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Intersections of quadrics.

Given a set of m vectors

F={%= g Ymnp) ER™, k=1,...,m},

and a vector ¢ = (cq,...,cm—n)t € R™™ ", we consider the following
intersections of m — n real quadrics R and C™:

m
er{u=(u1,...,um)€Rm: Z ’yjku%=cj, for 1<j<m—n},
k=1

m
Zr = {Z: (251,...,Zm) c C™: Z ’ijlzk|2 = ¢y, for 1 <y <m—n}
k=1



Prop 1. Intersections of quadrics R and Zr- are nonempty and non-
degenerate if and only if the following two conditions are satisfied:

(a) Cc 0(717 O 7’7m>r.

(b) if ceo(viy,---7vi,), then k> m —n.

Under these conditions, Rr and Zr are smooth submanifolds in R™
and C™ of dimension n and m + n respectively, and the vectors

Y1y---,Ym Span R™M™T,

From now on we assume that the conditions of Proposition 1 are
satisfied. Moreover, we assume that

(c) the vectors ~1,...,vm generate a lattice L in R™M™ 7,



Let
L*={\"eR™ "™ (\* A\) € Z for all A € L}
be the dual lattice.

The torus T™ = {(eQle, ..., e2Tixm) ¢ Cm}, where (x1,...,xm) € R™,
acts on Z coordinatewise. Similarly, the ‘real torus’ (Z/2)™ c T™
(corresponding to (x1,...,xm) € %Zm) acts on Rr.

The vectors ~; define an (m — n)-dimensional torus subgroup in T™
whose lattice of characters is L:

Tr = {(e%im,@, ..., e2milme)y ¢ Ty 22 e

where ¢ € R™™ ", We also define

1
Dr = JL*/L* & (2/2)" ™",

Note that D embeds canonically as a subgroup in T = R™~ " /L*.
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Given a subset I C [m] ={1,...,m}, define the sublattice
Ly =7Z(v;:1¢ 1) C L.

Given u = (uq,...,um) € R™, define its zero set as
Iy ={i: u; =0} C [m],

and define Iz similarly for z = (z1,...,2m) € C™.

A (G-action is almost free if all isotropy subgroups are finite.

Prop 2. The torusIt acts on Zr almost freely. The isotropy subgroup
of zc Zr is given by L7, /L*, where L, = Z{y,: k ¢ Iz) C L.

Proof. An element (27190 .. e2mi{vmP)) € T fixes the given z €
Zr whenever ¢2™:%) = 1 for every k ¢ I-. The latter condition is
equivalent to (v, ¢) € Z, that is, ¢ € L7,. Since ¢ € L* maps to
1 € Tr, the isotropy subgroup of z is indeed L7, /L*. [ ]



Lagrangian immersions.

Let (M,w) be a symplectic 2n-manifold. An immersion i: N & M of
an n-manifold N is Lagrangian if i*(w) = 0. If 4 is an embedding,
then ¢(IN) is a Lagrangian submanifold of M. A vector field £ on M
is Hamiltonian if the 1-form w(-,€§) is exact.

Assume that a compatible Riemannian metric is chosen on M. A
Lagrangian immersion i: N & M is Hamiltonian minimal (H-minimal)
if the variations of the volume of i(/N) along all Hamiltonian vector
fields with compact support are zero, that is,

£ voli(N))|,_, =0,

where ig(N) = i(N), +(INN) is a deformation of i(N) along a Hamilto-
nian vector field, and vol(i:(IN)) is the volume of the deformed part
of i+(IN). An immersion is minimal if the variations of the volume of
i(N) along all vector fields are zero.



Consider the map
j: Rr x Tr — C™,
(U, 0) — U - = (ue2™P) | gy, e2mIme)y.
Note that j(Rr x Tr) C Zr. The quotient
Nr = Rr XDr Tr
is an m-dimensional manifold.
Lemma 1. The map j: R x I — C™ induces an immersion

iri Nr q- C™,

Thm 1 (Mironov). The immersion ir: Nir &+ C™ js H-minimal La-
grangian. Moreover, if 33 1 v = 0, then ir is @ minimal Lagrangian
immersion.



