Geometric structures on moment-angle manifolds

Taras Panov
Moscow State University

based on joint works with with Victor Buchstaber, Andrey Mironov and Yuri Ustinovsky

Toric Topology and Automorphic Functions. Khabarovsk, 5-10 Septeber 2011.

Topology of moment-angle manifolds and complexes (joint with Victor Buchstaber).

A convex polyhedron in \mathbb{R}^{n} obtained by intersecting m halfspaces:

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i} \geqslant 0 \quad \text { for } i=1, \ldots, m\right\}
$$

Define an affine map

$$
i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad i_{P}(\boldsymbol{x})=\left(\left\langle\boldsymbol{a}_{1}, \boldsymbol{x}\right\rangle+b_{1}, \ldots,\left\langle\boldsymbol{a}_{m}, \boldsymbol{x}\right\rangle+b_{m}\right)
$$

If P has a vertex, then i_{P} is monomorphic, and $i_{P}(P)$ is the intersection of an n-plane with $\mathbb{R}_{\geqslant}^{m}=\left\{\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right): y_{i} \geqslant 0\right\}$.

Define the space \mathcal{Z}_{P} from the diagram

\mathcal{Z}_{P} has a \mathbb{T}^{m}-action, $\mathcal{Z}_{P} / \mathbb{T}^{m}=P$, and i_{Z} is a \mathbb{T}^{m}-equivariant inclusion.

Proposition 1. If P is a simple polytope (more generally, if the presentation of P by inequalities is generic), then \mathcal{Z}_{P} is a smooth manifold of dimension $m+n$.

Proof. Write $i_{P}\left(\mathbb{R}^{n}\right)$ by $m-n$ linear equations in $\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Replace y_{k} by $\left|z_{k}\right|^{2}$ to obtain a presentation of \mathcal{Z}_{P} by quadrics.
\mathcal{Z}_{P} : polytopal moment-angle manifold corresponding to P.

Similarly, by considering the projection $\mu: \mathbb{R}^{m} \rightarrow \mathbb{R}_{\geqslant}^{m}$ instead of $\mu: \mathbb{C}^{m} \rightarrow \mathbb{R}_{\geqslant}^{m}$ we obtain the real moment-angle manifold $\mathcal{R}_{P} \subset \mathbb{R}^{m}$.

Example 1. $P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geqslant 0, x_{2} \geqslant 0,-\gamma_{1} x_{1}-\gamma_{2} x_{2}+1 \geqslant 0\right\}$, $\gamma_{1}, \gamma_{2}>0$ (a 2-simplex). Then
$\left.\mathcal{Z}_{P}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}: \gamma_{1}\left|z_{1}\right|^{2}+\gamma_{2}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}\right)=1\right\}$ (a 5-sphere), $\left.\mathcal{R}_{P}=\left\{\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}: \gamma_{1}\left|u_{1}\right|^{2}+\gamma_{2}\left|u_{2}\right|^{2}+\left|u_{3}\right|^{2}\right)=1\right\}$ (a 2-sphere).
\mathcal{K} an (abstract) simplicial complex on the set $[m]=\{1, \ldots, m\}$. $I=\left\{i_{1}, \ldots, i_{k}\right\} \in \mathcal{K}$ a simplex. Always assume $\varnothing \in \mathcal{K}$.

Consider the unit polydisc in \mathbb{C}^{m},

$$
\mathbb{D}^{m}=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}:\left|z_{i}\right| \leqslant 1, \quad i=1, \ldots, m\right\}
$$

Given $I \subset[m]$, set

$$
B_{I}:=\left\{\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{D}^{m}:\left|z_{j}\right|=1 \text { for } j \notin I\right\} \cong \prod_{i \in I} D^{2} \times \prod_{i \notin I} S^{1}
$$

The moment-angle complex

$$
\mathcal{Z}_{\mathcal{K}}:=\bigcup_{I \in \mathcal{K}} B_{I}=\bigcup_{I \in \mathcal{K}}\left(\prod_{i \in I} D^{2} \times \prod_{i \notin I} S^{1}\right) \subset \mathbb{D}^{m}
$$

