The Universal Toric Genus

Taras Panov

Moscow State University

joint with Victor Buchstaber and Nigel Ray

The 36th Symposium on Transformation Groups,

Osaka, 10–12 December 2009
Motivations: non-equivariant cobordism and torus actions.

Thm [Buchstaber-P.-Ray]. *Every complex cobordism class in dim > 2 contains a quasitoric manifold.*

In other words, every stably complex manifold is cobordant to a manifold with a nicely behaving torus action.

All manifolds are smooth and closed, unless otherwise stated.

\[M_1^n \simeq M_2^n \text{ (co)bordant} \] if there is a manifold with boundary \(W^{n+1} \) such that \(\partial W^{n+1} = M_1 \sqcup M_2 \).
Complex bordism: work with complex manifolds.

complex mflds \subset almost complex mflds \subset stably complex mflds

Stably complex structure on a $2n$-dim manifold M is determined by a choice of isomorphism

$$c_\tau: \tau M \oplus \mathbb{R}^{2(l-n)} \overset{\cong}{\longrightarrow} \xi$$

where ξ is an l-dim complex vector bundle.

Complex bordism classes $[M, c_\tau]$ form the complex bordism ring $\Omega^U = \Omega^U_*(pt)$ with respect to the disjoint union and product.

$$\Omega^U \cong \mathbb{Z}[a_1, a_2, ...], \quad \text{dim } a_i = 2i \quad \text{Novikov'1960}.$$
Quasitoric manifolds: $2n$-dimensional manifolds M with a “nice” action of the torus T^n (after Davis–Januszkiewicz);

- the T^n-action is **locally standard** (locally looks like the standard T^n-representation in \mathbb{C}^n);
- the orbit space M/T^n is an n-dim simple polytope P.

Examples include projective smooth toric varieties and symplectic manifolds M with Hamiltonian actions of T^n (also known as toric manifolds).

In their turn, quasitoric manifolds are examples of torus manifolds of Hattori–Masuda.
Equivariant cobordism and the universal toric genus.

X a T^k-space. There are 3 equivariant complex cobordism theories:

- $\Omega^*_U: T^k(X)$: geometric T^k-cobordisms: set of cobordism classes of stably tangentially complex T^k-bundles over X (here X is a smooth manifold).

- $MU^*_T(X) = \lim [S^V \wedge X_+, MU_{T^k}(W)]_{T^k}$: homotopic T^k-cobordisms; here $MU_{T^k}(W)$ is the Thom T^k-space of the universal $|W|$-dimensional complex T^k-vector bundle $\gamma_{|W|}$, and S^V is the unit sphere in a T^k-representation space V.

- $\Omega^*_U(ET^k \times T^k X)$: Borel T^k-cobordisms.
There are natural transformations of cohomology theories
\[\Omega^*_U(T^k(X)) \xrightarrow{\nu} MU^*_T(X) \xrightarrow{\alpha} \Omega^*_U(ET^k \times_{T^k} X). \]
Restricting to \(X = pt \) we get a map
\[\Phi := \alpha \cdot \nu : \Omega^*_U(T^k) \longrightarrow \Omega^*_U(BT^k) = \Omega^*_U[[u_1, \ldots, u_k]], \]
which we refer to as the universal toric genus. It assigns to the cobordism class \([M, c_\tau] \in \Omega^{-2n}_{U:T^k}\) of a \(2n\)-dimensional \(T^k\)-manifold \(M\) the “cobordism class” of the map \(ET^k \times_{T^k} M \to BT^k\).

We may write
\[\Phi(M, c_\tau) = \sum \omega g_\omega(M) u^\omega, \]
where \(\omega = (\omega_1, \ldots, \omega_k) \in \mathbb{N}^k, u^\omega = u_1^{\omega_1} \cdots u_k^{\omega_k}, g_\omega(M) \in \Omega^U_2(|\omega|+n).\)

We have \(g_0(M) = [M] \in \Omega^U_{2n}\). How to express the other coefficients \(g_\omega(M)\)?
Ray's basis in $\Omega_*^{U}(BT^k)$.

