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1. From polytopes to quadrics.

Rn: Euclidean vector space. Consider a convex polyhedron

P = {x ∈ Rn : (ai,x) + bi > 0 for 1 6 i 6 m}, ai ∈ Rn, bi ∈ R.

Assume dimP = n, no redundant inequalities, P is bounded, and
bounding hyperplanes Hi = {(ai,x) + bi = 0}, 1 6 i 6 m, intersect in
general position at every vertex.

Then P is an n-dim convex simple polytope with m facets

Fi = {x ∈ P : (ai,x) + bi = 0} = P ∩Hi

and normal vectors ai, for 1 6 i 6 m. At every vertex meets an n-tuple
of facets.

Two polytopes are said to be combinatorially equivalent if their face
posets are isomorphic.
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We may specify P by a matrix inequality

P = {x : APx + bP > 0},
where AP = (aij) is the m×n matrix of row vectors ai, and bP is the
column vector of scalars bi.

The affine injection

iP : Rn −→ Rm, x 7→ APx + bP

embeds P into Rm
> = {y ∈ Rm : yi > 0}.

Now define the space ZP by a pullback diagram

ZP
iZ−→ Cmy y

P
iP−→ Rm

(z1, . . . , zm)y
(|z1|2, . . . , |zm|2)

Here iZ is a Tm-equivariant embedding.
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Prop 1. ZP is a smooth Tm-manifold with canonically trivialised nor-
mal bundle of iZ : ZP → Cm.

Idea of proof.
1) Write the image iP (Rn) ⊂ Rm as the set of common solutions of

m− n linear equations
∑m

k=1 cjk(yk − bk) = 0, 1 6 j 6 m− n;
2) replace every yk by |zk|2 to get a representation of ZP as an

intersection of m− n real quadratic hypersurfaces:
m∑

k=1

cjk
(
|zk|2 − bk

)
= 0, for 1 6 j 6 m− n.

3) check that 2) is a non-degenerate intersection, i.e. the gradient
vectors are linearly independent at each point of ZP .

ZP is called the moment-angle manifold corresponding to P .

In fact, the topological type of ZP depends only on the combinatorial
type of P (the original construction of [Davis–Januszkiewicz]).
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Write the system
∑m

k=1 cjk(|zk|
2 − bk) = 0, 1 6 j 6 m− n, as

ZP = {z ∈ Cm : C|z |2 = CbP}

with C = (cjk) (m− n)×m-matrix, |z |2 column of |zk|2.

Rows of C constitute a basis in the space of linear relations between
the ai’s. That is, CAP = 0 and rankC = m− n (note rankAP = n).

Given P , how to choose C?
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1st method:

Assume the first n facets F1, . . . , Fn meet at a vertex, and take their
normals as the basis for Rn (after linear transformation). Then

AP =

(
E
A∗
P

)
with E unit n×n-matrix and A∗

P an (m−n)×n-matrix. Then we may
take

C =
(
−A∗

P E
)
.

(Remember CAP = 0!)

This is convenient for applications in cobordism (finding quasitoric
representatives in complex cobordism classes).
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2nd method:

Have α1a1 + . . .+ αmam = 1 with αi > 0.
In fact, αi = VolFi if |ai| = 1.

By scaling the ai’s can always achieve a1 + . . .+ am = 1 and so take

C =

(
C1

1 · · ·1

)
where C1 is (m− n− 1)×m.

By moving the origin 0 into IntP , get bi > 0. By scaling P get
b1 + . . .+ bm = 1, so the last quadratic equation defining ZP is

|z1|2 + . . .+ |zm|2 = 1.

Subtracting this from the first m− n− 1 equations, finally get

ZP =

z ∈ Cm : C∗|z |2 = 0,

|z1|2 + . . .+ |zm|2 = 1

where C∗ is (m− n− 1)×m.
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Ex 1.

P =

{
x ∈ Rn : xi > 0, i = 1, . . . , n,

−x1 − . . .− xn +1 > 0

}
: n-simplex.

So m = n+1, ai = ei for i = 1, . . . , n, an+1 = −e1 − . . .− en.

