Toric Kempf–Ness sets

Taras Panov

Moscow State University

Toric Geometry meeting MFO 4-9 January 2009

1. Categorical quotient.

G a reductive algebraic group, S an affine G-variety.

 $\pi_{S,G} \colon S \to S /\!\!/ G$ morphism dual to $\mathbb{C}[S]^G \to \mathbb{C}[S]$.

 $\pi_{S,G}$ is surjective and establishes a bijection

closed G-orbits of $S \longleftrightarrow \text{points of } S/\!\!/ \text{G}.$

 $\pi_{S,G}$ is universal in the class of morphisms from S constant on G-orbits in the category of algebraic varieties.

 $S/\!\!/ G$ is called the categorical quotient.

2. Kempf—Ness sets for affine varieties.

 $\rho \colon \mathsf{G} \to \mathsf{GL}(V)$ a representation, $\mathsf{K} \subset \mathsf{G}$ a maximal compact subgroup, $\langle \; , \; \rangle$ a K-invariant hermitian form on V with associated norm $\| \; \|$.

Given $v \in V$, consider the function

$$F_v \colon \mathsf{G} \to \mathbb{R}, \quad g \mapsto \frac{1}{2} \|gv\|^2.$$

It has a critical point iff Gv is closed, and all critical points of F_v are minima. Define the subset $KN \subset V$ by

$$KN = \{v \in V : (dF_v)_e = 0\} \qquad (e \in G \text{ is the unit}) \\
= \{v \in V : T_v G v \perp v\} \\
= \{v \in V : \langle \gamma v, v \rangle = 0 \text{ for all } \gamma \in \mathfrak{g}\} \\
= \{v \in V : \langle \kappa v, v \rangle = 0 \text{ for all } \kappa \in \mathfrak{k}\}.$$
(1)

Any $v \in KN$ is a closest point to the origin in its orbit Gv. KN is called the Kempf-Ness set of V.

Assume that S is G-equivariantly embedded as a closed subvariety in a representation V of G. Then $KN_S := KN \cap S$, the Kempf-Ness set of S.

The importance of Kempf–Ness sets for the study of orbit quotients is due to the following result.

Thm 2. (a) [Kempf-Ness] The composition

$$KN_S \hookrightarrow S \rightarrow S/\!\!/ G$$

is proper and induces a homeomorphism

$$KN_S/K \stackrel{\cong}{\longrightarrow} S/\!\!/G.$$

(b) [Neeman] There is a K-equivariant deformation retraction

$$S \to KN_S$$
.

3. Toric varieties.

 $N \cong \mathbb{Z}^n$ an integral lattice, $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$.

 $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ the multiplicative group of complex numbers, S^1 the subgroup of complex numbers of absolute value one.

$$\mathsf{T}_{\mathbb{C}} = N \otimes_{\mathbb{Z}} \mathbb{C}^* \cong (\mathbb{C}^*)^n$$
 the algebraic torus, $\mathsf{T} = N \otimes_{\mathbb{Z}} \mathsf{S}^1 \cong (\mathsf{S}^1)^n$ the (compact) torus.

A toric variety is a normal algebraic variety X containing the algebraic torus $\mathsf{T}_{\mathbb{C}}$ as a Zariski open subset in such a way that the natural action of $\mathsf{T}_{\mathbb{C}}$ on itself extends to an action on X.

fans Σ in $N_{\mathbb{R}}$ \longleftrightarrow complex n-dim toric varieties X_{Σ} regular fans \longleftrightarrow non-singular varieties complete fans \longleftrightarrow compact varieties

4. Batyrev–Cox construction.

Assume that one-dimensional cones of Σ span $N_{\mathbb{R}}$ as a vector space.

m the number of one-dimensional cones.

 $a_i \in N$ the primitive generator of the *i*th one-dim cone, $1 \leqslant i \leqslant m$.

