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1. Categorical quotient.
G a reductive algebraic group, S an affine G-variety.
ms.G: S — S/G morphism dual to C[S]C — C[9].

75 .G IS surjective and establishes a bijection

closed G-orbits of S <+—  points of §//G.

75 G IS universal in the class of morphisms from S constant on G-orbits
in the category of algebraic varieties.

S/ G is called the categorical quotient.



2. Kempf—Ness sets for affine varieties.

p: G — GL(V) a representation, K C G a maximal compact subgroup,
(,) a K-invariant hermitian form on V with associated norm || ||.

Given v € V, consider the function

1
Fo:G= R, g lgv]?

It has a critical point iff Gv is closed, and all critical points of F, are
minima. Define the subset KN C V by

KN ={veV:(dFy)e =0} (e € G is the unit)
{veV:T,Gv L v}

={veV: {(yv,v) =0 for all v € g}

= {v e V: (kv,v) = 0 for all k € t}. (1)

Any v € KN is a closest point to the origin in its orbit Gu.
KN is called the Kempf—Ness set of V.



Assume that S is G-equivariantly embedded as a closed subvariety in
a representation V of G. Then KNg := KNN S, the Kempf—Ness set
of S.

The importance of Kempf—Ness sets for the study of orbit quotients
is due to the following result.
Thm 2.(a) | | The composition

KNg — S — S//G

is proper and induces a homeomorphism

KNg /K =5 S//G.

(b) [ | There is a K-equivariant deformation retraction

S — K/Vs.



3. Toric varieties.
N = 7™ an integral lattice, Np = N ®z R.

C* = C\ {0} the multiplicative group of complex numbers,
Sl the subgroup of complex numbers of absolute value one.

Tc=N®yC*= (C*)™ the algebraic torus,
T =N®zS!=(S!)" the (compact) torus.

A toric variety is a normal algebraic variety X containing the algebraic
torus T as a Zariski open subset in such a way that the natural action
of T¢ on itself extends to an action on X.

fans > in N +— complex n-dim toric varieties X5

regular fans <+—  non-singular varieties

complete fans <+— compact varieties



4. Batyrev—Cox construction.

Assume that one-dimensional cones of 2 span Np as a vector space.
m the number of one-dimensional cones.

a; € N the primitive generator of the ith one-dim cone, 1 <7 < m.

Consider the map
7'M — N, e;, — a;.
The corresponding maps of tori fit into exact sequences

1—G— (CH" — T — 1, (3)

] —K—T" —T —1 (4)

where G is isomorphic to a product of (C*)™~"™ and a finite group.
If > is a regular fan and has at least one n-dimensional cone, then
G = (C*)™~" and similarly for K.




We say that a subset {iq,...,i .} € [m] = {1,...,m} is a g-subset if
{aiy,---,a; } is a subset of the generator set of a cone in .

The collection of g-subsets is closed with respect to the inclusion,

and therefore forms an (abstract) simplicial complex on the set [m],
which we denote Ks.

If 2 is a complete simplicial fan, then Ky is a triangulation of an
(n — 1)-dimensional sphere.

Given a cone o € X, we denote by g(o) C [m] the set of its generators.
Now set

A(T) = L (zeC": 2, = ... =z, =0}

1
{i1,...,ir} is not a g-subset
and

U(Z) = C™\ A(D).



Unlike G and K, both A(X) and U(X) depend only on the combina-
torial structure of the simplicial complex Ks; the set U(X) coincides
with the coordinate subspace arrangement complement U(Ks).

The set A(X) is an affine variety, while its complement U(X) admits
a simple affine cover, as described in the following statement.

Prop 5. Given a cone o € ¥, set 27 = [1¢,(,) 7 and define
V(Z)={z€C™: 2% =0 for all 0 € =}
and
U(o) ={2z€C™:z; 0 ifj ¢ g(o)}.
Then A(X) =V (X) and

U(E) =Cm\V(Z) = |J Uo).
oE



The complement U(X) C C™ is (C*)™-invariant.

