The Universal Toric Genus

Taras Panov
Moscow State University

joint with Victor Buchstaber and Nigel Ray

The 36th Symposium on Transformation Groups,
Osaka, 10-12 December 2009

Motivations: non-equivariant cobordism and torus actions.

Thm [Buchstaber-P.-Ray]. Every complex cobordism class in dim >2 contains a quasitoric manifold.

In other words, every stably complex manifold is cobordant to a manifold with a nicely behaving torus action.

All manifolds are smooth and closed, unless otherwise stated.
$M_{1}^{n} \simeq M_{2}^{n}(\mathrm{co})$ bordant if there is a manifold with boundary W^{n+1} such that $\partial W^{n+1}=M_{1} \sqcup M_{2}$.

Complex bordism: work with complex manifolds.
complex mfids \subset almost complex mflds \subset stably complex mflds

Stably complex structure on a $2 n$-dim manifold M is determined by a choice of isomorphism

$$
c_{\tau}: \tau M \oplus \mathbb{R}^{2(l-n)} \stackrel{\cong}{\cong} \xi
$$

where ξ is an l-dim complex vector bundle.

Complex bordism classes [M, c_{τ}] form the complex bordism ring $\Omega^{U}=\Omega_{*}^{U}(p t)$ with respect to the disjoint union and product.

$$
\Omega^{U} \cong \mathbb{Z}\left[a_{1}, a_{2}, \ldots\right], \quad \operatorname{dim} a_{i}=2 i \quad \text { Novikov'1960 }
$$

Quasitoric manifolds: 2n-dimensional manifolds M with a "nice" action of the torus T^{n} (after Davis-Januszkiewicz);

- the T^{n}-action is locally standard (locally looks like the standard T^{n}-representation in \mathbb{C}^{n});
- the orbit space M / T^{n} is an n-dim simple polytope P.

Examples include projective smooth toric varieties and symplectic manifolds M with Hamiltonian actions of T^{n} (also known as toric manifolds).

In their turn, quasitoric manifolds are examples of torus manifolds of Hattori-Masuda.

Equivariant cobordism and the universal toric genus.

X a T^{k}-space. There are 3 equivariant complex cobordism theories:

- $\Omega_{U: T^{k}}^{*}(X)$: geometric T^{k}-cobordisms: set of cobordism classes of stably tangentially complex T^{k}-bundles over X (here X is a smooth manifold).
- $M U_{T^{k}}^{*}(X)=\lim \left[S^{V} \wedge X_{+}, M U_{T^{k}}(W)\right]_{T^{k}}$: homotopic T^{k}-cobordisms; here $M U_{T^{k}}(W)$ is the Thom T^{k}-space of the universal $|W|-$ dimensional complex T^{k}-vector bundle $\gamma_{|W|}$, and S^{V} is the unit sphere in a T^{k}-representation space V.
- $\Omega_{U}^{*}\left(E T^{k} \times_{T^{k}} X\right)$: Borel T^{k}-cobordisms.

There are natural transformations of cohomology theories

$$
\Omega_{U: T^{k}}^{*}(X) \xrightarrow{\nu} M U_{T^{k}}^{*}(X) \xrightarrow{\alpha} \Omega_{U}^{*}\left(E T^{k} \times_{T^{k}} X\right) .
$$

Restricting to $X=p t$ we get a map

$$
\Phi:=\alpha \cdot \nu: \Omega_{U: T^{k}}^{*} \longrightarrow \Omega_{U}^{*}\left(B T^{k}\right)=\Omega_{*}^{U}\left[\left[u_{1}, \ldots, u_{k}\right]\right]
$$

which we refer to as the universal toric genus. It assigns to the cobordism class $\left[M, c_{\tau}\right] \in \Omega_{U: T^{k}}^{-2 n}$ of a $2 n$-dimensional T^{k}-manifold M the "cobordism class" of the map $E T^{k} \times{ }_{T^{k}} M \rightarrow B T^{k}$.