Consider the product of unit 3-spheres
\[(S^3)^j = \{(z_1, \ldots, z_{2j}) \in \mathbb{C}^{2j} : |z_i|^2 + |z_{i+j}|^2 = 1 \text{ for } 1 \leq i \leq j\}\]
with the free T^j-action by
\[(t_1, \ldots, t_j) \cdot (z_1, \ldots, z_{2j}) = (t_1^{-1}z_1, t_1^{-1}t_2^{-1}z_2, \ldots, t_{j-1}^{-1}t_j^{-1}z_j, t_1z_{j+1}, \ldots, t_jz_{2j})\]

$B_j := (S^3)^j / T^j$: bounded flag manifold. It is a Bott manifold, i.e. the total space of a j-fold iterated S^2-bundle over $B_0 = \ast$.

For $1 \leq i \leq j$ there are complex line bundles
\[
\psi_i : (S^3)^j \times_{T^j} \mathbb{C} \longrightarrow B_j
\]
via the action $(t_1, \ldots, t_j) \cdot z = t_i z$ for $z \in \mathbb{C}$.

For any $j > 0$ have an explicit isomorphism
\[
\tau(B_j) \oplus \mathbb{C}^j \cong \psi_1 \oplus \psi_1 \psi_2 \oplus \cdots \oplus \psi_{j-1} \psi_j \oplus \overline{\psi}_1 \oplus \cdots \oplus \overline{\psi}_j,
\]
which defines a stably cplx structure c^∂_j on B_j with $[B_j, c^\partial_j] = 0$ in $\Omega_*^{U}_{2j}$.

Prop 1. The basis element $b_\omega \in \Omega^U_{2|\omega|}(BT^k)$ dual to $u^\omega \in \Omega^*_U(BT^k)$ is represented geometrically by the classifying map
\[
\psi_\omega: B_\omega \longrightarrow BT^k
\]
for the product $\psi_{\omega_1} \times \ldots \times \psi_{\omega_k}$ of line bundles over $B_\omega = B_{\omega_1} \times \ldots \times B_{\omega_k}$.

Let $T^\omega = T^{\omega_1} \times \ldots \times T^{\omega_k}$, and $(S^3)^\omega = (S^3)^{\omega_1} \times \ldots \times (S^3)^{\omega_k}$, on which T^ω acts coordinatewise. Define

\[
G_\omega(M) := (S^3)^\omega \times_{T^\omega} M,
\]
where T^ω acts on M via the representation

\[
(t_{1,1}, \ldots, t_{1,\omega_1}; \ldots; t_{k,1}, \ldots, t_{k,\omega_k}) \mapsto (t_{1,\omega_1}^{-1}, \ldots, t_{k,\omega_k}^{-1}).
\]

Thm 2. The manifold $G_\omega(M)$ represents the coefficient $g_\omega(M) \in \Omega^U_{2(|\omega|+n)}$ of the universal toric genus expansion.
Hirzebruch genera and equivariant extentions.

\mathcal{R}_* a (graded) commutative ring with unit.

$\ell : \Omega_*^U \to \mathcal{R}_*$ a Hirzebruch genus
(a multiplicative \mathcal{R}_*-valued cobordism invariant characteristic of M).

Every genus ℓ has a T^k-equivariant extension

$$\ell^T : = \ell \cdot \Phi : \Omega_*^U : T^k \longrightarrow \mathcal{R}_*[[u_1, \ldots, u_k]].$$

We have

$$\ell^T (M, c_T) = \ell (M) + \sum_{|\omega | > 0} \ell (g_\omega (M)) u^\omega.$$

In particular, the T^k-equivariant extension of the universal genus $ug = \text{id} : \Omega_*^U \to \Omega_*^U$ is Φ; hence the name “universal toric genus”.
Rigidity and fibre multiplicativity.

Consider fibre bundles $M \to E \times_G M \xrightarrow{\pi} B$, where M and B are connected and stably tangentially complex, G a compact Lie group of positive rank whose action preserves the stably complex structure on M, $E \to B$ is a principal G-bundle.