Lagrangian embeddings and moment-angle manifolds.

Thm 2. The following conditions are equivalent:

(1) ir: N — C™ is an embedding of an H-minimal Lagrangian sub-
manifold;

(2) Lj,= L for every ue Rr;

(3) 1 acts on Z freely.

This result opens a way to construct explicitly new families of H-
minimal Lagrangian submanifolds, once we have an effective method
to produce nondegenerate intersections of quadrics R satisfying con-
ditions (2) or (3) of Theorem 2. Toric topology provides such a
method.



The quotient of R by the action of (Z/2)™ (or the quotient of Z by
the action of T™) is identified with the set of nonnegative solutions
of the following system of m — n linear equations:

m
> Yyr = C.
k=1

This set may be described as a convex polyhedron obtained by inter-
secting m halfspaces in R":

P={xeR”:<ai,x>+bi>O forz'=1,...,m}, (1)

Note that P may be unbounded; in fact P is bounded if and only if R
is bounded (compact). Bounded polyhedra are known as polytopes.

We refer to (1) as a presentation of P by inequalities. A presentation
iIs generic if P is n-dimensional, has at least one vertex, and the
hyperplanes defined by the equations (a;,x) + b; = 0 are in general
position at every point of P. If P is a polytope, then the existence of
a generic presentation implies that P is simple.



Given a generic presentation of a polyhedron P, we may reconstruct
the intersections of quadrics R and Zp as follows.

Consider the affine map

ip: R" 5 R™,  ip(x) = ((al,x> +by,...,{@m, X) + bm).

It is monomorphic onto a certain n-dimensional plane in R™ (because
P has a vertex), and ip(P) is the intersection of this plane with RZ.

We define the space Zp from the commutative diagram

Zp %, Ccm

Ll

P 5 RZ
where p(z1,...,2m) = (|z21]%,. .., |zm|?). Note that T™ acts on Zp with

quotient P, and iy is a T"-equivariant embedding.
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If the presentation of P is generic, then Zp is a smooth manifold of

dimension m + n, known as the (polytopal) moment-angle manifold
corresponding to P.

Now we can write the n-dimensional plane ip(R™) by m — n linear
equations in R™. Replacing each yi. by |z:|2 we obtain a presentation
of the moment-angle manifold Zp as an intersection of quadrics.

By replacing C™ by R™ we obtain the real moment-angle manifold R p.
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Clearly, v1,...,vm 9enerate a lattice L in R™™ "™ if and only if a1,...,am
generate a lattice A in R"™. The corresponding P are called rational.

If P is rational, then we have a map of lattices

Ap: N* = 7™, xw— ({(a1,X),...,{(@m,X)).

Its conjugate gives rise to a map of tori R™/Z™ — R" /A, whose kernel
we denote by Tp. It becomes T under the identification of Zp with
Zr. We also have Dp = (Z/2)™™™ and Np =Rp Xp, Tp.

The manifolds Rp, Zp, Np represent the same geometric objects as
Rr, Zr, N, although a different initial data is used in their definition.

P is Delzant if it is rational and for every vertex x € P the vectors
a;,...,da; normal to the facets meeting at x constitute a basis of
N=1Z7Z(ai,...,am).

Thm 3. The map Np =RpXp,Tp — C™ is an embedding if and only
if P is a Delzant polyhedron.
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Topology of Lagrangian submanifolds N.

Toric topology provides large families of explicitly constructed Delzant
polytopes:

e simplices and cubes in all dimensions;
e products and face cuts;

e associahedra (Stasheff polytopes), permutahedra, and general
nestohedra.

Nevertheless, the topology of Zp (and therefore of Np) is very
complicated in general. Cohomology rings of Zp are described by
[Buchstaber-P.], and explicit homotopy and diffeomorphism type for
some particular families of P are given by [Bahri—Bendersky—Cohen—
Gitler], [Gitler—Lopez de Medrano], [Grbi¢—T heriault], and others.
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Prop 3.(a) The immersion of N in C™ factors as N & Z «— C™;
(b) N is the total space of a bundle over a torus T™~ "™ with fibre R;

(c) if N — C™ js an embedding, then N is the total space of a principal
T~ "-bundle over the n-dimensional manifold R/Dp.

