The Universal Toric Genus

Taras Panov

Moscow State University

joint with Victor Buchstaber and Nigel Ray

The 36th Symposium on Transformation Groups,

Osaka, 10–12 December 2009

Motivations: non-equivariant cobordism and torus actions.

Thm [Buchstaber-P.-Ray]. *Every complex cobordism class in* dim > 2 *contains a quasitoric manifold.*

In other words, every stably complex manifold is cobordant to a manifold with a nicely behaving torus action.

All manifolds are smooth and closed, unless otherwise stated.

 $M_1^n \simeq M_2^n$ (co)bordant if there is a manifold with boundary W^{n+1} such that $\partial W^{n+1} = M_1 \sqcup M_2$.

Complex bordism: work with complex manifolds.

complex mflds \subset almost complex mflds \subset stably complex mflds

Stably complex structure on a 2n-dim manifold M is determined by a choice of isomorphism

$$c_{\tau} \colon \tau M \oplus \mathbb{R}^{2(l-n)} \xrightarrow{\cong} \xi$$

where ξ is an *l*-dim *complex* vector bundle.

Complex bordism classes $[M, c_{\tau}]$ form the complex bordism ring $\Omega^U = \Omega^U_*(pt)$ with respect to the disjoint union and product.

 $\Omega^U \cong \mathbb{Z}[a_1, a_2, \ldots], \quad \dim a_i = 2i \quad \text{Novikov'1960.}$

Quasitoric manifolds: 2n-dimensional manifolds M with a "nice" action of the torus T^n (after Davis–Januszkiewicz);

- the T^n -action is locally standard (locally looks like the standard T^n -representation in \mathbb{C}^n);
- the orbit space M/T^n is an *n*-dim simple polytope *P*.

Examples include projective smooth toric varieties and symplectic manifolds M with Hamiltonian actions of T^n (also known as toric manifolds).

In their turn, quasitoric manifolds are examples of torus manifolds of Hattori–Masuda.

Equivariant cobordism and the universal toric genus.

X a T^k -space. There are 3 equivariant complex cobordism theories:

- $\Omega^*_{U:T^k}(X)$: geometric T^k -cobordisms: set of cobordism classes of stably tangentially complex T^k -bundles over X (here X is a smooth manifold).
- $MU_{T^k}^*(X) = \lim[S^V \wedge X_+, MU_{T^k}(W)]_{T^k}$: homotopic T^k -cobordisms; here $MU_{T^k}(W)$ is the Thom T^k -space of the universal |W|dimensional complex T^k -vector bundle $\gamma_{|W|}$, and S^V is the unit sphere in a T^k -representation space V.
- $\Omega^*_U(ET^k \times_{T^k} X)$: Borel T^k -cobordisms.

There are natural transformations of cohomology theories

$$\Omega^*_{U:T^k}(X) \xrightarrow{\nu} MU^*_{T^k}(X) \xrightarrow{\alpha} \Omega^*_U(ET^k \times_{T^k} X).$$

Restricting to X = pt we get a map

$$\Phi := \alpha \cdot \nu \colon \Omega^*_{U:T^k} \longrightarrow \Omega^*_U(BT^k) = \Omega^U_*[[u_1, \dots, u_k]],$$

which we refer to as the universal toric genus. It assigns to the cobordism class $[M, c_{\tau}] \in \Omega_{U:T^k}^{-2n}$ of a 2*n*-dimensional T^k -manifold M the "cobordism class" of the map $ET^k \times_{T^k} M \to BT^k$.

We may write

$$\Phi(M,c_{\tau}) = \sum_{\omega} g_{\omega}(M) u^{\omega},$$

where $\omega = (\omega_1, \ldots, \omega_k) \in \mathbb{N}^k$, $u^{\omega} = u_1^{\omega_1} \cdot \ldots \cdot u_k^{\omega_k}$, $g_{\omega}(M) \in \Omega^U_{2(|\omega|+n)}$.

We have $g_0(M) = [M] \in \Omega_{2n}^U$. How to express the other coefficients $g_{\omega}(M)$?