Then $N := E \times_G M$ inherits a canonical stably complex structure.

A genus $\ell: \Omega^U_\ast \to R_\ast$ is multiplicative with respect to M whenever $\ell(N) = \ell(M)\ell(B)$ for any such bundle π; if this holds for every M, then ℓ is fibre multiplicative.

The genus ℓ is T^k-rigid on M whenever $\ell^{T^k}: \Omega^U_{\ast:T^k} \to R_\ast[[u_1, \ldots, u_k]]$ satisfies $\ell^{T^k}(M, c_T) = \ell(M)$; if this holds for every M, then ℓ is T^k-rigid.

It follows that ℓ is T^k-rigid whenever $\ell(G\omega(M)) = 0$ for $|\omega| > 0$.
Other definitions of rigidity:

Atiyah–Hirzebruch: Assume ℓ^{T^k} can be realised as the *equivariant index* of an elliptic complex, $\ell^{T^k} : \Omega^*_U : T^k \to RU(T^k)$. Then ℓ^{T^k} is *rigid* if it takes values in $\mathbb{Z} \subset RU(T^k)$ (trivial representations).

Krichever: Considered \mathbb{Q}-valued genera and equivariant extensions $\ell^{T^k} : \Omega^*_U : T^k \to K(BT^k) \otimes \mathbb{Q}$. Then ℓ^{T^k} is *rigid* if it takes values in $\mathbb{Q} \subset K(BT^k) \otimes \mathbb{Q}$.

Our definition of rigidity extends both Atiyah–Hirzebruch’s and Krichever’s.
Thm 3. If the genus ℓ is T^k-rigid on M, then it is multiplicative with respect to M for bundles whose structure group G has the property that $\Omega_U^*(BG)$ is torsion-free.

On the other hand, if ℓ is multiplicative M, then it is T^k-rigid on M.

Proof. Assume ℓ multiplicative. Apply ℓ to the bundle $M \to G_\omega(M) \to B_\omega$. Since B_ω bounds for $|\omega| > 0$, we have $\ell(G_\omega(M)) = 0$, so ℓ is T^k-rigid.

The other direction is proved by considering the pullback square

$$
\begin{array}{ccc}
E \times_G M & \xrightarrow{f'} & EG \times_G M & \leftarrow & ET^k \times_{T^k} M \\
\pi & & \pi^G & & \pi^{T^k} \\
B & \xrightarrow{f} & BG & \leftarrow & BT^k.
\end{array}
$$

Ex 4. The signature is fibre multiplicative over any simply connected base, so it is a rigid genus.
Isolated fixed points.

Assume $\text{Fix}(M)$ is isolated. Have T_k^k-invariant $c_\tau : \tau M \oplus \mathbb{R}^{2(l-n)} \to \xi$. For any $x \in \text{Fix}(M)$, the sign $\varsigma(x)$ is $+1$ if the isomorphism

$$
\tau_x(M) \xrightarrow{i} \tau_x(M) \oplus \mathbb{R}^{2(l-n)} \xrightarrow{c_{\tau,x}} \xi_x \cong \mathbb{C}^n \oplus \mathbb{C}^{l-n} \xrightarrow{p} \mathbb{C}^n
$$

respects the canonical orientations, and -1 if it does not.

If M is almost complex then $\varsigma(x) = 1$ for every $x \in \text{Fix}(M)$.

The non-trivial T_k^k-representation \mathbb{C}^n decomposes into 1-dimensional representations as $r_{x,1} \oplus \ldots \oplus r_{x,n}$.

$$w_j(x) := (w_{j,1}(x), \ldots, w_{j,k}(x))$$

the integral weight vector of $r_{x,j}$.

We refer to the collection of signs $\varsigma(x)$ and weight vectors $w_j(x)$ as the fixed point data for (M, c_τ).

