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Motivations: non-equivariant cobordism and torus actions.

Thm [Buchstaber-P.-Ray]. Every complex cobordism class in dim > 2

contains a quasitoric manifold.

In other words, every stably complex manifold is cobordant to a man-
ifold with a nicely behaving torus action.

All manifolds are smooth and closed, unless otherwise stated.

Mn
1 ≃ Mn

2 (co)bordant if there is a manifold with boundary Wn+1

such that ∂Wn+1 =M1 ⊔M2.
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Complex bordism: work with complex manifolds.

complex mflds ⊂ almost complex mflds ⊂ stably complex mflds

Stably complex structure on a 2n-dim manifold M is determined by a
choice of isomorphism

cτ : τM ⊕ R2(l−n) ∼=−→ ξ

where ξ is an l-dim complex vector bundle.

Complex bordism classes [M, cτ ] form the complex bordism ring
ΩU = ΩU∗ (pt) with respect to the disjoint union and product.

ΩU ∼= Z[a1, a2, ...], dim ai = 2i Novikov’1960.
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Quasitoric manifolds: 2n-dimensional manifolds M with a “nice” ac-
tion of the torus Tn (after Davis–Januszkiewicz);

• the Tn-action is locally standard (locally looks like the standard
Tn-representation in Cn);

• the orbit space M/Tn is an n-dim simple polytope P .

Examples include projective smooth toric varieties and symplectic
manifolds M with Hamiltonian actions of Tn (also known as toric
manifolds).

In their turn, quasitoric manifolds are examples of torus manifolds of
Hattori–Masuda.
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Equivariant cobordism and the universal toric genus.

X a T k-space. There are 3 equivariant complex cobordism theories:

• Ω∗
U :T k

(X): geometric T k-cobordisms: set of cobordism classes

of stably tangentially complex T k-bundles over X (here X is a
smooth manifold).

• MU∗
T k

(X) = lim[SV ∧X+,MUT k(W )]T k: homotopic T k-cobordisms;

here MUT k(W ) is the Thom T k-space of the universal |W |-
dimensional complex T k-vector bundle γ|W |, and SV is the unit
sphere in a T k-representation space V .

• Ω∗U(ET
k ×T k X): Borel T k-cobordisms.
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There are natural transformations of cohomology theories

Ω∗
U :T k(X)

ν−→MU∗
T k

(X)
α−→ Ω∗U(ET

k ×T k X).

Restricting to X = pt we get a map

Φ := α · ν : Ω∗
U :T k −→ Ω∗U(BT

k) = ΩU
∗ [[u1, . . . , uk]],

which we refer to as the universal toric genus. It assigns to the
cobordism class [M, cτ ] ∈ Ω−2nU :T k

of a 2n-dimensional T k-manifold M

the “cobordism class” of the map ET k ×T k M → BT k.

We may write

Φ(M, cτ) =
∑
ω
gω(M)uω,

where ω = (ω1, . . . , ωk) ∈ Nk, uω = u
ω1
1 · . . . · u

ωk
k , gω(M) ∈ ΩU2(|ω|+n).

We have g0(M) = [M ] ∈ ΩU2n. How to express the other coefficients
gω(M)?
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Ray’s basis in ΩU∗ (BT
k).

Consider the product of unit 3-spheres

(S3)j =
{
(z1, . . . , z2j) ∈ C2j : |zi|2 + |zi+j|2 = 1 for 1 6 i 6 j

}
with the free T j-action by

(t1, . . . , tj)·(z1, . . . , z2j) = (t−11 z1, t
−1
1 t−12 z2, . . . , t

−1
j−1t

−1
j zj, t1zj+1, . . . , tjz2j)

Bj := (S3)j/T j : bounded flag manifold. It is a Bott manifold, i.e.
the total space of a j-fold iterated S2-bundle over B0 = ∗.

For 1 6 i 6 j there are complex line bundles

ψi : (S
3)j ×T j C −→ Bj

via the action (t1, . . . , tj) · z = tiz for z ∈ C.