It is invariant under the coordinatewise action of the torus \mathbb{T}^{m}.
Example 2. $\mathcal{K}=2$ points, then $\mathcal{Z}_{\mathcal{K}}=D^{2} \times S^{1} \cup S^{1} \times D^{2} \cong S^{3}$.
$\mathcal{K}=\Delta$, then $\mathcal{Z}_{\mathcal{K}}=\left(D^{2} \times D^{2} \times S^{1}\right) \cup\left(D^{2} \times S^{1} \times D^{2}\right) \cup\left(S^{1} \times D^{2} \times D^{2}\right) \cong S^{5}$.

More generally, let X a space, and $A \subset X$. Given $I \subset[m]$, set

$$
(X, A)^{I}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \prod_{i=1}^{m} X: x_{j} \in A \text { for } j \notin I\right\} \cong \prod_{i \in I} X \times \prod_{i \notin I} A
$$

The \mathcal{K}-polyhedral product of (X, A) is

$$
\mathcal{Z}_{\mathcal{K}}(X, A)=\bigcup_{I \in \mathcal{K}}(X, A)^{I} \subset X^{m}
$$

Another important example is the complement of the coordinate subspace arrangement corresponding to \mathcal{K} :

$$
U(\mathcal{K})=\mathbb{C}^{m} \backslash \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}}\left\{\boldsymbol{z} \in \mathbb{C}^{m}: z_{i_{1}}=\ldots=z_{i_{k}}=0\right\}
$$

namely,

$$
U(\mathcal{K})=\mathcal{Z}_{\mathcal{K}}\left(\mathbb{C}, \mathbb{C}^{\times}\right)
$$

where $\mathbb{C}^{\times}=\mathbb{C} \backslash\{0\}$.
Theorem 1. $\quad \mathcal{Z}_{\mathcal{K}} \subset U(\mathcal{K})$ is a \mathbb{T}^{m}-deformation retract of $U(\mathcal{K})$.

Theorem 2. If P is a simple polytope, $\mathcal{K}_{P}=\partial\left(P^{*}\right)$ (the dual triangulation), then $\mathcal{Z}_{\mathcal{K}_{P}} \cong \mathcal{Z}_{P}$ (\mathbb{T}^{m}-equivariantly homeomorphic).

In particular, $\mathcal{Z}_{\mathcal{K}_{P}}$ is a manifold. More generally,
Proposition 2. Assume $|\mathcal{K}| \cong S^{n-1}$ (a sphere triangulation with m vertices). Then $\mathcal{Z}_{\mathcal{K}}$ is a closed manifold of dimension $m+n$.

The face ring (the Stanley-Reisner ring) of \mathcal{K} is

$$
\mathbb{Z}[\mathcal{K}]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i_{1}} \cdots v_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin K\right), \quad \operatorname{deg} v_{i}=2
$$

Theorem 3. There is an isomorphism of (bi)graded algebras

$$
\begin{aligned}
H^{*}\left(\mathcal{Z}_{\mathcal{K}} ; \mathbb{Z}\right) & \cong \operatorname{Tor}_{\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]}^{*, *}(\mathbb{Z}[\mathcal{K}], \mathbb{Z}) \\
& \cong H\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}[\mathcal{K}] ; d\right]
\end{aligned}
$$

where $d u_{i}=v_{i}, d v_{i}=0$ for $1 \leqslant i \leqslant m$. In particular,

$$
H^{p}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \sum_{-i+2 j=p} \operatorname{Tor}_{\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 j}(\mathbb{Z}[\mathcal{K}], \mathbb{Z})
$$