AP =

(
E

−1 · · · − 1

)
, C = (1 · · ·1),

ZP = {z : |z1|2 + . . .+ |zm|2 = 1} = S2n+1,

and C∗ = ∅.
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2. From quadrics to polytopes.

After [Bosio–Meersseman].

C∗ = (c1, . . . ,cm): p×m matrix, 0 6 p < m (later set p = m− n− 1).

Set

LC =

 z ∈ Cm : c1|z1|2 + . . .+ cm|zm|2 = 0

|z1|2 + . . .+ |zm|2 = 1

 :
“link of p special
real quadrics in Cm”.

C∗ is admissible if LC is nonempty and nondegenerate.
(So LC is a (2m− p− 1)-dimensional manifold.)

Conv(C∗) := convex hull of c1, . . . ,cm in Rp.

Lemma 1. C∗ is admissible iff
1) 0 ∈ Conv(C∗), and
2) 0 ∈ Conv(ci, i ∈ I) implies |I| > p.
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Ex 2. p = 1, so c i ∈ R. Then (2) implies c i ̸= 0.
Assume k of c i are positive and l = m− k are negative.
Then (1) implies k > 0, l > 0.
Get like |z1|2 + . . .+ |zk|2 − |zk+1|2 − . . .− |zm|2 = 0:

cone over S2k−1 × S2l−1,
and |z1|2 + . . .+ |zm|2 = 1, so LC = S2k−1 × S2l−1.

Ex 3. p = 2, so c i ∈ R2. Then by (1), 0 ∈ Conv(c1, . . . ,cm).
(2) says that no segment joining c i contains 0.
Lemma 2. Can always achieve odd number of points on a circle with
positive weights assigned.

Set k(C) = number of i such that LC ∩ {zi = 0} = ∅.
Lemma 3. LC

∼= LC′ × T k(C), where LC′ ⊂ Cm−k(C) intersects every
coordinate hyperplane.
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How to get a polytope out of LC?

LC/T
m is given by the nonnegative solutions of

C∗y = 0, y1 + . . .+ ym = 1.

By nondegeneracy condition (2), this system has maximal rank.
So may write its general solution as

yi = (ai,x) + bi, x ∈ Rm−p−1, with bi > 0.

Therefore,

LC/T
m = {x ∈ Rm−p−1 : (ai,x) + bi > 0}.

Lemma 4. This is a simple (m− p− 1)-dimensional polytope P with
m− k(C∗) facets.

So every {zi = 0} ∩ LC = ∅ gives a redundant inequality.
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P ∗ = Conv
(a1
b1
, . . . , am

bm

)
: polar (or dual) simplicial polytope.

Denote a′
i =

ai
bi
.

Lemma 5. 0 ∈ IntConv(ci, i ∈ I)

⇐⇒ Conv(a′
i, i ∈ [m] \ I) is a proper face of P ∗.

In other words, (c1, . . . ,cm) is the Gale diagram of (a′
1, . . . ,a

′
m).

Finally, we get
Thm 1. Every LC with k(C) = 0 is ZP for some P .
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3. Topology of ZP .

F1, . . . , Fm: facets of P .

Given I ⊂ [m], set PI =
∪
i∈I Fi ⊂ P .

Thm 2. Hk(ZP ) =
⊕

I⊂[m] H̃
k−|I|−1(PI).

Ex 4. P a 5-gon. Then dimZP = 7, and the Betti vector is

(1,0,0,5,5,0,0,1).

In fact, ZP = (S3 × S4)#5.
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Proof of Thm 2. ZP generalises to ZK, the moment-angle complex
defined for an arbitrary simplicial complex K on m vertices.

Given P as above, set

KP =
{
σ = {i1, . . . , ik} : Fi1 ∩ . . . ∩ Fik ̸= ∅ in P

}
,

the boundary complex of P ∗. It is a sphere triangulation: |KP | ∼= Sn−1.

Then ZKP
= ZP .