Consider the map

$$\mathbb{Z}^m \to N, \quad e_i \mapsto a_i.$$

The corresponding maps of tori fit into exact sequences

$$1 \longrightarrow \mathsf{G} \longrightarrow (\mathbb{C}^*)^m \longrightarrow \mathsf{T}_{\mathbb{C}} \longrightarrow 1, \tag{3}$$

$$1 \longrightarrow \mathsf{K} \longrightarrow T^m \longrightarrow \mathsf{T} \longrightarrow 1 \tag{4}$$

where G is isomorphic to a product of $(\mathbb{C}^*)^{m-n}$ and a finite group. If Σ is a regular fan and has at least one n-dimensional cone, then $G \cong (\mathbb{C}^*)^{m-n}$, and similarly for K.

We say that a subset $\{i_1,\ldots,i_k\}\in[m]=\{1,\ldots,m\}$ is a g-subset if $\{a_{i_1},\ldots,a_{i_k}\}$ is a subset of the generator set of a cone in Σ .

The collection of g-subsets is closed with respect to the inclusion, and therefore forms an (abstract) simplicial complex on the set [m], which we denote \mathcal{K}_{Σ} .

If Σ is a complete simplicial fan, then \mathcal{K}_{Σ} is a triangulation of an (n-1)-dimensional sphere.

Given a cone $\sigma \in \Sigma$, we denote by $g(\sigma) \subseteq [m]$ the set of its generators. Now set

$$A(\Sigma) = \bigcup_{\{i_1,\dots,i_k\} \text{ is not a } g\text{-subset}} \{z \in \mathbb{C}^m \colon z_{i_1} = \dots = z_{i_k} = 0\}$$

and

$$U(\Sigma) = \mathbb{C}^m \setminus A(\Sigma).$$

Unlike G and K, both $A(\Sigma)$ and $U(\Sigma)$ depend only on the combinatorial structure of the simplicial complex \mathcal{K}_{Σ} ; the set $U(\Sigma)$ coincides with the coordinate subspace arrangement complement $U(\mathcal{K}_{\Sigma})$.

The set $A(\Sigma)$ is an affine variety, while its complement $U(\Sigma)$ admits a simple affine cover, as described in the following statement.

Prop 5. Given a cone $\sigma \in \Sigma$, set $z^{\widehat{\sigma}} = \prod_{j \notin g(\sigma)} z_j$ and define

$$V(\Sigma) = \{ z \in \mathbb{C}^m : z^{\widehat{\sigma}} = 0 \text{ for all } \sigma \in \Sigma \}$$

and

$$U(\sigma) = \{ z \in \mathbb{C}^m : z_j \neq 0 \text{ if } j \notin g(\sigma) \}.$$

Then $A(\Sigma) = V(\Sigma)$ and

$$U(\Sigma) = \mathbb{C}^m \setminus V(\Sigma) = \bigcup_{\sigma \in \Sigma} U(\sigma).$$

The complement $U(\Sigma) \subset \mathbb{C}^m$ is $(\mathbb{C}^*)^m$ -invariant.

If Σ is simplicial, the subgroup $G \subset (\mathbb{C}^*)^m$ acts on $U(\Sigma)$ with finite isotropy subgroups (or freely if Σ is regular). The quotient can be identified with the toric variety X_{Σ} determined by Σ :

Thm 6. [Cox] (a) The toric variety X_{Σ} is isomorphic to the categorical quotient of $U(\Sigma)$ by G.

(b) X_{Σ} is the geometric quotient of $U(\Sigma)$ by G if and only if Σ is simplicial.

Therefore, if Σ is a simplicial, then all the orbits of the G-action on $U(\Sigma)$ are closed and we have $U(\Sigma)/\!\!/ G = U(\Sigma)/\!\!/ G$.

However, the corresponding Kempf–Ness set cannot constructed in the standard way, as $U(\Sigma)$ is *not* an affine variety in \mathbb{C}^m .

5. The moment-angle complex.

Consider the unit polydisc

$$(\mathsf{D}^2)^m = \{ z \in \mathbb{C}^m \colon |z_j| \leqslant 1 \text{ for all } j \}.$$

Given a cone $\sigma \in \Sigma$, define

$$\mathcal{Z}(\sigma) = \{ z \in (D^2)^m \colon |z_j| = 1 \text{ if } j \notin g(\sigma) \},$$

and the moment-angle complex

$$\mathcal{Z}(\Sigma) = \bigcup_{\sigma \in \Sigma} \mathcal{Z}(\sigma) \subseteq (D^2)^m.$$

 $\mathcal{Z}(\Sigma)$ is T^m -invariant. Also, $\mathcal{Z}(\Sigma) \subset U(\Sigma)$.