Corollary 1. $H^{k}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \underset{I \subset[m]}{\oplus} \widetilde{H}^{k-|I|-1}\left(\mathcal{K}_{I}\right)$,
where \mathcal{K}_{I} is the restriction of \mathcal{K} to the subset $I \subset\{1, \ldots, m\}$.
If $\mathcal{K}=\mathcal{K}_{P}$, then can rewrite the above in terms of P instead of \mathcal{K} :
Corollary 2. $H^{k}\left(\mathcal{Z}_{P}\right) \cong \underset{I \subset[m]}{\oplus} \widetilde{H}^{k-|I|-1}\left(P_{I}\right)$,
where P_{I} is the union of facets F_{i} of P with $i \in I$.
Remark 1. Integral version of Theorem 3 was proved independently by [Baskakov-Buchstaber-P] and [Franz].
2. The product in $H^{*}\left(\mathcal{Z}_{\mathcal{K}}\right)$ given by Theorem 3 can be also described in terms of full subcomplexes \mathcal{K}_{I} of Corollary 1 [Baskakov].
3. There is the stable decomposition $\Sigma \mathcal{Z}_{\mathcal{K}} \simeq \bigvee_{I \subset[m]} \Sigma^{|I|+2}\left|\mathcal{K}_{I}\right|$ behind the isomorphism of Corollary 1 [Bahri-Bendersky-Cohen-Gitler].

Geometric structures I. Lagrangian submanifolds. (joint with Andrey Mironov).

(M, ω) a symplectic Riemannian $2 n$-manifold.
An immersion $i: N \leftrightarrow M$ of an n-manifold N is Lagrangian if $i^{*}(\omega)=0$. If i is an embedding, then $i(N)$ is a Lagrangian submanifold of M.

A vector field ξ on M is Hamiltonian if the 1-form $\omega(\cdot, \xi)$ is exact.
A Lagrangian immersion $i: N \rightarrow M$ is Hamiltonian minimal (H-minimal) if the variations of the volume of $i(N)$ along all Hamiltonian vector fields with compact support are zero, i.e.

$$
\left.\frac{d}{d t} \operatorname{vol}\left(i_{t}(N)\right)\right|_{t=0}=0
$$

where $i_{0}(N)=i(N), i_{t}(N)$ is a Hamiltonian deformation of $i(N)$, and $\operatorname{vol}\left(i_{t}(N)\right)$ is the volume of the deformed part of $i_{t}(N)$.

Recall: P a simple polytope

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\mathbf{a}_{i}, \boldsymbol{x}\right\rangle+b_{i} \geqslant 0 \quad \text { for } i=1, \ldots, m\right\}
$$

The polytopal moment-angle manifold \mathcal{Z}_{P},

$$
\left.\begin{array}{ccc}
\mathcal{Z}_{P} & \xrightarrow{i_{Z}} & \mathbb{C}^{m}
\end{array}\right]
$$

can be written as the intersection of $m-n$ real quadrics,

$$
\mathcal{Z}_{P}=\left\{\boldsymbol{z}=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}: \sum_{k=1}^{m} \gamma_{j k}\left|z_{k}\right|^{2}=c_{j}, \quad \text { for } 1 \leqslant j \leqslant m-n\right\}
$$

Also have the real moment-angle manifold,

$$
\begin{aligned}
& \mathcal{R}_{P}=\left\{\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right) \in \mathbb{R}^{m}: \sum_{k=1}^{m} \gamma_{j k} u_{k}^{2}=c_{j}, \quad \text { for } 1 \leqslant j \leqslant m-n\right\} . \\
& \text { Set } \gamma_{k}=\left(\gamma_{1 k}, \ldots, \gamma_{m-n, k}\right) \in \mathbb{R}^{m-n} \text { for } 1 \leqslant k \leqslant m
\end{aligned}
$$

Assume that the polytope P is rational. Then have two lattices:

$$
\wedge=\mathbb{Z}\left\langle\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\rangle \subset \mathbb{R}^{n} \quad \text { and } \quad L=\mathbb{Z}\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle \subset \mathbb{R}^{m-n}
$$

Consider the $(m-n)$-torus

$$
T_{P}=\left\{\left(e^{2 \pi i\left\langle\gamma_{1}, \varphi\right\rangle}, \ldots, e^{2 \pi i\left\langle\gamma_{m}, \varphi\right\rangle}\right) \in \mathbb{T}^{m}\right\}
$$

i.e. $T_{P}=\mathbb{R}^{m-n} / L^{*}$, and set

$$
D_{P}=\frac{1}{2} L^{*} / L^{*} \cong(\mathbb{Z} / 2)^{m-n}
$$

Proposition 3. The $(m-n)$-torus T_{P} acts on \mathcal{Z}_{P} almost freely.