Ray's basis in $\Omega^U_*(BT^k)$.

Consider the product of unit 3-spheres

$$(S^{3})^{j} = \left\{ (z_{1}, \dots, z_{2j}) \in \mathbb{C}^{2j} \colon |z_{i}|^{2} + |z_{i+j}|^{2} = 1 \text{ for } 1 \leq i \leq j \right\}$$

with the free T^j -action by

$$(t_1,\ldots,t_j)\cdot(z_1,\ldots,z_{2j})=(t_1^{-1}z_1,t_1^{-1}t_2^{-1}z_2,\ldots,t_{j-1}^{-1}t_j^{-1}z_j,t_1z_{j+1},\ldots,t_jz_{2j})$$

 $B_j := (S^3)^j / T^j$: bounded flag manifold. It is a Bott manifold, i.e. the total space of a *j*-fold iterated S^2 -bundle over $B_0 = *$.

For $1 \leq i \leq j$ there are complex line bundles

 $\psi_i \colon (S^3)^j \times_{T^j} \mathbb{C} \longrightarrow B_j$

via the action $(t_1, \ldots, t_j) \cdot z = t_i z$ for $z \in \mathbb{C}$.

For any j > 0 have an explicit isomorphism

 $\tau(B_j) \oplus \mathbb{C}^j \cong \psi_1 \oplus \psi_1 \psi_2 \oplus \cdots \oplus \psi_{j-1} \psi_j \oplus \overline{\psi}_1 \oplus \cdots \oplus \overline{\psi}_j,$ which defines a stably cplx structure c_j^{∂} on B_j with $[B_j, c_j^{\partial}] = 0$ in Ω_{2j}^U . **Prop 1.** The basis element $b_{\omega} \in \Omega^U_{2|\omega|}(BT^k)$ dual to $u^{\omega} \in \Omega^*_U(BT^k)$ is represented geometrically by the classifying map

$$\psi_{\omega}\colon B_{\omega}\longrightarrow BT^k$$

for the product $\psi_{\omega_1} \times \ldots \times \psi_{\omega_k}$ of line bundles over $B_{\omega} = B_{\omega_1} \times \ldots \times B_{\omega_k}$.

Let $T^{\omega} = T^{\omega_1} \times \ldots \times T^{\omega_k}$, and $(S^3)^{\omega} = (S^3)^{\omega_1} \times \ldots \times (S^3)^{\omega_k}$, on which T^{ω} acts coordinatewise. Define

$$G_{\omega}(M) := (S^3)^{\omega} \times_{T^{\omega}} M,$$

where T^{ω} acts on M via the representation

$$(t_{1,1},\ldots,t_{1,\omega_1};\ldots;t_{k,1},\ldots,t_{k,\omega_k})\longmapsto(t_{1,\omega_1}^{-1},\ldots,t_{k,\omega_k}^{-1}).$$

Thm 2. The manifold $G_{\omega}(M)$ represents the coefficient $g_{\omega}(M) \in \Omega_{2(|\omega|+n)}^{U}$ of the universal toric genus expansion.

Hirzebruch genera and equivariant extentions.

 R_* a (graded) commutative ring with unit.

 $\ell: \Omega^U_* \to R_*$ a Hirzebruch genus (a multiplicative R_* -valued cobordism invariant characteristic of M).

Every genus ℓ has a T^k -equivariant extension

$$\ell^{T^k} := \ell \cdot \Phi \colon \Omega^{U:T^k}_* \longrightarrow R_*[[u_1, \dots, u_k]].$$

We have

$$\ell^{T^k}(M,c_{\tau}) = \ell(M) + \sum_{|\omega|>0} \ell(g_{\omega}(M)) u^{\omega}.$$

In particular, the T^k -equivariant extension of the universal genus ug =id: $\Omega^U_* \to \Omega^U_*$ is Φ ; hence the name "universal toric genus".

Rigidity and fibre multiplicativity.

Consider fibre bundles $M \to E \times_G M \xrightarrow{\pi} B$,

where M and B are connected and stably tangentially complex,

G a compact Lie group of positive rank whose action preserves the stably complex structure on M,

 $E \rightarrow B$ is a principal *G*-bundle.