Proof. Statement (a) is clear. Since Dp acts freely on T'p, the projec-
tion N =R xp,Tp — Tp/Dp onto the second factor is a fibre bundle
with fibre R. Then (b) follows from the fact that Tp/Dp = T™ ",

If N - C™ is an embedding, then Tp acts freely on Z. The action of
Dp on R is also free. Therefore, the projection N =RXxp,Tp -+ R/Dp
onto the first factor is a principal Tp-bundle, which proves (c). L]
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Ex 1 (one quadric). Let m —n =1, that is, R is given by

'ylu% +...4+ 'ymu?n = c. (2)
If R is compact, then R = ™1 and

sm—1 8l if r preserves the orientation of ™1,

N = Sm_]'XZ/QSl = ) . . -1
Kk if 7 reverses the orientation of S™™+,

where K™ is an m-dimensional Klein bottle.

Prop 4. We obtain an H-minimal Lagrangian embedding of N =
S 1 xyp8% in C™ if and only if y1 = ... = ym in (2). The topological
type of N = N(m) depends only on the parity of m, and is given by

N(m) 2 sm 1 x gt if m is even,
N(m) = K™ if m is odd.

The Klein bottle ™ with even m does not admit Lagrangian embed-
dings in C™ [Nemirovsky, Shevchishin].
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Ex 2 (two quadrics).
Thm 4. Let m —n = 2.

(a) Rr is diffeormorphic to R(p,q) = SP~1 x S9—1 given by

i+ 4uftui .t us
ui+ ... +up +uli 4.t ug,
wherep+qg=m, O<p<m and 0 <k < p.

(3

Y

1
2

(b) If Nr — C™ is an embedding, then N is diffeomorphic to

Nk(p, @) = R(P,q) Xz/2x7,/2 (5T x S1), (4)
where R(p,q) is given by (3) and the two involutions act on it by

¢13 (u17 IR 7um> — (—’U,]_, ceey TUEy, T U455 T UD, Up415 - - - ,Um),
Yol (ur, -y um) = (ZUL, ey Uy U1y - - - Upy —Up s - -5 —Um)-

(5)

There is a fibration Ny(p,q) — S9! xz,, St = N(q) with fibre N(p)
(the manifold from the previous Example), which is trivial for £k = 0.
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Ex 3 (three quadrics). In the case m — n = 3 the topology of com-
pact manifolds R and Z was fully described by [Lopez de Medrano].
Each manifold is diffeomorphic to a product of three spheres, or to
a connected sum of products of spheres, with two spheres in each
product.

The simplest polytope P with m —n = 3 is a pentagon. It has many
Delzant realisations, for instance,

pP= {(:I:l,:cg) ER2:21>0, 2020, —21+2 >0, —204+2>0, —x1—20+3 > o}'

In this case Rp is an oriented surface of genus 5, and Zp is diffeo-
morphic to a connected sum of 5 copies of S3 x S,

We therefore obtain an H-minimal Lagrangian submanifold Np C C>
which is the total space of a bundle over T3 with fibre a surface of

genus 5.
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Manifolds Rp corresponding to polygons are described as follows.

Prop 5. Assume that n = 2 the 2-dimensional polytope P correspond-
ing to R is an m-gon. Then R is an orientable surface Sq of genus
g=14+2m"3(m — 4).

The H-minimal Lagrangian submanifold N C C™ corresponding to
R from Proposition 5 is a total space of a bundle over T™=2 with
fibre Sy. It is an aspherical manifold (for m > 4) whose fundamental
group enters the short exact sequence

1 — 71(Sy) — 7 (N) — Zm=2 — 1.

For n > 2 and m — n > 3 the topology of R and Z is even more
complicated.
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Other geometric structures on moment-angle manifolds Zp include

e non-Kdhler complex-analytic structures [Bosio—Meersseman, P.-
Ustinovsky, Tambour]

e T™-invariant metrics of positive Ricci curvature [Bazaikin]
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