By [Buchstaber-P], there is an isomorphism of (bi)graded algebras

H∗(ZK) ∼= Tor∗,∗Z[v1,...,vm](Z[K],Z)

∼= H
[
Λ[u1, . . . , um]⊗ Z[K]; d

]
,

where Z[K] is the face ring (or the Stanley–Reisner ring) of K,
dui = vi, dvi = 0 for 1 6 i 6 m.
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From this description follows Hochster’s calculation of Tor modules
in terms of full subcomplexes of K:

Tor−i,2j
Z[v1,...,vm](Z[K],Z) ∼=

⊕
|J |=j

H̃j−i−1(KJ),

where KJ is the restriction of K to the subset J ⊂ [m].

This dualises to the required description of the cohomology in the
case K = KP (because PJ retracts onto KJ).



4. Quasitoric manifolds and cobordism.

Assume given P as above, and an integral n×m matrix

Λ =


1 0 . . . 0 λ1,n+1 . . . λ1,m
0 1 . . . 0 λ2,n+1 . . . λ2,m
... ... . . . ... ... . . . ...
0 0 . . . 1 λn,n+1 . . . λn,m


satisfying the condition

the column vectors λj1, . . . , λjn corresponding to any vertex
v = Fj1 ∩ · · · ∩ Fjn form a basis of Zn.

We refer to (P,Λ) as a combinatorial quasitoric pair.
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Define K = K(Λ) := ker(Λ: Tm → Tn) ∼= Tm−n.

Prop 2. K(Λ) acts freely on ZP .

The quotient

M = M(P,Λ) := ZP/K(Λ)

is the quasitoric manifold corresponding to (P,Λ). It has a residual
Tn-action (Tm/K(Λ) ∼= Tn) satisfying the two Davis–Januszkiewicz
conditions:

a) the Tn-action is locally standard;

b) there is a projection π : M → P whose fibres are orbits of the
Tn-action.
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Algebraic and symplectic geometers would recognise in the above
construction of a quasitoric manifold M from ZP a generalisation of
the symplectic reduction construction of a Hamiltonian toric mani-
fold. In the latter case we take Λ = At

P ; then M is a toric manifold
corresponding to the Delzant polytope

P = {x ∈ Rn : (ai,x) + bi > 0 for 1 6 i 6 m}, ai ∈ Zn, bi ∈ R.

Here we additionally assume the normal vectors ai to be integer, and
the Delzant condition:

for every vertex v = Fi1 ∩ . . . ∩ Fin of P , the corresponding
normal vectors ai1, . . . ,ain form a basis of Zn

to be satisfied.

Then ZP is the level set for the moment map µ : Cm → Rm−n corre-
sponding to the Hamiltonian action of K = KerΛ = KerAt on Cm.
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Define complex line bundles

ρi : ZP ×K Ci → M, 1 6 i 6 m,

where Ci is the 1-dim complex Tm-representation defined via the quo-
tient projection Cm → Ci onto the ith factor.

Thm 3 (Davis–Januszkiewicz).There is an isomorphism of real vector
bundles

τM ⊕ R2(m−n) ∼=−→ ρ1 ⊕ · · · ⊕ ρm.

This endows M with the canonical equivariant stably complex struc-
ture. So we may consider its complex cobordism class [M ] ∈ ΩU .
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Thm 4 (Buchstaber-P-Ray). Every complex cobordism class in
dim > 2 contains a quasitoric manifold.

The complex cobordism ring ΩU is multiplicatively generated by the
cobordism classes [Hij], 0 6 i 6 j, of Milnor hypersurfaces

Hij = {(z0 : . . . : zi)×(w0 : . . . : wj) ∈ CP i×CP j : z0w0+ . . .+ ziwi = 0}.
But Hij is not a quasitoric manifold if i > 1.

Idea of proof of Thm 4
1) Replace each Hij by a quasitoric (in fact, toric) manifold Bij so

that {Bij} is still a multiplicative generator set for ΩU . Therefore,
every stably complex manifold is cobordant to the disjoint union
of products of Bij’s. Every such product is a q-t manifold, but
their disjoint union is not.

2) Replace disjoint unions by certain connected sums. This is tricky,
because you need to take account of both the torus action and
the stably complex structure.
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