13
Each weight vector determines a line bundle

\[\zeta_{w_j}(x) := \zeta_{w_j,1}(x) \otimes \cdots \otimes \zeta_{w_j,k}(x) \]

over \(BT^k \), whose first Chern class is a formal power series

\[[w_j(x)](u) := \sum_\omega a_\omega [w_{j,1}(x)](u_1)^{\omega_1} \cdots [w_{j,k}(x)](u_k)^{\omega_k} \]

in \(\Omega_U^2(BT^k) \). Here \([m](u_j)\) denotes the power series \(c_1^{MU}(\zeta_j^m) \) in \(\Omega_U^2(\mathbb{C}P^\infty) \), and the \(a_\omega \) are the coefficients of \(c_1^{MU}(\zeta_1 \otimes \cdots \otimes \zeta_k) \).

Modulo decomposables we have that

\[[w_j(x)](u_1, \ldots, u_k) \equiv w_{j,1}u_1 + \cdots + w_{j,k}u_k. \]

Thm 5 (Localisation formula). For any stably tangentially complex \(M^{2n} \) with isolated fixed points, the equation

\[\Phi(M) = \sum_{\text{Fix}(M)} \varsigma(x) \prod_{j=1}^n \frac{1}{[w_j(x)](u)} \]

is satisfied in \(\Omega_U^{-2n}(BT^k) \).
Quasitoric manifolds revisited.

Quasitoric manifolds M provide a vast source of examples of stably complex T^n-manifolds with isolated fixed points, for which calculations with the fixed point data and Hirzebruch genera can be made explicit.

Every such M is determined by the characteristic pair (P, Λ), where P is a simple n-polytope with m facets F_1, \ldots, F_m, Λ is an integral $n \times m$ matrix.

Given a fixed point $x = F_{j_1} \cap \ldots \cap F_{j_n}$ denote $N(P)_x$ the matrix of column vectors normal to F_{j_1}, \ldots, F_{j_n}, Λ_x the square submatrix of Λ of column vectors j_1, \ldots, j_n, W_x the matrix determined by $W^t_x = \Lambda^{-1}_x$.

Prop 6. 1. the sign $\varsigma(x)$ is given by $\text{sign}\left(\det(\Lambda_x N(P)_x)\right)$

2. the weight vectors $w_1(x), \ldots w_n(x)$ are the columns of W_x.
Elliptic genera.

Buchstaber considered the formal group law

\[F_b(u_1, u_2) = u_1 c(u_2) + u_2 c(u_1) - a u_1 u_2 - \frac{d(u_1) - d(u_2)}{u_1 c(u_2) - u_2 c(u_1)} u_1^2 u_2^2 \]

over the graded ring \(R_* = \mathbb{Z}[a, c_j, d_k : j \geq 2, k \geq 1]/J \), where \(\deg a = 2 \), \(\deg c_j = 2j \) and \(\deg d_k = 2(k + 2) \); \(J \) is the ideal of associativity relations, and

\[c(u) := 1 + \sum_{j \geq 2} c_j u^j, \quad d(u) := \sum_{k \geq 1} d_k u^k. \]

Thm 7. The exponential series \(f_b(x) \) of \(F_b \) may be written analytically as \(e^{ax}/\varphi(x, z) \), where

\[\varphi(x, z) = \frac{\sigma(z - x)}{\sigma(z) \sigma(x)} e^{\zeta(z) x}, \]

\(\sigma(z) \) is the Weierstrass sigma function, and \(\zeta(z) = (\ln \sigma(z))' \).
Moreover, \(R_* \otimes \mathbb{Q} \) is isomorphic to \(\mathbb{Q}[a, c_2, c_3, c_4] \) as graded algebras.
The function $\varphi(x, z)$ is known as the Baker–Akhiezer function associated to the elliptic curve $y^2 = 4x^3 - g_2x - g_3$. It satisfies the Lamé equation, and is important in the theory of nonlinear integrable equations.

Krichever studied the genus $kv: \Omega^U \rightarrow R_*$ corresponding to the exponential series f_b, which therefore classifies the formal group law F_b. Analytically, it depends on the four complex variables z, a, g_2 and g_3.

Cor 8. Krichever’s generalised elliptic genus $kv: \Omega^U \rightarrow R_*$ induces an isomorphism of graded abelian groups in dimensions < 10.