Prop 7. Assume Σ is complete simplicial. Then $\mathcal{Z}(\Sigma)$ is a compact T^m -manifold of dimension m+n.

6. Toric Kempf–Ness sets.

 $\mathcal{Z}(\Sigma)$ has the same properties with respect to the G-action on $U(\Sigma)$ as KN_S with respect to the G-action on an affine variety S:

Thm 8 (Buchstaber-P.'00). Assume Σ is simplicial.

(a) If Σ is complete, then the composition

$$\mathcal{Z}(\Sigma) \hookrightarrow U(\Sigma) \to U(\Sigma)/G$$

induces a homeomorphism

$$\mathcal{Z}(\Sigma)/\mathsf{K} \to U(\Sigma)/\mathsf{G}.$$

(b) There is a T^m -equivariant deformation retraction $U(\Sigma) \to \mathcal{Z}(\Sigma)$.

We therefore refer to $\mathcal{Z}(\Sigma)$ as the toric Kempf–Ness set of $U(\Sigma)$.

Ex 9. Let n=2 and e_1,e_2 be a basis in $N_{\mathbb{R}}$.

1. Consider a complete fan Σ having the following three 2-dimensional cones: the first is spanned by e_1 and e_2 , the second spanned by e_2 and $-e_1-e_2$, and the third spanned by $-e_1-e_2$ and e_1 . The simplicial complex \mathcal{K}_{Σ} is a complete graph on 3 vertices (or the boundary of a triangle). We have

$$U(\Sigma) = \mathbb{C}^3 \setminus \{z : z_1 = z_2 = z_3 = 0\} = \mathbb{C}^3 \setminus \{0\}$$

and

$$\begin{split} \mathcal{Z}(\Sigma) &= \mathsf{D}^2 \times \mathsf{D}^2 \times \mathsf{S}^1 \cup \mathsf{D}^2 \times \mathsf{S}^1 \times \mathsf{D}^2 \cup \mathsf{S}^1 \times \mathsf{D}^2 \times \mathsf{D}^2 \\ &= \partial ((\mathsf{D}^2)^3) \cong \mathsf{S}^5. \end{split}$$

Then G is the diagonal subtorus in $(\mathbb{C}^*)^3$, and K is the diagonal subcircle in T^3 . Therefore,

$$X_{\Sigma} = U(\Sigma)/G = \mathcal{Z}(\Sigma)/K = \mathbb{C}P^2.$$

2. Now consider the fan Σ consisting of three 1-dimensional cones generated by vectors e_1 , e_2 and $-e_1-e_2$. This fan is not complete, but its 1-dimensional cones span $N_{\mathbb{R}}$ as a vector space. So Cox' Thm 6 applies, but Thm 8 (a) does not. We have

$$\mathcal{K}_{\Sigma} = 3$$
 disjoint points,

$$U(\Sigma) = \mathbb{C}^3 \setminus \{z_1 = z_2 = 0, z_1 = z_3 = 0, z_2 = z_3 = 0\},\$$

and

$$\mathcal{Z}(\Sigma) = \mathsf{D}^2 \times \mathsf{S}^1 \times \mathsf{S}^1 \cup \mathsf{S}^1 \times \mathsf{D}^2 \times \mathsf{S}^1 \cup \mathsf{S}^1 \times \mathsf{S}^1 \times \mathsf{D}^2.$$

Both spaces are homotopy equivalent to $S^3 \vee S^3 \vee S^4 \vee S^4$.

G is again a diagonal subtorus in $(\mathbb{C}^*)^3$. By Thm 6,

$$X_{\Sigma} = U(\Sigma)/G = \mathbb{C}P^2 \setminus \{3 \text{ points}\}.$$

This in non-compact, and cannot be identified with $\mathcal{Z}(\Sigma)/\mathsf{K}$.

