Triangle meeting
Manchester, 14 July 2011
Intersections of quadrics.

Given a set of m vectors

$$\Gamma = \left\{ \gamma_k = (\gamma_{1,k}, \ldots, \gamma_{m-n,k})^t \in \mathbb{R}^{m-n}, \quad k = 1, \ldots, m \right\},$$

and a vector $c = (c_1, \ldots, c_{m-n})^t \in \mathbb{R}^{m-n}$, we consider the following intersections of $m - n$ real quadrics \mathbb{R}^m and \mathbb{C}^m:

$$\mathcal{R}_\Gamma = \left\{ u = (u_1, \ldots, u_m) \in \mathbb{R}^m: \sum_{k=1}^{m} \gamma_{jk} u_k^2 = c_j, \quad \text{for } 1 \leq j \leq m - n \right\},$$

$$\mathcal{Z}_\Gamma = \left\{ z = (z_1, \ldots, z_m) \in \mathbb{C}^m: \sum_{k=1}^{m} \gamma_{jk} |z_k|^2 = c_j, \quad \text{for } 1 \leq j \leq m - n \right\}.$$
Prop 1. Intersections of quadrics \mathcal{R}_Γ and \mathcal{Z}_Γ are nonempty and non-degenerate if and only if the following two conditions are satisfied:

(a) $c \in \sigma\langle \gamma_1, \ldots, \gamma_m \rangle$;

(b) if $c \in \sigma\langle \gamma_{i_1}, \ldots, \gamma_{i_k} \rangle$, then $k \geq m - n$.

Under these conditions, \mathcal{R}_Γ and \mathcal{Z}_Γ are smooth submanifolds in \mathbb{R}^m and \mathbb{C}^m of dimension n and $m + n$ respectively, and the vectors $\gamma_1, \ldots, \gamma_m$ span \mathbb{R}^{m-n}.

From now on we assume that the conditions of Proposition 1 are satisfied. Moreover, we assume that

(c) the vectors $\gamma_1, \ldots, \gamma_m$ generate a lattice L in \mathbb{R}^{m-n}.
Let

\[L^* = \{ \lambda^* \in \mathbb{R}^{m-n} : \langle \lambda^*, \lambda \rangle \in \mathbb{Z} \text{ for all } \lambda \in L \} \]

be the dual lattice.

The torus \(\mathbb{T}^m = \{ (e^{2\pi i \chi_1}, \ldots, e^{2\pi i \chi_m}) \in \mathbb{C}^m \} \), where \((\chi_1, \ldots, \chi_m) \in \mathbb{R}^m \), acts on \(\mathcal{Z}_\Gamma \) coordinatewise. Similarly, the ‘real torus’ \((\mathbb{Z}/2)^m \subset \mathbb{T}^m \) (corresponding to \((\chi_1, \ldots, \chi_m) \in \frac{1}{2}\mathbb{Z}^m \)) acts on \(\mathcal{R}_\Gamma \).

The vectors \(\gamma_i \) define an \((m-n) \)-dimensional torus subgroup in \(\mathbb{T}^m \) whose lattice of characters is \(L \):

\[T_\Gamma = \{ (e^{2\pi i \langle \gamma_1, \varphi \rangle}, \ldots, e^{2\pi i \langle \gamma_m, \varphi \rangle}) \in \mathbb{T}^m \} \cong \mathbb{T}^{m-n}, \]

where \(\varphi \in \mathbb{R}^{m-n} \). We also define

\[D_\Gamma = \frac{1}{2}L^*/L^* \cong (\mathbb{Z}/2)^{m-n}. \]

Note that \(D_\Gamma \) embeds canonically as a subgroup in \(T_\Gamma = \mathbb{R}^{m-n}/L^* \).
Given a subset $I \subset [m] = \{1, \ldots, m\}$, define the sublattice

$$L_I = \mathbb{Z}\langle \gamma_i : i \notin I \rangle \subset L.$$

Given $u = (u_1, \ldots, u_m) \in \mathbb{R}^m$, define its zero set as

$$I_u = \{i : u_i = 0\} \subset [m],$$

and define I_z similarly for $z = (z_1, \ldots, z_m) \in \mathbb{C}^m$.