If 3> is simplicial, the subgroup G C (C*)™ acts on U(X) with finite
isotropy subgroups (or freely if 3> is regular). The quotient can be
identified with the toric variety Xs determined by 2_:

Thm 6. | ] (@) The toric variety X5 is isomorphic to the categorical
quotient of U(X) by G.

(b) Xs is the geometric quotient of U(X) by G if and only if ¥~ is
simplicial.

Therefore, if > is a simplicial, then all the orbits of the G-action on
U(X) are closed and we have U(X)/G=U(X)/G.

However, the corresponding Kempf—Ness set cannot constructed in
the standard way, as U(X) is not an affine variety in C™,



5. The moment-angle complex.

Consider the unit polydisc
(D)™ = {z € C™: |zj| < 1 for all j}.
Given a cone o € >, define
Z(0) ={z € (D)™: || =1 if j ¢ g(o)},

and the moment-angle complex

z(x)= U 2(0) C(d)™
oE2

Z(X) is T™-invariant. Also, Z(X) Cc U(X).

Prop 7. Assume X s complete simplicial. Then Z(X) is a compact
T"™-manifold of dimension m <+ n.
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6. Toric Kempf—Ness sets.

Z(X) has the same properties with respect to the G-action on U(X)
as KN g with respect to the G-action on an affine variety S:

Thm 8 ( ). Assume X is simpliciall.
(a) If > is complete, then the composition

Z(2) o U(E) = U(D)/G

induces a homeomorphism

Z(Z)/K = U(D)/G.

(b) There is a T™-equivariant deformation retraction U(X) — Z(X).

We therefore refer to Z(X) as the toric Kempf—Ness set of U(X).
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Ex 9.Let n =2 and eq,ep be a basis in Np.

1. Consider a complete fan > having the following three 2-dimensional
cones: the first is spanned by e; and eo, the second spanned by es
and —eq —eo, and the third spanned by —e1 —e> and eq. The simplicial
complex Ks is a complete graph on 3 vertices (or the boundary of a
triangle). We have

U(X) =C3\{2: 21 = 20 = 23 =0} = C3\ {0}
and
Z(Z)=D?xD?xStubD?xs! x D?us! x D? x D?
=0((D?)?%) = s°.

Then G is the diagonal subtorus in (C*)3, and K is the diagonal
subcircle in T3. Therefore,

Xy =U(X)/G = Z(X)/K = CP?.
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2. Now consider the fan > consisting of three 1-dimensional cones
generated by vectors eq, e»> and —eq1—eo. This fan is not complete, but
its 1-dimensional cones span Ny as a vector space. So Cox’ Thm 6
applies, but Thm 8 (a) does not. We have

Ks = 3 disjoint points,
U(X) =C3\ {21 =20 =0,21 = 23 = 0,2 = 23 = 0},
and
Z(Z)=D?’xSt xstust xD?xstus! x st x D2
Both spaces are homotopy equivalent to S3v S3vS3vs4yvs4

G is again a diagonal subtorus in (C*)3. By Thm 6,

Xs =U(X)/G = CP?\ {3 points}.
This in non-compact, and cannot be identified with Z(X) /K.
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7. Polytopes and normal fans.

Ny the dual vector space. Given primitive vectors aq,...,am € N and
integer numbers b1,...,b € Z, consider

P={x € Ng: (a;,z) +b; >0for 1 <i<m}.
Assume:
e P is bounded;
e the affine hull of P is the whole Np;
e NO redundant inequalities;

e No (n+ 1) hyperlanes (a;,x) + b; = 0 meet at a point.

Then P is a convex simple polytope with m facets

Fy={z € P: (a;,z) + b; = 0}
with normal vectors a;, for 1 < < m.
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We may specify P by a matrix inequality

where Ap is the m x n matrix of row vectors a;, and bp is the column
vector of scalars b,.