7. Polytopes and normal fans.

 $N_{\mathbb{R}}^*$ the dual vector space. Given primitive vectors $a_1, \ldots, a_m \in N$ and integer numbers $b_1, \ldots, b_m \in \mathbb{Z}$, consider

$$P = \{x \in N_{\mathbb{R}}^* : \langle a_i, x \rangle + b_i \geqslant 0 \text{ for } 1 \leqslant i \leqslant m\}.$$

Assume:

- *P* is bounded;
- ullet the affine hull of P is the whole $N_{\mathbb{R}}^*$;
- no redundant inequalities;
- no (n+1) hyperlanes $\langle a_i, x \rangle + b_i = 0$ meet at a point.

Then P is a convex simple polytope with m facets

$$F_i = \{x \in P : \langle a_i, x \rangle + b_i = 0\}$$

with normal vectors a_i , for $1 \leq i \leq m$.

We may specify P by a matrix inequality

$$A_P x + b_P \geqslant 0$$
,

where A_P is the $m \times n$ matrix of row vectors a_i , and b_P is the column vector of scalars b_i .

The affine injection

$$i_P \colon N_{\mathbb{R}}^* \longrightarrow \mathbb{R}^m, \quad x \mapsto A_P x + b_P$$

embeds P into $\mathbb{R}^m = \{ y \in \mathbb{R}^m : y_i \ge 0 \}$.

Now define the space \mathcal{Z}_P by a pullback diagram

$$\begin{array}{ccc}
\mathcal{Z}_P & \xrightarrow{i_Z} & \mathbb{C}^m \\
\mu_P \downarrow & & \downarrow \mu \\
P & \xrightarrow{i_P} & \mathbb{R}^m
\end{array}$$

where $\mu(z_1,\ldots,z_m)=(|z_1|^2,\ldots,|z_m|^2)$. Here i_Z is a T^m -equivariant embedding.

The normal fan Σ_P consists of the cones spanned by the sets $\{a_{i_1},\ldots,a_{i_k}\}$ such that the intersection $F_{i_1}\cap\ldots\cap F_{i_k}$ of the corresponding facets is non-empty. Σ_P is a simplicial fan.

Prop 10. (a) We have $\mathcal{Z}_P \subset U(\Sigma_P)$.

(b) There is a T^m -homeomorphism $\mathcal{Z}_P \cong \mathcal{Z}(\Sigma_P)$.

8. Complete intersections of real quadrics.

The linear transformation $A_P \colon N_{\mathbb{R}}^* \to \mathbb{R}^m$ is exactly the one obtained from $T^m \to T$ by applying $\operatorname{Hom}_{\mathbb{Z}}(\,\cdot\,,\mathsf{S}^1) \otimes_{\mathbb{Z}} \mathbb{R}$.

Applying $\text{Hom}_{\mathbb{Z}}(\,\cdot\,,\mathsf{S}^1)\otimes_{\mathbb{Z}}\mathbb{R}$ to the whole exact sequence of tori, we obtain

$$0 \longrightarrow N_{\mathbb{R}}^* \xrightarrow{A_P} \mathbb{R}^m \xrightarrow{C} \mathbb{R}^{m-n} \longrightarrow 0,$$

where $\mathbb{R}^{m-n} = \text{Hom}_{\mathbb{Z}}(\mathsf{G},\mathsf{S}^1) \otimes_{\mathbb{Z}} \mathbb{R}$.

Assume the first n normal vectors a_1, \ldots, a_n span a cone of Σ_P , and take these vectors as a basis of $N_{\mathbb{R}}^*$. In this basis, we may take

$$C = (c_{ij}) = \begin{pmatrix} -a_{n+1,1} & \cdots & -a_{n+1,n} & 1 & 0 & \cdots & 0 \\ -a_{n+2,1} & \cdots & -a_{n+2,n} & 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{m,1} & \cdots & -a_{m,n} & 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Then \mathcal{Z}_P embeds in \mathbb{C}^m as the space of common solutions of m-n real quadratic equations

$$\sum_{k=1}^{m} c_{jk} (|z_k|^2 - b_k) = 0, \text{ for } 1 \le j \le m - n.$$

This intersection is non-degenerate, so $\mathcal{Z}_P \subset \mathbb{C}^m$ is a smooth submanifold with trivial normal bundle (Buchstaber-P-Ray'07).