Then $N := E \times_G M$ inherits a canonical stably complex structure.

A genus $\ell: \Omega^U_* \to R_*$ is multiplicative with respect to M whenever $\ell(N) = \ell(M)\ell(B)$ for any such bundle π ; if this holds for every M, then ℓ is fibre multiplicative.

The genus ℓ is T^k -rigid on M whenever $\ell^{T^k} \colon \Omega^{U:T^k}_* \longrightarrow R_*[[u_1, \ldots, u_k]]$ satisfies $\ell^{T^k}(M, c_\tau) = \ell(M)$; if this holds for every M, then ℓ is T^k -rigid.

It follows that ℓ is T^k -rigid whenever $\ell(G_{\omega}(M)) = 0$ for $|\omega| > 0$.

Other definitions of rigidity:

Atiyah–Hirzebruch: Assume ℓ^{T^k} can be realised as the *equivariant in*dex of an elliptic complex, $\ell^{T^k}: \Omega^{U:T^k}_* \longrightarrow RU(T^k)$. Then ℓ^{T^k} is rigid if it takes values in $\mathbb{Z} \subset RU(T^k)$ (trivial representations).

Krichever: Considered Q-valued genera and equivariant extensions $\ell^{T^k} \colon \Omega^{U:T^k}_* \to K(BT^k) \otimes \mathbb{Q}.$ Then ℓ^{T^k} is rigid if it takes values in $\mathbb{Q} \subset K(BT^k) \otimes \mathbb{Q}.$

Our definition of rigidity extends both Atiyah–Hirzebruch's and Krichever's.

Thm 3. If the genus ℓ is T^k -rigid on M, then it is mutiplicative with respect to M for bundles whose structure group G has the property that $\Omega^*_U(BG)$ is torsion-free.

On the other hand, if ℓ is multiplicative M, then it is T^k -rigid on M.

Proof. Assume ℓ multiplicative. Apply ℓ to the bundle $M \to G_{\omega}(M) \to B_{\omega}$. Since B_{ω} bounds for $|\omega| > 0$, we have $\ell(G_{\omega}(M)) = 0$, so ℓ is T^{k} -rigid.

The other direction is proved by considering the pullback square

Ex 4. The signature is fibre multiplicative over any simply connected base, so it is a rigid genus.

Isolated fixed points.

Assume Fix(M) is isolated. Have T^k -invariant $c_{\tau} \colon \tau M \oplus \mathbb{R}^{2(l-n)} \to \xi$.

For any $x \in Fix(M)$, the sign $\varsigma(x)$ is +1 if the isomorphism $\tau_x(M) \xrightarrow{i} \tau_x(M) \oplus \mathbb{R}^{2(l-n)} \xrightarrow{c_{\tau,x}} \xi_x \cong \mathbb{C}^n \oplus \mathbb{C}^{l-n} \xrightarrow{p} \mathbb{C}^n$

respects the canonical orientations, and -1 if it does not.

If M is almost complex then $\varsigma(x) = 1$ for every $x \in Fix(M)$.

The non-trivial T^k -representation \mathbb{C}^n decomposes into 1-dimensional representations as $r_{x,1} \oplus \ldots \oplus r_{x,n}$.

 $w_j(x) := (w_{j,1}(x), \ldots, w_{j,k}(x))$ the integral weight vector of $r_{x,j}$.

We refer to the collection of signs $\varsigma(x)$ and weight vectors $w_j(x)$ as the fixed point data for (M, c_{τ}) .

Each weight vector determines a line bundle

$$\zeta^{w_j(x)} := \zeta_1^{w_{j,1}(x)} \otimes \cdots \otimes \zeta_k^{w_{j,k}(x)}$$

over BT^k , whose first Chern class is a formal power series

$$[w_{j}(x)](u) := \sum_{\omega} a_{\omega}[w_{j,1}(x)](u_{1})^{\omega_{1}} \cdots [w_{j,k}(x)](u_{k})^{\omega_{k}}$$

in $\Omega_U^2(BT^k)$. Here $[m](u_j)$ denotes the power series $c_1^{MU}(\zeta_j^m)$ in $\Omega_U^2(\mathbb{C}P^\infty)$, and the a_ω are the coefficients of $c_1^{MU}(\zeta_1 \otimes \cdots \otimes \zeta_k)$.