We may write

$$
\Phi\left(M, c_{\tau}\right)=\sum_{\omega} g_{\omega}(M) u^{\omega}
$$

where $\omega=\left(\omega_{1}, \ldots, \omega_{k}\right) \in \mathbb{N}^{k}, u^{\omega}=u_{1}^{\omega_{1}} \cdot \ldots \cdot u_{k}^{\omega_{k}}, g_{\omega}(M) \in \Omega_{2(|\omega|+n)}^{U}$.
We have $g_{0}(M)=[M] \in \Omega_{2 n}^{U}$. How to express the other coefficients $g_{\omega}(M)$?

Ray's basis in $\Omega_{*}^{U}\left(B T^{k}\right)$.
Consider the product of unit 3-spheres

$$
\left(S^{3}\right)^{j}=\left\{\left(z_{1}, \ldots, z_{2 j}\right) \in \mathbb{C}^{2 j}:\left|z_{i}\right|^{2}+\left|z_{i+j}\right|^{2}=1 \text { for } 1 \leqslant i \leqslant j\right\}
$$

with the free T^{j}-action by

$$
\left(t_{1}, \ldots, t_{j}\right) \cdot\left(z_{1}, \ldots, z_{2 j}\right)=\left(t_{1}^{-1} z_{1}, t_{1}^{-1} t_{2}^{-1} z_{2}, \ldots, t_{j-1}^{-1} t_{j}^{-1} z_{j}, t_{1} z_{j+1}, \ldots, t_{j} z_{2 j}\right)
$$

$B_{j}:=\left(S^{3}\right)^{j} / T^{j}$: bounded flag manifold. It is a Bott manifold, i.e. the total space of a j-fold iterated S^{2}-bundle over $B_{0}=*$.

For $1 \leqslant i \leqslant j$ there are complex line bundles

$$
\psi_{i}:\left(S^{3}\right)^{j} \times_{T^{j}} \mathbb{C} \longrightarrow B_{j}
$$

via the action $\left(t_{1}, \ldots, t_{j}\right) \cdot z=t_{i} z$ for $z \in \mathbb{C}$.
For any $j>0$ have an explicit isomorphism

$$
\tau\left(B_{j}\right) \oplus \mathbb{C}^{j} \cong \psi_{1} \oplus \psi_{1} \psi_{2} \oplus \cdots \oplus \psi_{j-1} \psi_{j} \oplus \bar{\psi}_{1} \oplus \cdots \oplus \bar{\psi}_{j}
$$

which defines a stably cplx structure c_{j}^{∂} on B_{j} with $\left[B_{j}, c_{j}^{\partial}\right]=0$ in $\Omega_{2 j}^{U}$.

Prop 1. The basis element $b_{\omega} \in \Omega_{2|\omega|}^{U}\left(B T^{k}\right)$ dual to $u^{\omega} \in \Omega_{U}^{*}\left(B T^{k}\right)$ is represented geometrically by the classifying map

$$
\psi_{\omega}: B_{\omega} \longrightarrow B T^{k}
$$

for the product $\psi_{\omega_{1}} \times \ldots \times \psi_{\omega_{k}}$ of line bundles over $B_{\omega}=B_{\omega_{1}} \times \ldots \times B_{\omega_{k}}$.
Let $T^{\omega}=T^{\omega_{1}} \times \ldots \times T^{\omega_{k}}$, and $\left(S^{3}\right)^{\omega}=\left(S^{3}\right)^{\omega_{1}} \times \ldots \times\left(S^{3}\right)^{\omega_{k}}$, on which T^{ω} acts coordinatewise. Define

$$
G_{\omega}(M):=\left(S^{3}\right)^{\omega} \times_{T^{\omega}} M,
$$

where T^{ω} acts on M via the representation

$$
\left(t_{1,1}, \ldots, t_{1, \omega_{1}} ; \ldots ; t_{k, 1}, \ldots, t_{k, \omega_{k}}\right) \longmapsto\left(t_{1, \omega_{1}}^{-1}, \ldots, t_{k, \omega_{k}}^{-1}\right)
$$

Thm 2. The manifold $G_{\omega}(M)$ represents the coefficient $g_{\omega}(M) \in$ $\Omega_{2(|\omega|+n)}^{U}$ of the universal toric genus expansion.