Consider the map

$$
\begin{aligned}
f: \mathcal{R}_{P} \times T_{P} & \longrightarrow \mathbb{C}^{m} \\
(\boldsymbol{u}, \varphi) & \mapsto \boldsymbol{u} \cdot \varphi=\left(u_{1} e^{2 \pi i\left\langle\gamma_{1}, \varphi\right\rangle}, \ldots, u_{m} e^{2 \pi i\left\langle\gamma_{m}, \varphi\right\rangle}\right)
\end{aligned}
$$

Note $f\left(\mathcal{R}_{P} \times T_{P}\right) \subset \mathcal{Z}_{P}$ is the set of T_{P}-orbits through $\mathcal{R}_{P} \subset \mathbb{C}^{m}$.

Have an m-dimensional manifold

$$
N_{P}=\mathcal{R}_{P} \times{ }_{D_{P}} T_{P}
$$

Lemma 1. $f: \mathcal{R}_{P} \times T_{P} \rightarrow \mathbb{C}^{m}$ induces an immersion $j: N_{P} \rightarrow \mathbb{C}^{m}$.
Theorem 4 (Mironov). The immersion $i_{\Gamma}: N_{\Gamma} \rightarrow \mathbb{C}^{m}$ is H -minimal Lagrangian.

When it is an embedding?

A simple rational polytope P is Delzant if for any vertex $v \in P$ the set of vectors $\boldsymbol{a}_{i_{1}}, \ldots, \boldsymbol{a}_{i_{n}}$ normal to the facets meeting at v forms a basis of the lattice $\Lambda=\mathbb{Z}\left\langle\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\rangle$:

$$
\mathbb{Z}\left\langle\mathbf{a}_{1}, \ldots, \boldsymbol{a}_{m}\right\rangle=\mathbb{Z}\left\langle\mathbf{a}_{i_{1}}, \ldots, \boldsymbol{a}_{i_{n}}\right\rangle \quad \text { for any } v=F_{i_{1}} \cap \cdots \cap F_{i_{n}}
$$

Theorem 5. The following conditions are equivalent:

1) $j: N_{P} \rightarrow \mathbb{C}^{m}$ is an embedding of an H-minimal Lagrangian submanifold;
2) the $(m-n)$-torus T_{P} acts on \mathcal{Z}_{P} freely.
3) P is a Delzant polytope.

Explicit constructions of families of Delzant polytopes are known in toric geometry and topology:

- simplices and cubes in all dimensions;
- products and face cuts;
- associahedra (Stasheff ptopes), permutahedra, and generalisations.

Example 3 (one quadric). Let $P=\Delta^{m-1}$ (a simplex), i.e. $m-n=1$ and $\mathcal{R}_{\Delta^{m-1}}$ is given by a single quadric

$$
\begin{equation*}
\gamma_{1} u_{1}^{2}+\cdots+\gamma_{m} u_{m}^{2}=c \tag{1}
\end{equation*}
$$

with $\gamma_{i}>0$, i.e. $\mathcal{R}_{\Delta^{m-1}} \cong S^{m-1}$. Then
$N \cong S^{m-1} \times_{\mathbb{Z} / 2} S^{1} \cong \begin{cases}S^{m-1} \times S^{1} & \text { if } \tau \text { preserves the orient. of } S^{m-1}, \\ \mathcal{K}^{m} & \text { if } \tau \text { reverses the orient. of } S^{m-1},\end{cases}$ where τ is the involution and \mathcal{K}^{m} is an m-dimensional Klein bottle. Proposition 4. We obtain an H-minimal Lagrangian embedding of $N_{\Delta^{m-1}} \cong S^{n-1} \times_{\mathbb{Z} / 2} S^{1}$ in \mathbb{C}^{m} if and only if $\gamma_{1}=\cdots=\gamma_{m}$ in (1). The topological type of $N_{\Delta^{m-1}}=N(m)$ depends only on the parity of m :