A G-action is *almost free* if all isotropy subgroups are finite.

Prop 2. The torus T_Γ acts on \mathbb{Z}_Γ almost freely. The isotropy subgroup of $z \in \mathbb{Z}_\Gamma$ is given by $L_{I_z}^*/L^*$, where $L_{I_z} = \mathbb{Z}\langle \gamma_k : k \notin I_z \rangle \subset L$.

Proof. An element $(e^{2\pi i \langle \gamma_1, \varphi \rangle}, \ldots, e^{2\pi i \langle \gamma_m, \varphi \rangle}) \in T_\Gamma$ fixes the given $z \in \mathbb{Z}_\Gamma$ whenever $e^{2\pi i \langle \gamma_k, \varphi \rangle} = 1$ for every $k \notin I_z$. The latter condition is equivalent to $\langle \gamma_k, \varphi \rangle \in \mathbb{Z}$, that is, $\varphi \in L_{I_z}^*$. Since $\varphi \in L^*$ maps to $1 \in T_\Gamma$, the isotropy subgroup of z is indeed $L_{I_z}^*/L^*$. \qed
Lagrangian immersions.

Let \((M, \omega)\) be a symplectic \(2n\)-manifold. An immersion \(i: N \hookrightarrow M\) of an \(n\)-manifold \(N\) is Lagrangian if \(i^*(\omega) = 0\). If \(i\) is an embedding, then \(i(N)\) is a Lagrangian submanifold of \(M\). A vector field \(\xi\) on \(M\) is Hamiltonian if the 1-form \(\omega(\cdot, \xi)\) is exact.

Assume that a compatible Riemannian metric is chosen on \(M\). A Lagrangian immersion \(i: N \hookrightarrow M\) is Hamiltonian minimal (\(H\)-minimal) if the variations of the volume of \(i(N)\) along all Hamiltonian vector fields with compact support are zero, that is,

\[
\frac{d}{dt} \left. \text{vol}(i_t(N)) \right|_{t=0} = 0,
\]

where \(i_0(N) = i(N)\), \(i_t(N)\) is a deformation of \(i(N)\) along a Hamiltonian vector field, and \(\text{vol}(i_t(N))\) is the volume of the deformed part of \(i_t(N)\). An immersion is minimal if the variations of the volume of \(i(N)\) along all vector fields are zero.
Consider the map

\[j: \mathcal{R}_\Gamma \times T_\Gamma \rightarrow \mathbb{C}^m, \]

\[(u, \varphi) \mapsto u \cdot \varphi = (u_1 e^{2\pi i \langle \gamma_1, \varphi \rangle}, \ldots, u_m e^{2\pi i \langle \gamma_m, \varphi \rangle}). \]

Note that \(j(\mathcal{R}_\Gamma \times T_\Gamma) \subset \mathcal{Z}_\Gamma \). The quotient

\[N_\Gamma = \mathcal{R}_\Gamma \times_{D_\Gamma} T_\Gamma \]

is an \(m \)-dimensional manifold.

Lemma 1. The map \(j: \mathcal{R}_\Gamma \times T_\Gamma \rightarrow \mathbb{C}^m \) induces an immersion \(i_\Gamma: N_\Gamma \hookrightarrow \mathbb{C}^m \).

Thm 1 (Mironov). The immersion \(i_\Gamma: N_\Gamma \hookrightarrow \mathbb{C}^m \) is H-minimal Lagrangian. Moreover, if \(\sum_{k=1}^m \gamma_k = 0 \), then \(i_\Gamma \) is a minimal Lagrangian immersion.
Lagrangian embeddings and moment-angle manifolds.