Hirzebruch genera and equivariant extentions.
R_{*} a (graded) commutative ring with unit.
$\ell: \Omega_{*}^{U} \rightarrow R_{*}$ a Hirzebruch genus
(a multiplicative R_{*}-valued cobordism invariant characteristic of M).

Every genus ℓ has a T^{k}-equivariant extension

$$
\ell^{T^{k}}:=\ell \cdot \Phi: \Omega_{*}^{U: T^{k}} \longrightarrow R_{*}\left[\left[u_{1}, \ldots, u_{k}\right]\right]
$$

We have

$$
\ell^{T^{k}}\left(M, c_{\tau}\right)=\ell(M)+\sum_{|\omega|>0} \ell\left(g_{\omega}(M)\right) u^{\omega}
$$

In particular, the T^{k}-equivariant extension of the universal genus $u g=$ id: $\Omega_{*}^{U} \rightarrow \Omega_{*}^{U}$ is Φ; hence the name "universal toric genus".

Rigidity and fibre multiplicativity.

Consider fibre bundles $M \rightarrow E \times{ }_{G} M \xrightarrow{\pi} B$, where M and B are connected and stably tangentially complex, G a compact Lie group of positive rank whose action preserves the stably complex structure on M,
$E \rightarrow B$ is a principal G-bundle.

Then $N:=E \times{ }_{G} M$ inherits a canonical stably complex structure.

A genus $\ell: \Omega_{*}^{U} \rightarrow R_{*}$ is multiplicative with respect to M whenever $\ell(N)=\ell(M) \ell(B)$ for any such bundle π;
if this holds for every M, then ℓ is fibre multiplicative.
The genus ℓ is T^{k}-rigid on M whenever $\ell^{T^{k}}: \Omega_{*}^{U:} T^{k} \longrightarrow R_{*}\left[\left[u_{1}, \ldots, u_{k}\right]\right]$ satisfies $\ell^{T^{k}}\left(M, c_{\tau}\right)=\ell(M)$;
if this holds for every M, then ℓ is T^{k}-rigid.
It follows that ℓ is T^{k}-rigid whenever $\ell\left(G_{\omega}(M)\right)=0$ for $|\omega|>0$.

Other definitions of rigidity:
Atiyah-Hirzebruch: Assume $\ell^{T^{k}}$ can be realised as the equivariant index of an elliptic complex, $\ell^{T^{k}}: \Omega_{*}^{U:}: T^{k} \longrightarrow R U\left(T^{k}\right)$.
Then $\ell^{T^{k}}$ is rigid if it takes values in $\mathbb{Z} \subset R U\left(T^{k}\right)$ (trivial representations).

Krichever: Considered \mathbb{Q}-valued genera and equivariant extensions $\ell^{T^{k}}: \Omega_{*}^{U: T^{k}} \rightarrow K\left(B T^{k}\right) \otimes \mathbb{Q}$.
Then $\ell^{T^{k}}$ is rigid if it takes values in $\mathbb{Q} \subset K\left(B T^{k}\right) \otimes \mathbb{Q}$.

Our definition of rigidity extends both Atiyah-Hirzebruch's and Krichever's.

Thm 3. If the genus ℓ is T^{k}-rigid on M, then it is mutiplicative with respect to M for bundles whose structure group G has the property that $\Omega_{U}^{*}(B G)$ is torsion-free.
On the other hand, if ℓ is multiplicative M, then it is T^{k}-rigid on M. Proof. Assume ℓ multiplicative. Apply ℓ to the bundle $M \rightarrow G_{\omega}(M) \rightarrow$ B_{ω}. Since B_{ω} bounds for $|\omega|>0$, we have $\ell\left(G_{\omega}(M)\right)=0$, so ℓ is $T^{k_{-}}$ rigid.

