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1. Categorical quotient.

G a reductive algebraic group, S an affine G-variety.

πS,G : S → S//G morphism dual to C[S]G → C[S].

πS,G is surjective and establishes a bijection

closed G-orbits of S ←→ points of S//G.

πS,G is universal in the class of morphisms from S constant on G-orbits
in the category of algebraic varieties.

S//G is called the categorical quotient.
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2. Kempf–Ness sets for affine varieties.

ρ : G→ GL(V ) a representation, K ⊂ G a maximal compact subgroup,
⟨ , ⟩ a K-invariant hermitian form on V with associated norm ∥ ∥.

Given v ∈ V , consider the function

Fv : G→ R, g 7→
1

2
∥gv∥2.

It has a critical point iff Gv is closed, and all critical points of Fv are
minima. Define the subset KN ⊂ V by

KN = {v ∈ V : (dFv)e = 0} (e ∈ G is the unit)
= {v ∈ V : TvGv ⊥ v}
= {v ∈ V : ⟨γv, v⟩ = 0 for all γ ∈ g}
= {v ∈ V : ⟨κv, v⟩ = 0 for all κ ∈ k}. (1)

Any v ∈ KN is a closest point to the origin in its orbit Gv.
KN is called the Kempf–Ness set of V .
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Assume that S is G-equivariantly embedded as a closed subvariety in
a representation V of G. Then KNS := KN ∩ S, the Kempf–Ness set
of S.

The importance of Kempf–Ness sets for the study of orbit quotients
is due to the following result.

Thm 2. (a) [Kempf–Ness] The composition

KNS ↪→ S → S//G

is proper and induces a homeomorphism

KNS /K
∼=−→ S//G.

(b) [Neeman] There is a K-equivariant deformation retraction

S → KNS .
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3. Toric varieties.

N ∼= Zn an integral lattice, NR = N ⊗Z R.

C∗ = C \ {0} the multiplicative group of complex numbers,
S1 the subgroup of complex numbers of absolute value one.

TC = N ⊗Z C∗ ∼= (C∗)n the algebraic torus,
T = N ⊗Z S1 ∼= (S1)n the (compact) torus.

A toric variety is a normal algebraic variety X containing the algebraic
torus TC as a Zariski open subset in such a way that the natural action
of TC on itself extends to an action on X.

fans Σ in NR ←→ complex n-dim toric varieties XΣ

regular fans ←→ non-singular varieties

complete fans ←→ compact varieties
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4. Batyrev–Cox construction.

Assume that one-dimensional cones of Σ span NR as a vector space.

m the number of one-dimensional cones.

ai ∈ N the primitive generator of the ith one-dim cone, 1 6 i 6 m.

Consider the map

Zm → N, ei 7→ ai.

The corresponding maps of tori fit into exact sequences

1 −→ G −→ (C∗)m −→ TC −→ 1, (3)

1 −→ K −→ Tm −→ T −→ 1 (4)

where G is isomorphic to a product of (C∗)m−n and a finite group.
If Σ is a regular fan and has at least one n-dimensional cone, then
G ∼= (C∗)m−n, and similarly for K.
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We say that a subset {i1, . . . , ik} ∈ [m] = {1, . . . ,m} is a g-subset if
{ai1, . . . , aik} is a subset of the generator set of a cone in Σ.

The collection of g-subsets is closed with respect to the inclusion,
and therefore forms an (abstract) simplicial complex on the set [m],
which we denote KΣ.

If Σ is a complete simplicial fan, then KΣ is a triangulation of an
(n− 1)-dimensional sphere.

Given a cone σ ∈ Σ, we denote by g(σ) ⊆ [m] the set of its generators.
Now set

A(Σ) =
∪

{i1,...,ik} is not a g-subset
{z ∈ Cm : zi1 = . . . = zik = 0}

and

U(Σ) = Cm \A(Σ).
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Unlike G and K, both A(Σ) and U(Σ) depend only on the combina-
torial structure of the simplicial complex KΣ; the set U(Σ) coincides
with the coordinate subspace arrangement complement U(KΣ).

The set A(Σ) is an affine variety, while its complement U(Σ) admits
a simple affine cover, as described in the following statement.

Prop 5. Given a cone σ ∈ Σ, set zσ̂ =
∏
j /∈g(σ) zj and define

V (Σ) = {z ∈ Cm : zσ̂ = 0 for all σ ∈ Σ}

and

U(σ) = {z ∈ Cm : zj ̸= 0 if j /∈ g(σ)}.

Then A(Σ) = V (Σ) and

U(Σ) = Cm \ V (Σ) =
∪

σ∈Σ
U(σ).

8



The complement U(Σ) ⊂ Cm is (C∗)m-invariant.

If Σ is simplicial, the subgroup G ⊂ (C∗)m acts on U(Σ) with finite
isotropy subgroups (or freely if Σ is regular). The quotient can be
identified with the toric variety XΣ determined by Σ:

Thm 6. [Cox] (a) The toric variety XΣ is isomorphic to the categorical
quotient of U(Σ) by G.
(b) XΣ is the geometric quotient of U(Σ) by G if and only if Σ is
simplicial.