For any j > 0 have an explicit isomorphism

τ(Bj)⊕ Cj ∼= ψ1 ⊕ ψ1ψ2 ⊕ · · · ⊕ ψj−1ψj ⊕ ψ̄1 ⊕ · · · ⊕ ψ̄j,
which defines a stably cplx structure c∂j on Bj with [Bj, c

∂
j ] = 0 in ΩU2j.
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Prop 1. The basis element bω ∈ ΩU2|ω|(BT
k) dual to uω ∈ Ω∗U(BT

k) is
represented geometrically by the classifying map

ψω : Bω −→ BT k

for the product ψω1× . . .×ψωk of line bundles over Bω = Bω1× . . .×Bωk.

Let Tω = Tω1 × . . .× Tωk ,and (S3)ω = (S3)ω1 × . . .× (S3)ωk, on which
Tω acts coordinatewise. Define

Gω(M) := (S3)ω ×Tω M,

where Tω acts on M via the representation

(t1,1, . . . , t1,ω1; . . . ; tk,1, . . . , tk,ωk) 7−→ (t−11,ω1
, . . . , t−1k,ωk).

Thm 2. The manifold Gω(M) represents the coefficient gω(M) ∈
ΩU2(|ω|+n) of the universal toric genus expansion.

8



Hirzebruch genera and equivariant extentions.

R∗ a (graded) commutative ring with unit.

ℓ : ΩU∗ → R∗ a Hirzebruch genus
(a multiplicative R∗-valued cobordism invariant characteristic of M).

Every genus ℓ has a T k-equivariant extension

ℓT
k
:= ℓ · Φ : ΩU :T k

∗ −→ R∗[[u1, . . . , uk]].

We have

ℓT
k
(M, cτ) = ℓ(M) +

∑
|ω|>0

ℓ(gω(M))uω.

In particular, the T k-equivariant extension of the universal genus ug =

id: ΩU∗ → ΩU∗ is Φ; hence the name “universal toric genus”.
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Rigidity and fibre multiplicativity.

Consider fibre bundles M → E ×GM
π→ B,

where M and B are connected and stably tangentially complex,
G a compact Lie group of positive rank whose action preserves the
stably complex structure on M ,
E → B is a principal G-bundle.

Then N := E ×GM inherits a canonical stably complex structure.

A genus ℓ : ΩU∗ → R∗ is multiplicative with respect to M whenever
ℓ(N) = ℓ(M)ℓ(B) for any such bundle π;
if this holds for every M , then ℓ is fibre multiplicative.

The genus ℓ is T k-rigid on M whenever ℓT
k
: ΩU :T k
∗ −→ R∗[[u1, . . . , uk]]

satisfies ℓT
k
(M, cτ) = ℓ(M);

if this holds for every M , then ℓ is T k-rigid.

It follows that ℓ is T k-rigid whenever ℓ(Gω(M)) = 0 for |ω| > 0.
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Other definitions of rigidity:

Atiyah–Hirzebruch: Assume ℓT
k

can be realised as the equivariant in-
dex of an elliptic complex, ℓT

k
: ΩU :T k
∗ −→ RU(T k).

Then ℓT
k

is rigid if it takes values in Z ⊂ RU(T k) (trivial representa-
tions).

Krichever: Considered Q-valued genera and equivariant extensions
ℓT

k
: ΩU :T k
∗ → K(BT k)⊗ Q.

Then ℓT
k

is rigid if it takes values in Q ⊂ K(BT k)⊗ Q.

Our definition of rigidity extends both Atiyah–Hirzebruch’s and
Krichever’s.
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Thm 3. If the genus ℓ is T k-rigid on M , then it is mutiplicative with
respect to M for bundles whose structure group G has the property
that Ω∗U(BG) is torsion-free.

On the other hand, if ℓ is multiplicative M , then it is T k-rigid on M .