The other direction is proved by considering the pullback square

$$
\begin{aligned}
& E \times{ }_{G} M \xrightarrow{f^{\prime}} E G \times_{G} M \stackrel{i^{\prime}}{\leftarrow} E T^{k} \times_{T^{k}} M \\
& \pi \downarrow \quad \pi^{G} \downarrow \quad \pi^{T^{k}} \downarrow \\
& B \quad \xrightarrow{f} \quad B G \quad \stackrel{i}{\longleftarrow} \quad B T^{k} .
\end{aligned}
$$

Ex 4. The signature is fibre multiplicative over any simply connected base, so it is a rigid genus.

Isolated fixed points.

Assume $\operatorname{Fix}(M)$ is isolated. Have T^{k}-invariant $c_{\tau}: \tau M \oplus \mathbb{R}^{2(l-n)} \rightarrow \xi$.

For any $x \in \mathrm{Fix}(M)$, the sign $\varsigma(x)$ is +1 if the isomorphism

$$
\tau_{x}(M) \xrightarrow{i} \tau_{x}(M) \oplus \mathbb{R}^{2(l-n)} \xrightarrow{c_{\tau, x}} \xi_{x} \cong \mathbb{C}^{n} \oplus \mathbb{C}^{l-n} \xrightarrow{p} \mathbb{C}^{n}
$$

respects the canonical orientations, and -1 if it does not.

If M is almost complex then $\varsigma(x)=1$ for every $x \in \operatorname{Fix}(M)$.
The non-trivial T^{k}-representation \mathbb{C}^{n} decomposes into 1-dimensional representations as $r_{x, 1} \oplus \ldots \oplus r_{x, n}$.
$w_{j}(x):=\left(w_{j, 1}(x), \ldots, w_{j, k}(x)\right)$ the integral weight vector of $r_{x, j}$.
We refer to the collection of signs $\varsigma(x)$ and weight vectors $w_{j}(x)$ as the fixed point data for $\left(M, c_{\tau}\right)$.

Each weight vector determines a line bundle

$$
\zeta^{w_{j}(x)}:=\zeta_{1}^{w_{j, 1}(x)} \otimes \cdots \otimes \zeta_{k}^{w_{j, k}(x)}
$$

over $B T^{k}$, whose first Chern class is a formal power series

$$
\left[w_{j}(x)\right](u):=\sum_{\omega} a_{\omega}\left[w_{j, 1}(x)\right]\left(u_{1}\right)^{\omega_{1}} \cdots\left[w_{j, k}(x)\right]\left(u_{k}\right)^{\omega_{k}}
$$

in $\Omega_{U}^{2}\left(B T^{k}\right)$. Here $[m]\left(u_{j}\right)$ denotes the power series $c_{1}^{M U}\left(\zeta_{j}^{m}\right)$ in $\Omega_{U}^{2}\left(\mathbb{C} P^{\infty}\right)$, and the a_{ω} are the coefficients of $c_{1}^{M U}\left(\zeta_{1} \otimes \cdots \otimes \zeta_{k}\right)$.

Modulo decomposables we have that

$$
\left[w_{j}(x)\right]\left(u_{1}, \ldots, u_{k}\right) \equiv w_{j, 1} u_{1}+\cdots+w_{j, k} u_{k}
$$

Thm 5 (Localisation formula). For any stably tangentially complex $M^{2 n}$ with isolated fixed points, the equation

$$
\Phi(M)=\sum_{\operatorname{Fix}(M)} \varsigma(x) \prod_{j=1}^{n} \frac{1}{\left[w_{j}(x)\right](u)}
$$

is satisfied in $\Omega_{U}^{-2 n}\left(B T^{k}\right)$.

Quasitoric manifolds revisited.

Quasitoric manifolds M provide a vast source of examples of stably complex T^{n}-manifolds with isolated fixed points, for which calculations with the fixed point data and Hirzebruch genera can be made explicit.

Every such M is determined by the characteristic pair (P, \wedge), where P is a simple n-polytope with m facets F_{1}, \ldots, F_{m}, Λ is an integral $n \times m$ matrix.