$$
\begin{array}{ll}
N(m) \cong S^{m-1} \times S^{1} & \text { if } m \text { is even } \\
N(m) \cong \mathcal{K}^{m} & \text { if } m \text { is odd }
\end{array}
$$

The Klein bottle \mathcal{K}^{m} with even m does not admit Lagrangian embeddings in \mathbb{C}^{m} [Nemirovsky, Shevchishin].

Example 4 (two quadrics).
Theorem 6. Let $m-n=2$, i.e. $P \simeq \Delta^{p-1} \times \Delta^{q-1}$.
(a) \mathcal{R}_{P} is diffeomorphic to $\mathcal{R}(p, q) \cong S^{p-1} \times S^{q-1}$ given by

$$
\begin{array}{lr}
u_{1}^{2}+\ldots+u_{k}^{2}+u_{k+1}^{2}+\cdots+u_{p}^{2} & =1 \\
u_{1}^{2}+\ldots+u_{k}^{2} & +u_{p+1}^{2}+\cdots+u_{m}^{2}=2
\end{array}
$$

where $p+q=m, 0<p<m$ and $0 \leqslant k \leqslant p$.
(b) If $N_{P} \rightarrow \mathbb{C}^{m}$ is an embedding, then N_{P} is diffeomorphic to

$$
N_{k}(p, q)=\mathcal{R}(p, q) \times_{\mathbb{Z} / 2 \times \mathbb{Z} / 2}\left(S^{1} \times S^{1}\right)
$$

where the two involutions act on $\mathcal{R}(p, q)$ by

$$
\begin{align*}
\psi_{1}:\left(u_{1}, \ldots, u_{m}\right) & \mapsto\left(-u_{1}, \ldots,-u_{k},-u_{k+1}, \ldots,-u_{p}, u_{p+1}, \ldots, u_{m}\right) \\
\psi_{2}:\left(u_{1}, \ldots, u_{m}\right) & \mapsto\left(-u_{1}, \ldots,-u_{k}, u_{k+1}, \ldots, u_{p},-u_{p+1}, \ldots,-u_{m}\right) \tag{2}
\end{align*}
$$

There is a fibration $N_{k}(p, q) \rightarrow S^{q-1} \times_{\mathbb{Z} / 2} S^{1}=N(q)$ with fibre $N(p)$ (the manifold from the previous example), which is trivial for $k=0$.

Example 5 (three quadrics).

In the case $m-n=3$ the topology of compact manifolds \mathcal{R}_{P} and \mathcal{Z}_{P} was fully described by [Lopez de Medrano]. Each manifold is diffeomorphic to a product of three spheres, or to a connected sum of products of spheres, with two spheres in each product.

The simplest P with $m-n=3$ is a (Delzant) pentagon, e.g.
$P=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \geqslant 0, x_{2} \geqslant 0,-x_{1}+2 \geqslant 0,-x_{2}+2 \geqslant 0,-x_{1}-x_{2}+3 \geqslant 0\right\}$.
In this case \mathcal{R}_{P} is an oriented surface of genus 5 , and \mathcal{Z}_{P} is diffeomorphic to a connected sum of 5 copies of $S^{3} \times S^{4}$.

Get an H-minimal Lagrangian submanifold $N_{P} \subset \mathbb{C}^{5}$ which is the total space of a bundle over T^{3} with fibre a surface of genus 5 .

Proposition 5. Let P be an $m-g o n . ~ T h e n ~ \mathcal{R}_{P}$ is an orientable surface S_{g} of genus $g=1+2^{m-3}(m-4)$.