Proof. Assume ℓ multiplicative. Apply ℓ to the bundle M → Gω(M)→
Bω. Since Bω bounds for |ω| > 0, we have ℓ(Gω(M)) = 0, so ℓ is T k-
rigid.

The other direction is proved by considering the pullback square

E ×GM
f ′−→ EG×GM

i′←− ET k ×T k M

π

y πG

y πT
k

y
B

f−→ BG
i←− BT k.

Ex 4. The signature is fibre multiplicative over any simply connected
base, so it is a rigid genus.
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Isolated fixed points.

Assume Fix(M) is isolated. Have T k-invariant cτ : τM ⊕ R2(l−n) → ξ.

For any x ∈ Fix(M), the sign ς(x) is +1 if the isomorphism

τx(M)
i−→ τx(M)⊕ R2(l−n) cτ,x−→ ξx

∼= Cn ⊕ Cl−n p−→ Cn

respects the canonical orientations, and −1 if it does not.

If M is almost complex then ς(x) = 1 for every x ∈ Fix(M).

The non-trivial T k-representation Cn decomposes into 1-dimensional
representations as rx,1 ⊕ . . .⊕ rx,n.

wj(x) := (wj,1(x), . . . , wj,k(x)) the integral weight vector of rx,j.

We refer to the collection of signs ς(x) and weight vectors wj(x) as
the fixed point data for (M, cτ).
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Each weight vector determines a line bundle

ζwj(x) := ζ
wj,1(x)
1 ⊗ · · · ⊗ ζwj,k(x)k

over BT k, whose first Chern class is a formal power series

[wj(x)](u) :=
∑
ω
aω[wj,1(x)](u1)

ω1 · · · [wj,k(x)](uk) ωk

in Ω2
U(BT

k). Here [m](uj) denotes the power series cMU1 (ζmj ) in
Ω2
U(CP

∞), and the aω are the coefficients of cMU1 (ζ1 ⊗ · · · ⊗ ζk).

Modulo decomposables we have that

[wj(x)](u1, . . . , uk) ≡ wj,1u1 + · · ·+ wj,kuk.

Thm 5 (Localisation formula). For any stably tangentially complex
M2n with isolated fixed points, the equation

Φ(M) =
∑

Fix(M)

ς(x)
n∏

j=1

1

[wj(x)](u)

is satisfied in Ω−2nU (BT k).
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Quasitoric manifolds revisited.

Quasitoric manifolds M provide a vast source of examples of stably
complex Tn-manifolds with isolated fixed points, for which calcula-
tions with the fixed point data and Hirzebruch genera can be made
explicit.

Every such M is determined by the characteristic pair (P,Λ), where
P is a simple n-polytope with m facets F1, . . . , Fm,
Λ is an integral n×m matrix.

Given a fixed point x = Fj1 ∩ . . . ∩ Fjn denote
N(P )x the matrix of column vectors normal to Fj1, . . . , Fjn,
Λx the square submatrix of Λ of column vectors j1, . . . , jn,
Wx the matrix determined by W t

x = Λ−1x .

Prop 6. 1. the sign ς(x) is given by sign
(
det(ΛxN(P )x)

)
2. the weight vectors w1(x), . . .wn(x) are the columns of Wx.
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Elliptic genera.

Buchstaber considered the formal group law

Fb(u1, u2) = u1c(u2) + u2c(u1)− au1u2 −
d(u1)− d(u2)

u1c(u2)− u2c(u1)
u21u

2
2

over the graded ring R∗ = Z[a, cj, dk : j ≥ 2, k ≥ 1]/J, where
deg a = 2, deg cj = 2j and deg dk = 2(k+2);
J is the ideal of associativity relations, and

c(u) := 1+
∑
j≥2

cju
j, d(u) :=

∑
k≥1

dku
k.

Thm 7. The exponential series fb(x) of Fb may be written analytically
as eax/ϕ(x, z), where

φ(x, z) =
σ(z − x)
σ(z)σ(x)

eζ(z)x,

σ(z) is the Weierstrass sigma function, and ζ(z) = (lnσ(z))′.