Thm 2. The following conditions are equivalent:

1. $i_\Gamma: N_\Gamma \to \mathbb{C}^m$ is an embedding of an H-minimal Lagrangian submanifold;
2. $L_{Iu} = L$ for every $u \in \mathcal{R}_\Gamma$;
3. T_Γ acts on Z_Γ freely.

This result opens a way to construct explicitly new families of H-minimal Lagrangian submanifolds, once we have an effective method to produce nondegenerate intersections of quadrics \mathcal{R}_Γ satisfying conditions (2) or (3) of Theorem 2. Toric topology provides such a method.
The quotient of \mathcal{R}_Γ by the action of $(\mathbb{Z}/2)^m$ (or the quotient of \mathbb{Z}_Γ by the action of \mathbb{T}^m) is identified with the set of nonnegative solutions of the following system of $m - n$ linear equations:

$$\sum_{k=1}^{m} \gamma_k y_k = c.$$

This set may be described as a convex polyhedron obtained by intersecting m halfspaces in \mathbb{R}^n:

$$P = \left\{ x \in \mathbb{R}^n : \langle a_i, x \rangle + b_i \geq 0 \quad \text{for } i = 1, \ldots, m \right\}, \quad (1)$$

Note that P may be unbounded; in fact P is bounded if and only if \mathcal{R}_Γ is bounded (compact). Bounded polyhedra are known as polytopes.

We refer to (1) as a presentation of P by inequalities. A presentation is generic if P is n-dimensional, has at least one vertex, and the hyperplanes defined by the equations $\langle a_i, x \rangle + b_i = 0$ are in general position at every point of P. If P is a polytope, then the existence of a generic presentation implies that P is simple.
Given a generic presentation of a polyhedron P, we may reconstruct the intersections of quadrics \mathcal{R}_Γ and \mathcal{Z}_Γ as follows.

Consider the affine map

$$i_P : \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(x) = \left(\langle a_1, x \rangle + b_1, \ldots, \langle a_m, x \rangle + b_m \right).$$

It is monomorphic onto a certain n-dimensional plane in \mathbb{R}^m (because P has a vertex), and $i_P(P)$ is the intersection of this plane with \mathbb{R}^m.

We define the space \mathcal{Z}_P from the commutative diagram

$$\begin{array}{ccc}
\mathcal{Z}_P & \xrightarrow{i_Z} & \mathbb{C}^m \\
\downarrow & & \downarrow \mu \\
P & \xrightarrow{i_P} & \mathbb{R}^m \\
\end{array}$$

where $\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)$. Note that \mathbb{T}^m acts on \mathcal{Z}_P with quotient P, and i_Z is a \mathbb{T}^m-equivariant embedding.
If the presentation of P is generic, then \mathcal{Z}_P is a smooth manifold of dimension $m + n$, known as the (polytopal) moment-angle manifold corresponding to P.

Now we can write the n-dimensional plane $i_P(\mathbb{R}^n)$ by $m - n$ linear equations in \mathbb{R}^m. Replacing each y_k by $|z_k|^2$ we obtain a presentation of the moment-angle manifold \mathcal{Z}_P as an intersection of quadrics.

By replacing \mathbb{C}^m by \mathbb{R}^m we obtain the real moment-angle manifold \mathcal{R}_P.
Clearly, $\gamma_1, \ldots, \gamma_m$ generate a lattice L in \mathbb{R}^{m-n} if and only if a_1, \ldots, a_m generate a lattice Λ in \mathbb{R}^n. The corresponding P are called rational.

If P is rational, then we have a map of lattices

$$A_P: \Lambda^* \to \mathbb{Z}^m, \quad \mathbf{x} \mapsto (\langle a_1, \mathbf{x} \rangle, \ldots, \langle a_m, \mathbf{x} \rangle).$$

Its conjugate gives rise to a map of tori $\mathbb{R}^m/\mathbb{Z}^m \to \mathbb{R}^n/\Lambda$, whose kernel we denote by T_P. It becomes T_{Γ} under the identification of \mathbb{Z}_P with \mathbb{Z}_{Γ}. We also have $D_P \cong (\mathbb{Z}/2)^{m-n}$ and $N_P = \mathcal{R}_P \times_{D_P} T_P$.