T he affine injection

ipiNﬁ—)Rm, QUI—>AP$—|—bP

embeds P into RY = {y € R™: y; > 0}.
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Now define the space Zp by a pullback diagram

Zp %, Ccm

ol

p B rm
where u(z1,...,2m) = (|z1]%,...,|zm|?). Here iy is a T™-equivariant
embedding.

The normal fan 2 p consists of the cones spanned by the sets
{aiy,---,a; } such that the intersection F;, N...N F; of the corre-
sponding facets is non-empty. > p is a simplicial fan.

Prop 10. (a) We have Zp C U(Xp).
(b) There is a T™-homeomorphism Zp = Z(Xp).

16



8. Complete intersections of real quadrics.

The linear transformation Ap: Np — R™ is exactly the one obtained
from T™ — T by applying Hom;(-,S!) @, R.

Applying Homy( -,S1) ®, R to the whole exact sequence of tori, we

obtain

A
0 — N 2B Rrm S rmn 0,

where R™~" = Hom;(G,S!) @, R.

Assume the first n normal vectors a1,...,an Span a cone of > p, and
take these vectors as a basis of Nﬁg. In this basis, we may take

—Gp+411 -+ —Op41n 1 0O ... O
C=(ey)= | ®F21 - “ng2n O 1 ... 0

—Cl/m,]_ “ . —a/m7fn, O 0 ... 1

17



Then Zp embeds in C™ as the space of common solutions of m — n
real quadratic equations

m
Z cjk(|zk|2—bk)=0, for 1§j§m—n.

k=1
This intersection is non-degenerate, so Zp C C™ is a smooth sub-
manifold with trivial normal bundle ( ).

The projective toric variety Xp = Xy, can be obtained from the
action of K on U(Xp) C C™ via the process of symplectic reduction.
The moment map By p IS given by the composition

cm My jrm Gy Lie(K) R
where p(z1,...,2m) = (|z11%, ..., |zm|?) and C = (cji), sO

Zp =z, (Cbp).
is its level surface. Then Xp = Zp/K.
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Question 11. T here are many complete regular fans > which cannot
be realised as normal fans of convex polytopes. The corresponding
toric varieties Xs are non-singular, but not projective. In this case the
Kempf—Ness set Z(X) is still defined. Is there a description of Z(X)
similar to that of Z(3Xp) as a complete intersection of real quadrics?
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9. Cohomology of Kempf—Ness sets.

Given an abstract simplicial complex K on the set [m], the face ring
(or the Stanley—Reisner ring) Z[K] is the quotient

Z[K] = Zlvy, ... yom) /(i - vi 0 {in, -0 i) € K).

Thm 12. | | For every simplicial fan 3> there are
algebra isomorphisms

H* (Z(Z); Z) = Torh, (Z[sz], Z)
= H|Alug, ..., un] ® Z[Ks), d],

where degu; = 1, degv;, = 2, du; = v;, dv; =0, for 1 <1 < m.
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Ex 13. Let P be the simple poly-
tope obtained by cutting two non-
adjacent edges off a cube in Np =
R3. We may specify P by 8 in-
equalities:

x>0, y=0, =z2>

Fo
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Toric variety Xp is obtained by blowing up the product CP! x CP1 x
CP! at two complex 1-dimensional subvarieties {oo} x {0} x CP! and
CP! x {oo} x {o0}.
The Kempf—Ness set Zp is given by 5 real quadratic equations:
2112 + 24| =3 =0, |22]°+25]° -3 =0,
2317+ |26|° =3 =10, |z1]° — |22+ |27]° =2 =0,
|22/° + 23| + |28]° = 5 = 0.
It is an 11-dimensional manifold with Betti vector

(1,0,0,10,16,5,5,16,10,0,0,1)

and non-trivial Massey products of 3-dimensional classes (
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