Given a fixed point $x=F_{j_{1}} \cap \ldots \cap F_{j_{n}}$ denote $N(P)_{x}$ the matrix of column vectors normal to $F_{j_{1}}, \ldots, F_{j_{n}}$, Λ_{x} the square submatrix of Λ of column vectors j_{1}, \ldots, j_{n}, W_{x} the matrix determined by $W_{x}^{t}=\Lambda_{x}^{-1}$.

Prop 6. 1. the sign $\varsigma(x)$ is given by sign $\left(\operatorname{det}\left(\Lambda_{x} N(P)_{x}\right)\right)$
2. the weight vectors $w_{1}(x), \ldots w_{n}(x)$ are the columns of W_{x}.

Elliptic genera.

Buchstaber considered the formal group law

$$
F_{b}\left(u_{1}, u_{2}\right)=u_{1} c\left(u_{2}\right)+u_{2} c\left(u_{1}\right)-a u_{1} u_{2}-\frac{d\left(u_{1}\right)-d\left(u_{2}\right)}{u_{1} c\left(u_{2}\right)-u_{2} c\left(u_{1}\right)} u_{1}^{2} u_{2}^{2}
$$

over the graded ring $R_{*}=\mathbb{Z}\left[a, c_{j}, d_{k}: j \geq 2, k \geq 1\right] / J$, where $\operatorname{deg} a=2, \operatorname{deg} c_{j}=2 j$ and deg $d_{k}=2(k+2)$;
J is the ideal of associativity relations, and

$$
c(u):=1+\sum_{j \geq 2} c_{j} u^{j}, \quad d(u):=\sum_{k \geq 1} d_{k} u^{k}
$$

Thm 7. The exponential series $f_{b}(x)$ of F_{b} may be written analytically as $e^{a x} / \phi(x, z)$, where

$$
\varphi(x, z)=\frac{\sigma(z-x)}{\sigma(z) \sigma(x)} e^{\zeta(z) x}
$$

$\sigma(z)$ is the Weierstrass sigma function, and $\zeta(z)=(\ln \sigma(z))^{\prime}$.
Moreover, $R_{*} \otimes \mathbb{Q}$ is isomorphic to $\mathbb{Q}\left[a, c_{2}, c_{3}, c_{4}\right]$ as graded algebras.

The function $\varphi(x, z)$ is known as the Baker-Akhiezer function associated to the elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$. It satisfies the Lamé equation, and is important in the theory of nonlinear integrable equations.

Krichever studied the genus $k v: \Omega_{*}^{U} \rightarrow R_{*}$ corresponding to the exponential series f_{b}, which therefore classifies the formal group law F_{b}. Analytically, it depends on the four complex variables z, a, g_{2} and g_{3}.

Cor 8. Krichever's generalised elliptic genus $k v: \Omega_{*}^{U} \rightarrow R_{*}$ induces an isomorphism of graded abelian groups in dimensions <10.

Thm 9. Let $M^{2 n}$ be an $S U$-quasitoric manifold (i.e. $c_{1}(M)=0$); then
(1) the Krichever genus $k v$ vanishes on $M^{2 n}$,
(2) $M^{2 n}$ represents 0 in $\Omega_{2 n}^{U}$ whenever $n<5$.

Conjecture 10. Theorem 9(2) holds for all n.

Ex 11.

1. The 2-parameter Todd genus t2 may be identified with the case

$$
c(u)=1-y z u^{2}, \quad d(u)=-y z(y+z) u-y^{2} z^{2} u^{2}
$$

The corresponding formal group law is

$$
F_{t 2}=\frac{u_{1}+u_{2}-(y+z) u_{1} u_{2}}{1-y z u_{1} u_{2}}
$$

It generalises the χ_{y}-genus $(z=-1)$ and the Todd genus ($y=0$).
2. The elliptic genus Ell corresponds to Euler's formal group Iaw

$$
\begin{aligned}
& F_{E l l}\left(u_{1}, u_{2}\right)=\frac{u_{1} c\left(u_{2}\right)+u_{2} c\left(u_{1}\right)}{1-\varepsilon u_{1}^{2} u_{2}^{2}} \\
&=u_{1} c\left(u_{2}\right)+u_{2} c\left(u_{1}\right)+\varepsilon \frac{u_{1}^{2}-u_{2}^{2}}{u_{1} c\left(u_{2}\right)-u_{2} c\left(u_{1}\right)} u_{1}^{2} u_{2}^{2}
\end{aligned}
$$

and may therefore be identified with the case

$$
a=0, \quad d(u)=-\varepsilon u^{2}, \quad \text { and } \quad c^{2}(u)=R(u):=1-2 \delta u^{2}+\varepsilon u^{4}
$$

Further applications to rigidity.