The manifolds $\mathcal{R}_P, \mathbb{Z}_P, N_P$ represent the same geometric objects as $\mathcal{R}_{\Gamma}, \mathbb{Z}_{\Gamma}, N_{\Gamma}$, although a different initial data is used in their definition.

P is Delzant if it is rational and for every vertex $\mathbf{x} \in P$ the vectors a_{j_1}, \ldots, a_{j_n} normal to the facets meeting at \mathbf{x} constitute a basis of $\Lambda = \mathbb{Z}\langle a_1, \ldots, a_m \rangle$.

Thm 3. The map $N_P = \mathcal{R}_P \times_{D_P} T_P \to \mathbb{C}^m$ is an embedding if and only if P is a Delzant polyhedron.
Topology of Lagrangian submanifolds N.

Toric topology provides large families of explicitly constructed Delzant polytopes:

- simplices and cubes in all dimensions;
- products and face cuts;
- *associahedra* (Stasheff polytopes), *permutahedra*, and general *nestohedra*.

Nevertheless, the topology of \mathcal{Z}_P (and therefore of N_P) is very complicated in general. Cohomology rings of \mathcal{Z}_P are described by [Buchstaber-P.], and explicit homotopy and diffeomorphism type for some particular families of P are given by [Bahri–Bendersky–Cohen–Gitler], [Gitler–Lopez de Medrano], [Grbić–Theriault], and others.
Prop 3. (a) The immersion of N in \mathbb{C}^m factors as $N \hookrightarrow \mathcal{Z} \hookrightarrow \mathbb{C}^m$;

(b) N is the total space of a bundle over a torus T^{m-n} with fibre \mathcal{R};

(c) if $N \to \mathbb{C}^m$ is an embedding, then N is the total space of a principal T^{m-n}-bundle over the n-dimensional manifold \mathcal{R}/D_P.

Proof. Statement (a) is clear. Since D_P acts freely on T_P, the projection $N = \mathcal{R} \times_{D_P} T_P \to T_P/D_P$ onto the second factor is a fibre bundle with fibre \mathcal{R}. Then (b) follows from the fact that $T_P/D_P \cong T^{m-n}$.

If $N \to \mathbb{C}^m$ is an embedding, then T_P acts freely on \mathcal{Z}. The action of D_P on \mathcal{R} is also free. Therefore, the projection $N = \mathcal{R} \times_{D_P} T_P \to \mathcal{R}/D_P$ onto the first factor is a principal T_P-bundle, which proves (c). \square
\textbf{Ex 1} (one quadric). Let \(m - n = 1 \), that is, \(\mathcal{R} \) is given by
\[
\gamma_1 u_1^2 + \ldots + \gamma_m u_m^2 = c. \tag{2}
\]
If \(\mathcal{R} \) is compact, then \(\mathcal{R} \cong S^{m-1} \), and
\[
N \cong S^{m-1} \times \mathbb{Z}/2 S^1 \cong \begin{cases}
S^{m-1} \times S^1 & \text{if } \tau \text{ preserves the orientation of } S^{m-1}, \\
\mathcal{K}^m & \text{if } \tau \text{ reverses the orientation of } S^{m-1},
\end{cases}
\]
where \(\mathcal{K}^m \) is an \(m \)-dimensional Klein bottle.

\textbf{Prop 4.} We obtain an H-minimal Lagrangian embedding of \(N \cong S^{m-1} \times \mathbb{Z}/2 S^1 \) in \(\mathbb{C}^m \) if and only if \(\gamma_1 = \ldots = \gamma_m \) in (2). The topological type of \(N = N(m) \) depends only on the parity of \(m \), and is given by
\[
N(m) \cong S^{m-1} \times S^1 \quad \text{if } m \text{ is even},
N(m) \cong \mathcal{K}^m \quad \text{if } m \text{ is odd}.
\]

The Klein bottle \(\mathcal{K}^m \) with even \(m \) does \textit{not} admit Lagrangian embeddings in \(\mathbb{C}^m \) [Nemirovsky, Shevchishin].
Ex 2 (two quadrics).