Get an H-minimal Lagrangian submanifold $N_{P} \subset \mathbb{C}^{m}$ which is the total space of a bundle over T^{m-2} with fibre S_{g}. It is an aspherical manifold (for $m \geqslant 4$) whose fundamental group enters into the short exact sequence

$$
1 \longrightarrow \pi_{1}\left(S_{g}\right) \longrightarrow \pi_{1}(N) \longrightarrow \mathbb{Z}^{m-2} \longrightarrow 1
$$

For $n>2$ and $m-n>3$ the topology of \mathcal{R}_{P} and \mathcal{Z}_{P} is even more complicated.

Geometric structures II. Non-Kăhler complex structures. (joint with Yuri Ustinovskiy).

Recall: if $\mathcal{K}=\mathcal{K}_{P}$ is the dual triangulation of a simple convex polytope P, then $\mathcal{Z}_{P}=\mathcal{Z}_{\mathcal{K}_{P}}$ has a canonical smooth structure (e.g. as a nondegenerate intersection of Hermitian quadrics in \mathbb{C}^{m}).

Let \mathcal{K} be a sphere triangulation, i.e. $|\mathcal{K}| \cong S^{n-1}$.
A realisation $|\mathcal{K}| \subset \mathbb{R}^{n}$ is starshaped if there is a point $\boldsymbol{x} \notin|\mathcal{K}|$ such that any ray from \boldsymbol{x} intersects $|\mathcal{K}|$ in exactly one point.

A convex triangulation \mathcal{K}_{P} is starshaped, but not vice versa!
\mathcal{K} has a starshaped realisation if and only if it is the underlying complexes of a complete simplicial fan Σ.

Also recall $U(\mathcal{K})=\mathbb{C}^{m} \backslash \bigcup_{\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}}\left\{\boldsymbol{z} \in \mathbb{C}^{m}: z_{i_{1}}=\ldots=z_{i_{k}}=0\right\}$.

Let $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{m} \in \mathbb{R}^{n}$ be the generators of the 1 -dimensional cones of Σ. Consider the linear map

$$
\wedge_{\mathbb{R}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \quad \boldsymbol{e}_{i} \mapsto \boldsymbol{a}_{i}
$$

where $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}$ is the standard basis of \mathbb{R}^{m}. Define
$R_{\Sigma}:=\exp \left(\operatorname{Ker} \wedge_{\mathbb{R}}\right)=\left\{\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}_{>}^{m}: \prod_{i=1}^{m} y_{i}^{\left\langle\boldsymbol{a}_{i}, \boldsymbol{u}\right\rangle}=1\right.$ for all $\left.\boldsymbol{u} \in \mathbb{R}^{n}\right\}$,
$R_{\Sigma} \subset \mathbb{R}_{>}^{m}$ acts on $U\left(\mathcal{K}_{\Sigma}\right) \subset \mathbb{C}^{m}$ by coordinatewise multiplications.
Theorem 7. Let \mathcal{K} be the underlying complex of a complete simplicial fan Σ. Then
(a) R_{Σ} acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K}) / R_{\Sigma}$ has a canonical structure of a smooth $(m+n)$-manifold;
(b) $U(\mathcal{K}) / R_{\Sigma}$ is \mathbb{T}^{m}-equivariantly homeomorphic to $\mathcal{Z}_{\mathcal{K}}$.

Therefore, $\mathcal{Z}_{\mathcal{K}}$ can be smoothed canonically.

Assume $m-n$ is even and set $\ell=\frac{m-n}{2}$.
Choose a linear map $\Psi: \mathbb{C}^{\ell} \rightarrow \mathbb{C}^{m}$ satisfying the two conditions:
(a) Reo : $\mathbb{C}^{\ell} \rightarrow \mathbb{R}^{m}$ is a monomorphism.
(b) $\Lambda_{\mathbb{R}} \circ \operatorname{Re} \circ \Psi=0$.