Prop 12. For any series f over a \mathbb{Q}-algebra A, the corresponding Hirzebruch genus ℓ_{f} is T^{k}-rigid on M only if the functional equation

$$
\sum_{\operatorname{Fix}(M)} \varsigma(x) \prod_{j=1}^{n} \frac{1}{f\left(w_{j}(x) \cdot u\right)}=c
$$

is satisfied in $A\left[\left[u_{1}, \ldots, u_{k}\right]\right]$, for some constant $c \in A$.
The quasitoric examples $\mathbb{C} P^{1}, \mathbb{C} P^{2}$, and the T^{2}-manifold S^{6} are all instructive.

Ex 13. A genus ℓ_{f} is T-rigid on $\mathbb{C} P^{1}$ only if the equation

$$
\frac{1}{f(u)}+\frac{1}{f(-u)}=c
$$

holds in $A[[u]]$. The general analytic solution is

$$
f(u)=\frac{u}{q\left(u^{2}\right)+c u / 2}, \quad \text { where } q(0)=1
$$

An example is provided by the Todd genus, $f_{t d}(u)=\left(e^{z u}-1\right) / z$. In fact $t d$ is multiplicative with respect to $\mathbb{C} P^{1}$.

Ex 14. A genus ℓ_{f} is T^{2}-rigid on the stably complex manifold $\mathbb{C} P_{(1,-1)}^{2}$ only if the equation

$$
\frac{1}{f\left(u_{1}\right) f\left(u_{2}\right)}-\frac{1}{f\left(u_{1}\right) f\left(u_{1}+u_{2}\right)}+\frac{1}{f\left(-u_{2}\right) f\left(u_{1}+u_{2}\right)}=c
$$

holds in $A\left[\left[u_{1}, u_{2}\right]\right]$. The general analytic solution satisfies

$$
f\left(u_{1}+u_{2}\right)=\frac{f\left(u_{1}\right)+f\left(u_{2}\right)-c^{\prime} f\left(u_{1}\right) f\left(u_{2}\right)}{1-c f\left(u_{1}\right) f\left(u_{2}\right)}
$$

So f is the exponential series of the 2-parameter Todd genus, with $c^{\prime}=y+z$ and $c=y z$.

Cor 15 (Musin). The 2-parameter Todd genus t2 is universal for rigid genera.

Ex 16. A genus ℓ_{f} is T^{2}-rigid on the almost complex manifold S^{6} only if the equation

$$
\frac{1}{f\left(u_{1}\right) f\left(u_{2}\right) f\left(-u_{1}-u_{2}\right)}+\frac{1}{f\left(-u_{1}\right) f\left(-u_{2}\right) f\left(u_{1}+u_{2}\right)}=c
$$

holds in $A\left[\left[u_{1}, u_{2}\right]\right]$, for some constant c.

The general analytic solution is of the form $e^{a x} / \varphi(x, z)$, and f coincides with Krichever's exponential series f_{b}.

Thm 17. Krichever's generalised elliptic genus $k v$ is universal for genera that are rigid on $S U$-manifolds.
[1] Victor M. Buchstaber and Taras E. Panov. Torus Actions and Their Applications in Topology and Combinatorics. Volume 24 of University Lecture Series, Amer. Math. Soc., Providence, R.I., 2002.
[2] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. Spaces of polytopes and cobordism of quasitoric manifolds. Moscow Math. J. 7 (2007), no. 2, 219-242; arXiv:math.AT/0609346.
[3] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. Toric genera. Preprint (2009); arXiv:0908.3298.