Thm 4. Let $m - n = 2$.

(a) \mathcal{R}_Γ is diffeomorphic to $\mathcal{R}(p, q) \cong S^{p-1} \times S^{q-1}$ given by

$$u_1^2 + \ldots + u_k^2 + u_{k+1}^2 + \ldots + u_p^2 = 1,$$

$$u_1^2 + \ldots + u_k^2 + u_{p+1}^2 + \ldots + u_m^2 = 2,$$

where $p + q = m$, $0 < p < m$ and $0 \leq k \leq p$.

(b) If $N_\Gamma \to \mathbb{C}^m$ is an embedding, then N_Γ is diffeomorphic to

$$N_k(p, q) = \mathcal{R}(p, q) \times \mathbb{Z}/2 \times \mathbb{Z}/2 (S^1 \times S^1),$$

where $R(p, q)$ is given by (3) and the two involutions act on it by

$$\psi_1: (u_1, \ldots, u_m) \mapsto (-u_1, \ldots, -u_k, -u_{k+1}, \ldots, -u_p, u_{p+1}, \ldots, u_m),$$

$$\psi_2: (u_1, \ldots, u_m) \mapsto (-u_1, \ldots, -u_k, u_{k+1}, \ldots, u_p, -u_{p+1}, \ldots, -u_m).$$

There is a fibration $N_k(p, q) \to S^{q-1} \times \mathbb{Z}/2 S^1 = N(q)$ with fibre $N(p)$ (the manifold from the previous Example), which is trivial for $k = 0$.

16
Ex 3 (three quadrics). In the case $m - n = 3$ the topology of compact manifolds \mathcal{R} and \mathcal{Z} was fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a product of three spheres, or to a connected sum of products of spheres, with two spheres in each product.

The simplest polytope P with $m - n = 3$ is a pentagon. It has many Delzant realisations, for instance,

$$P = \{(x_1, x_2) \in \mathbb{R}^2: x_1 \geq 0, x_2 \geq 0, -x_1 + 2 \geq 0, -x_2 + 2 \geq 0, -x_1 - x_2 + 3 \geq 0\}$$

In this case \mathcal{R}_P is an oriented surface of genus 5, and \mathcal{Z}_P is diffeomorphic to a connected sum of 5 copies of $S^3 \times S^4$.

We therefore obtain an H-minimal Lagrangian submanifold $N_P \subset \mathbb{C}^5$ which is the total space of a bundle over T^3 with fibre a surface of genus 5.
Manifolds \mathcal{R}_P corresponding to polygons are described as follows.

Prop 5. Assume that $n = 2$ the 2-dimensional polytope P corresponding to \mathcal{R} is an m-gon. Then \mathcal{R} is an orientable surface S_g of genus $g = 1 + 2^{m-3}(m - 4)$.

The H-minimal Lagrangian submanifold $N \subset \mathbb{C}^m$ corresponding to \mathcal{R} from Proposition 5 is a total space of a bundle over T^{m-2} with fibre S_g. It is an aspherical manifold (for $m \geq 4$) whose fundamental group enters the short exact sequence

$$1 \to \pi_1(S_g) \to \pi_1(N) \to \mathbb{Z}^{m-2} \to 1.$$

For $n > 2$ and $m - n > 3$ the topology of \mathcal{R} and \mathcal{Z} is even more complicated.
Other geometric structures on moment-angle manifolds \mathcal{Z}_P include

- non-Kähler complex-analytic structures [Bosio–Meersseman, P.-Ustinovsky, Tambour]

- T^m-invariant metrics of positive Ricci curvature [Bazaikin]