Now set

$$
C_{\Psi, \Sigma}=\exp \psi\left(\mathbb{C}^{\ell}\right)=\left\{\left(e^{\left\langle\psi_{1}, \boldsymbol{w}\right\rangle}, \ldots, e^{\left\langle\psi_{m}, \boldsymbol{w}\right\rangle}\right) \in\left(\mathbb{C}^{\times}\right)^{m}\right\}
$$

Then $C_{\Psi, \Sigma} \cong \mathbb{C}^{\ell}$ is a complex-analytic (but not algebraic) subgroup of $\left(\mathbb{C}^{\times}\right)^{m}$. It acts on $U(\mathcal{K})$ by holomorphic transformations.

Theorem 8. Let \mathcal{K} be as before. Then
(a) $C_{\Psi, \Sigma}$ acts on $U(\mathcal{K})$ freely and properly, so the quotient $U(\mathcal{K}) / C_{\Psi, \Sigma}$ is a compact complex manifold of complex dimension $m-\ell$;
(b) there is a \mathbb{T}^{m}-equivariant diffeomorphism $U(\mathcal{K}) / C_{\Psi, \Sigma} \cong \mathcal{Z}_{\mathcal{K}}$ defining a complex structure on $\mathcal{Z}_{\mathcal{K}}$ in which \mathbb{T}^{m} acts holomorphically.

Theorem 9. Let \mathcal{K} be the underlying complex of a complete rational regular simplicial fan. Let k be the number of ghost vertices in \mathcal{K}. Then the Hodge numbers $h^{p, q}=h^{p, q}\left(\mathcal{Z}_{\mathcal{K}}\right)$ satisfy
(a) $\binom{k-\ell}{p} \leqslant h^{p, 0} \leqslant\binom{[k / 2]}{p}$ for $p \geqslant 0$;
(b) $h^{0, q}=\binom{\ell}{q}$ for $q \geqslant 0$;
(c) $h^{1, q}=(\ell-k)\binom{\ell}{q-1}+h^{1,0}\binom{\ell+1}{q}$ for $q \geqslant 1$;
(d) $\frac{\ell(3 \ell+1)}{2}-h_{2}(\mathcal{K})-\ell k+(\ell+1) h^{2,0} \leqslant h^{2,1} \leqslant \frac{\ell(3 \ell+1)}{2}-\ell k+(\ell+1) h^{2,0}$.

At most one ghost vertex is required to make $\operatorname{dim} \mathcal{Z}_{\mathcal{K}}=m+n$ even. Note that $k \leqslant 1$ implies $h^{p, 0}\left(\mathcal{Z}_{\mathcal{K}}\right)=0$, so that $\mathcal{Z}_{\mathcal{K}}$ does not have holomorphic forms of any degree in this case.

If $m=k=2 \ell$, then $\mathcal{Z}_{\mathcal{K}}$ is a torus, and $h^{1,0}\left(\mathcal{Z}_{\mathcal{K}}\right)=h^{0,1}\left(\mathcal{Z}_{\mathcal{K}}\right)=\ell$. Otherwise Theorem 9 implies that $h^{1,0}\left(\mathcal{Z}_{\mathcal{K}}\right)<h^{0,1}\left(\mathcal{Z}_{\mathcal{K}}\right)$, and therefore $\mathcal{Z}_{\mathcal{K}}$ is not Kähler.
[1] В. М. Бухштабер, Т. Е. Панов. Действия тора в топологии и комбинаторике. Москва, изд-во МЦНМО, 2004.
[2] Andrey Mironov and Taras Panov. Intersections of quadrics, moment-angle manifolds, and Hamiltonian-minimal Lagrangian embeddings. Preprint (2011); arXiv:1103.4970.
[3] Taras Panov. Moment-angle manifolds and complexes. Trends in Mathematics - New Series. Information Center for Mathematical Sciences, KAIST. Vol. 12 (2010), no. 1, pp. 43-69; arXiv:1008.5047.
[4] Taras Panov and Yuri Ustinovsky. Complex-analytic structures on moment-angle manifolds. Moscow Math. J. (2011), to appear (2010); arXiv:1008.4764.