The projective toric variety $X_P=X_{\Sigma_P}$ can be obtained from the action of K on $U(\Sigma_P)\subset\mathbb{C}^m$ via the process of symplectic reduction. The moment map μ_{Σ_P} is given by the composition

$$\mathbb{C}^m \xrightarrow{\mu} \mathbb{R}^m \xrightarrow{C} \mathrm{Lie}(\mathsf{K}) \cong \mathbb{R}^{m-n},$$
 where $\mu(z_1,\ldots,z_m) = (|z_1|^2,\ldots,|z_m|^2)$ and $C = (c_{jk})$, so
$$\mathcal{Z}_P = \mu_{\Sigma_P}^{-1}(Cb_P).$$

is its level surface. Then $X_P = \mathcal{Z}_P/\mathsf{K}$.

Question 11. There are many complete regular fans Σ which cannot be realised as normal fans of convex polytopes. The corresponding toric varieties X_{Σ} are non-singular, but not projective. In this case the Kempf-Ness set $\mathcal{Z}(\Sigma)$ is still defined. Is there a description of $\mathcal{Z}(\Sigma)$ similar to that of $\mathcal{Z}(\Sigma_P)$ as a complete intersection of real quadrics?

9. Cohomology of Kempf-Ness sets.

Given an abstract simplicial complex K on the set [m], the face ring (or the Stanley-Reisner ring) $\mathbb{Z}[K]$ is the quotient

$$\mathbb{Z}[\mathcal{K}] = \mathbb{Z}[v_1, \ldots, v_m]/(v_{i_1} \cdots v_{i_k} : \{i_1, \ldots, i_k\} \notin \mathcal{K}).$$

Thm 12. [Buchstaber-P., Franz] For every simplicial fan Σ there are algebra isomorphisms

$$H^*(\mathcal{Z}(\Sigma); \mathbb{Z}) \cong \mathsf{Tor}^*_{\mathbb{Z}[v_1, \dots, v_m]}(\mathbb{Z}[\mathcal{K}_{\Sigma}], \mathbb{Z})$$

$$\cong H[\Lambda[u_1, \dots, u_m] \otimes \mathbb{Z}[\mathcal{K}_{\Sigma}], d],$$

where $\deg u_i = 1$, $\deg v_i = 2$, $du_i = v_i$, $dv_i = 0$, for $1 \leqslant i \leqslant m$.

Ex 13. Let P be the simple polytope obtained by cutting two nonadjacent edges off a cube in $N_{\mathbb{R}}^* \cong \mathbb{R}^3$. We may specify P by 8 inequalities:

$$x \geqslant 0, \quad y \geqslant 0, \quad z \geqslant 0,$$
 $-x + 3 \geqslant 0, \quad -y + 3 \geqslant 0,$
 $-z + 3 \geqslant 0,$
 $-x + y + 2 \geqslant 0, \quad -y - z + 5 \geqslant 0.$
 $x \geqslant 0$

Toric variety X_P is obtained by blowing up the product $\mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1 \times \mathbb{C}P^1$ at two complex 1-dimensional subvarieties $\{\infty\} \times \{0\} \times \mathbb{C}P^1$ and $\mathbb{C}P^1 \times \{\infty\} \times \{\infty\}$.

The Kempf–Ness set \mathcal{Z}_P is given by 5 real quadratic equations:

$$|z_1|^2 + |z_4|^2 - 3 = 0, \quad |z_2|^2 + |z_5|^2 - 3 = 0,$$

 $|z_3|^2 + |z_6|^2 - 3 = 0, \quad |z_1|^2 - |z_2|^2 + |z_7|^2 - 2 = 0,$
 $|z_2|^2 + |z_3|^2 + |z_8|^2 - 5 = 0.$

It is an 11-dimensional manifold with Betti vector

and non-trivial Massey products of 3-dimensional classes (Baskakov'03).