Modulo decomposables we have that

$$[w_j(x)](u_1,\ldots,u_k) \equiv w_{j,1}u_1 + \cdots + w_{j,k}u_k.$$

Thm 5 (Localisation formula). For any stably tangentially complex M^{2n} with isolated fixed points, the equation

$$\Phi(M) = \sum_{\mathsf{Fix}(M)} \varsigma(x) \prod_{j=1}^{n} \frac{1}{[w_j(x)](u)}$$

is satisfied in $\Omega_U^{-2n}(BT^k)$.

Quasitoric manifolds revisited.

Quasitoric manifolds M provide a vast source of examples of stably complex T^n -manifolds with isolated fixed points, for which calculations with the fixed point data and Hirzebruch genera can be made explicit.

Every such M is determined by the characteristic pair (P, Λ) , where P is a simple n-polytope with m facets F_1, \ldots, F_m , Λ is an integral $n \times m$ matrix.

Given a fixed point $x = F_{j_1} \cap \ldots \cap F_{j_n}$ denote $N(P)_x$ the matrix of column vectors normal to F_{j_1}, \ldots, F_{j_n} , Λ_x the square submatrix of Λ of column vectors j_1, \ldots, j_n , W_x the matrix determined by $W_x^t = \Lambda_x^{-1}$.

Prop 6. 1. the sign $\varsigma(x)$ is given by sign $\left(\det(\Lambda_x N(P)_x)\right)$

2. the weight vectors $w_1(x)$, ... $w_n(x)$ are the columns of W_x .

Elliptic genera.

Buchstaber considered the formal group law

$$F_b(u_1, u_2) = u_1 c(u_2) + u_2 c(u_1) - a u_1 u_2 - \frac{d(u_1) - d(u_2)}{u_1 c(u_2) - u_2 c(u_1)} u_1^2 u_2^2$$

over the graded ring $R_* = \mathbb{Z}[a, c_j, d_k: j \ge 2, k \ge 1]/J$, where deg a = 2, deg $c_j = 2j$ and deg $d_k = 2(k+2)$; J is the ideal of associativity relations, and

$$c(u) := 1 + \sum_{j \ge 2} c_j u^j, \quad d(u) := \sum_{k \ge 1} d_k u^k.$$

Thm 7. The exponential series $f_b(x)$ of F_b may be written analytically as $e^{ax}/\phi(x,z)$, where

$$\varphi(x,z) = \frac{\sigma(z-x)}{\sigma(z)\sigma(x)} e^{\zeta(z)x},$$

 $\sigma(z)$ is the Weierstrass sigma function, and $\zeta(z) = (\ln \sigma(z))'$. Moreover, $R_* \otimes \mathbb{Q}$ is isomorphic to $\mathbb{Q}[a, c_2, c_3, c_4]$ as graded algebras. The function $\varphi(x,z)$ is known as the Baker-Akhiezer function associated to the elliptic curve $y^2 = 4x^3 - g_2x - g_3$. It satisfies the Lamé equation, and is important in the theory of nonlinear integrable equations.

Krichever studied the genus $kv: \Omega^U_* \to R_*$ corresponding to the exponential series f_b , which therefore classifies the formal group law F_b . Analytically, it depends on the four complex variables z, a, g_2 and g_3 .

Cor 8. Krichever's generalised elliptic genus $kv \colon \Omega^U_* \to R_*$ induces an isomorphism of graded abelian groups in dimensions < 10.

Thm 9. Let M^{2n} be an SU-quasitoric manifold (i.e. $c_1(M) = 0$); then (1) the Krichever genus kv vanishes on M^{2n} , (2) M^{2n} represents 0 in Ω_{2n}^U whenever n < 5.

Conjecture 10. Theorem 9(2) holds for all n.