Thm 9. Let M^{2n} be an SU-quasitoric manifold (i.e. $c_1(M) = 0$); then
(1) the Krichever genus kv vanishes on M^{2n},
(2) M^{2n} represents 0 in Ω^U_{2n} whenever $n < 5$.

Conjecture 10. Theorem 9(2) holds for all n.
Ex 11.
1. The 2-parameter Todd genus t_2 may be identified with the case

$$c(u) = 1 - yzu^2, \quad d(u) = -yz(y + z)u - y^2z^2u^2.$$

The corresponding formal group law is

$$F_{t_2} = \frac{u_1 + u_2 - (y + z)u_1u_2}{1 - yzu_1u_2}.$$

It generalises the χ_y-genus ($z = -1$) and the Todd genus ($y = 0$).

2. The elliptic genus Ell corresponds to Euler’s formal group law

$$F_{Ell}(u_1, u_2) = \frac{u_1c(u_2) + u_2c(u_1)}{1 - \varepsilon u_1^2u_2^2}$$

$$= u_1c(u_2) + u_2c(u_1) + \varepsilon\frac{u_1^2 - u_2^2}{u_1c(u_2) - u_2c(u_1)}u_1^2u_2^2,$$

and may therefore be identified with the case

$$a = 0, \quad d(u) = -\varepsilon u^2, \quad \text{and} \quad c^2(u) = R(u) := 1 - 2\delta u^2 + \varepsilon u^4.$$
Further applications to rigidity.

Prop 12. For any series f over a \mathbb{Q}-algebra A, the corresponding Hirzebruch genus ℓ_f is T^k-rigid on M only if the functional equation

$$\sum_{\text{Fix}(M)} \varsigma(x) \prod_{j=1}^{n} \frac{1}{f(w_j(x) \cdot u)} = c$$

is satisfied in $A[[u_1,\ldots,u_k]]$, for some constant $c \in A$.

The quasitoric examples $\mathbb{C}P^1$, $\mathbb{C}P^2$, and the T^2-manifold S^6 are all instructive.

Ex 13. A genus ℓ_f is T-rigid on $\mathbb{C}P^1$ only if the equation

$$\frac{1}{f(u)} + \frac{1}{f(-u)} = c,$$

holds in $A[[u]]$. The general analytic solution is

$$f(u) = \frac{u}{q(u^2) + cu/2}, \quad \text{where } q(0) = 1.$$

An example is provided by the Todd genus, $f_{td}(u) = (e^{z u} - 1)/z$. In fact td is multiplicative with respect to $\mathbb{C}P^1$.

Ex 14. A genus ℓ_f is T^2-rigid on the stably complex manifold $\mathbb{C}P^2_{(1,-1)}$ only if the equation

$$\frac{1}{f(u_1)f(u_2)} - \frac{1}{f(u_1)f(u_1 + u_2)} + \frac{1}{f(-u_2)f(u_1 + u_2)} = c$$

holds in $A[[u_1,u_2]]$. The general analytic solution satisfies

$$f(u_1 + u_2) = \frac{f(u_1) + f(u_2) - c' f(u_1)f(u_2)}{1 - cf(u_1)f(u_2)}.$$

So f is the exponential series of the 2-parameter Todd genus, with $c' = y + z$ and $c = yz$.

Cor 15 (Musin). *The 2-parameter Todd genus t^2 is universal for rigid genera.*
Ex 16. A genus ℓ_f is T^2-rigid on the almost complex manifold S^6 only if the equation

$$\frac{1}{f(u_1)f(u_2)f(-u_1-u_2)} + \frac{1}{f(-u_1)f(-u_2)f(u_1+u_2)} = c$$

holds in $A[[u_1,u_2]]$, for some constant c.

The general analytic solution is of the form $e^{\alpha x}/\varphi(x,z)$, and f coincides with Krichever’s exponential series f_b.

Thm 17. Krichever’s generalised elliptic genus k_v is universal for genera that are rigid on SU-manifolds.