Moreover, R∗ ⊗ Q is isomorphic to Q[a, c2, c3, c4] as graded algebras.
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The function φ(x, z) is known as the Baker–Akhiezer function as-
sociated to the elliptic curve y2 = 4x3 − g2x − g3. It satisfies the
Lamé equation, and is important in the theory of nonlinear integrable
equations.

Krichever studied the genus kv : ΩU∗ → R∗ corresponding to the expo-
nential series fb, which therefore classifies the formal group law Fb.
Analytically, it depends on the four complex variables z, a, g2 and g3.

Cor 8. Krichever’s generalised elliptic genus kv : ΩU∗ → R∗ induces an
isomorphism of graded abelian groups in dimensions < 10.

Thm 9. Let M2n be an SU-quasitoric manifold (i.e. c1(M) = 0); then
(1) the Krichever genus kv vanishes on M2n,
(2) M2n represents 0 in ΩU2n whenever n < 5.

Conjecture 10. Theorem 9(2) holds for all n.
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Ex 11.
1. The 2-parameter Todd genus t2 may be identified with the case

c(u) = 1− yzu2, d(u) = −yz(y+ z)u− y2z2u2.

The corresponding formal group law is

Ft2 =
u1 + u2 − (y+ z)u1u2

1− yzu1u2
.

It generalises the χy-genus (z = −1) and the Todd genus (y = 0).

2. The elliptic genus Ell corresponds to Euler’s formal group law

FEll(u1, u2) =
u1c(u2) + u2c(u1)

1− εu21u
2
2

= u1c(u2) + u2c(u1) + ε
u21 − u

2
2

u1c(u2)− u2c(u1)
u21u

2
2 ,

and may therefore be identified with the case

a = 0, d(u) = −εu2, and c2(u) = R(u) := 1− 2δu2 + εu4.
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Further applications to rigidity.

Prop 12. For any series f over a Q-algebra A, the corresponding
Hirzebruch genus ℓf is T k-rigid on M only if the functional equation

∑
Fix(M)

ς(x)
n∏

j=1

1

f(wj(x) · u)
= c

is satisfied in A[[u1, . . . , uk]], for some constant c ∈ A.

The quasitoric examples CP1, CP2, and the T2-manifold S6 are all
instructive.

Ex 13. A genus ℓf is T -rigid on CP1 only if the equation

1

f(u)
+

1

f(−u)
= c,

holds in A[[u]]. The general analytic solution is

f(u) =
u

q(u2) + cu/2
, where q(0) = 1.

An example is provided by the Todd genus, ftd(u) = (ezu − 1)/z. In
fact td is multiplicative with respect to CP1.
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Ex 14. A genus ℓf is T2-rigid on the stably complex manifold CP2
(1,−1)

only if the equation

1

f(u1)f(u2)
−

1

f(u1)f(u1 + u2)
+

1

f(−u2)f(u1 + u2)
= c

holds in A[[u1, u2]]. The general analytic solution satisfies

f(u1 + u2) =
f(u1) + f(u2)− c′f(u1)f(u2)

1− cf(u1)f(u2)
.

So f is the exponential series of the 2-parameter Todd genus, with
c′ = y+ z and c = yz.

Cor 15 (Musin). The 2-parameter Todd genus t2 is universal for rigid
genera.
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Ex 16. A genus ℓf is T2-rigid on the almost complex manifold S6 only
if the equation

1

f(u1)f(u2)f(−u1 − u2)
+

1

f(−u1)f(−u2)f(u1 + u2)
= c

holds in A[[u1, u2]], for some constant c.

The general analytic solution is of the form eax/φ(x, z), and f coincides
with Krichever’s exponential series fb.

Thm 17. Krichever’s generalised elliptic genus kv is universal for gen-
era that are rigid on SU-manifolds.
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