Ex 11.

1. The 2-parameter Todd genus t^2 may be identified with the case

$$c(u) = 1 - yzu^2$$
, $d(u) = -yz(y+z)u - y^2z^2u^2$.

The corresponding formal group law is

$$F_{t2} = \frac{u_1 + u_2 - (y+z)u_1u_2}{1 - yzu_1u_2}$$

•

It generalises the χ_y -genus (z = -1) and the Todd genus (y = 0).

2. The elliptic genus *Ell* corresponds to Euler's formal group law

$$F_{Ell}(u_1, u_2) = \frac{u_1 c(u_2) + u_2 c(u_1)}{1 - \varepsilon u_1^2 u_2^2}$$

= $u_1 c(u_2) + u_2 c(u_1) + \varepsilon \frac{u_1^2 - u_2^2}{u_1 c(u_2) - u_2 c(u_1)} u_1^2 u_2^2$,

and may therefore be identified with the case

$$a = 0, d(u) = -\varepsilon u^2, \text{ and } c^2(u) = R(u) := 1 - 2\delta u^2 + \varepsilon u^4.$$

Further applications to rigidity.

Prop 12. For any series f over a \mathbb{Q} -algebra A, the corresponding Hirzebruch genus ℓ_f is T^k -rigid on M only if the functional equation

$$\sum_{\tau \in X(M)} \varsigma(x) \prod_{j=1}^{n} \frac{1}{f(w_j(x) \cdot u)} = c$$

is satisfied in $A[[u_1, \ldots, u_k]]$, for some constant $c \in A$.

The quasitoric examples $\mathbb{C}P^1$, $\mathbb{C}P^2$, and the T^2 -manifold S^6 are all instructive.

Ex 13. A genus ℓ_f is *T*-rigid on $\mathbb{C}P^1$ only if the equation

$$\frac{1}{f(u)} + \frac{1}{f(-u)} = c,$$

holds in A[[u]]. The general analytic solution is

$$f(u) = \frac{u}{q(u^2) + cu/2}$$
, where $q(0) = 1$.

An example is provided by the Todd genus, $f_{td}(u) = (e^{zu} - 1)/z$. In fact td is multiplicative with respect to $\mathbb{C}P^1$.

Ex 14. A genus ℓ_f is T^2 -rigid on the stably complex manifold $\mathbb{C}P^2_{(1,-1)}$ only if the equation

$$\frac{1}{f(u_1)f(u_2)} - \frac{1}{f(u_1)f(u_1+u_2)} + \frac{1}{f(-u_2)f(u_1+u_2)} = c$$

holds in $A[[u_1, u_2]]$. The general analytic solution satisfies

$$f(u_1 + u_2) = \frac{f(u_1) + f(u_2) - c'f(u_1)f(u_2)}{1 - cf(u_1)f(u_2)}$$

So f is the exponential series of the 2-parameter Todd genus, with c' = y + z and c = yz.

Cor 15 (Musin). The 2-parameter Todd genus t^2 is universal for rigid genera.

Ex 16. A genus ℓ_f is T^2 -rigid on the almost complex manifold S^6 only if the equation

$$\frac{1}{f(u_1)f(u_2)f(-u_1-u_2)} + \frac{1}{f(-u_1)f(-u_2)f(u_1+u_2)} = c$$

holds in $A[[u_1, u_2]]$, for some constant c.

The general analytic solution is of the form $e^{ax}/\varphi(x,z)$, and f coincides with Krichever's exponential series f_b .

Thm 17. Krichever's generalised elliptic genus kv is universal for general that are rigid on SU-manifolds.

- [1] Victor M. Buchstaber and Taras E. Panov. *Torus Actions and Their Applications in Topology and Combinatorics*. Volume 24 of *University Lecture Series*, Amer. Math. Soc., Providence, R.I., 2002.
- [2] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. Spaces of polytopes and cobordism of quasitoric manifolds. Moscow Math. J. 7 (2007), no. 2, 219–242; arXiv:math.AT/0609346.
- [3] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. *Toric genera*. Preprint (2009); arXiv:0908.3298.