Therefore, if Σ is a simplicial, then all the orbits of the G-action on
U(Σ) are closed and we have U(Σ)//G = U(Σ)/G.

However, the corresponding Kempf–Ness set cannot constructed in
the standard way, as U(Σ) is not an affine variety in Cm.
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5. The moment-angle complex.

Consider the unit polydisc

(D2)m = {z ∈ Cm : |zj| 6 1 for all j}.

Given a cone σ ∈ Σ, define

Z(σ) = {z ∈ (D2)m : |zj| = 1 if j /∈ g(σ)},

and the moment-angle complex

Z(Σ) =
∪

σ∈Σ
Z(σ) ⊆ (D2)m.

Z(Σ) is Tm-invariant. Also, Z(Σ) ⊂ U(Σ).

Prop 7. Assume Σ is complete simplicial. Then Z(Σ) is a compact
Tm-manifold of dimension m+ n.
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6. Toric Kempf–Ness sets.

Z(Σ) has the same properties with respect to the G-action on U(Σ)

as KNS with respect to the G-action on an affine variety S:

Thm 8 (Buchstaber-P.’00). Assume Σ is simplicial.
(a) If Σ is complete, then the composition

Z(Σ) ↪→ U(Σ)→ U(Σ)/G

induces a homeomorphism

Z(Σ)/K→ U(Σ)/G.

(b) There is a Tm-equivariant deformation retraction U(Σ)→ Z(Σ).

We therefore refer to Z(Σ) as the toric Kempf–Ness set of U(Σ).
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Ex 9. Let n = 2 and e1, e2 be a basis in NR.

1. Consider a complete fan Σ having the following three 2-dimensional
cones: the first is spanned by e1 and e2, the second spanned by e2
and −e1−e2, and the third spanned by −e1−e2 and e1. The simplicial
complex KΣ is a complete graph on 3 vertices (or the boundary of a
triangle). We have

U(Σ) = C3 \ {z : z1 = z2 = z3 = 0} = C3 \ {0}

and

Z(Σ) = D2 ×D2 × S1 ∪D2 × S1 ×D2 ∪ S1 ×D2 ×D2

= ∂((D2)3) ∼= S5.

Then G is the diagonal subtorus in (C∗)3, and K is the diagonal
subcircle in T3. Therefore,

XΣ = U(Σ)/G = Z(Σ)/K = CP2.
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2. Now consider the fan Σ consisting of three 1-dimensional cones
generated by vectors e1, e2 and −e1−e2. This fan is not complete, but
its 1-dimensional cones span NR as a vector space. So Cox’ Thm 6
applies, but Thm 8 (a) does not. We have

KΣ = 3 disjoint points,

U(Σ) = C3 \ {z1 = z2 = 0, z1 = z3 = 0, z2 = z3 = 0},

and

Z(Σ) = D2 × S1 × S1 ∪ S1 ×D2 × S1 ∪ S1 × S1 ×D2.

Both spaces are homotopy equivalent to S3 ∨ S3 ∨ S3 ∨ S4 ∨ S4.

G is again a diagonal subtorus in (C∗)3. By Thm 6,

XΣ = U(Σ)/G = CP2 \ {3 points}.

This in non-compact, and cannot be identified with Z(Σ)/K.
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7. Polytopes and normal fans.

N∗R the dual vector space. Given primitive vectors a1, . . . , am ∈ N and
integer numbers b1, . . . , bm ∈ Z, consider

P = {x ∈ N∗R : ⟨ai, x⟩+ bi > 0 for 1 6 i 6 m}.
Assume:

• P is bounded;

• the affine hull of P is the whole N∗R;

• no redundant inequalities;

• no (n+1) hyperlanes ⟨ai, x⟩+ bi = 0 meet at a point.

Then P is a convex simple polytope with m facets

Fi = {x ∈ P : ⟨ai, x⟩+ bi = 0}
with normal vectors ai, for 1 6 i 6 m.
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We may specify P by a matrix inequality

APx+ bP > 0,

where AP is the m×n matrix of row vectors ai, and bP is the column
vector of scalars bi.

The affine injection

iP : N∗R −→ Rm, x 7→ APx+ bP

embeds P into Rm
> = {y ∈ Rm : yi > 0}.

15



Now define the space ZP by a pullback diagram

ZP
iZ−→ Cm

µP

y yµ
P

iP−→ Rm

where µ(z1, . . . , zm) = (|z1|2, . . . , |zm|2). Here iZ is a Tm-equivariant
embedding.

The normal fan ΣP consists of the cones spanned by the sets
{ai1, . . . , aik} such that the intersection Fi1 ∩ . . . ∩ Fik of the corre-
sponding facets is non-empty. ΣP is a simplicial fan.

Prop 10. (a) We have ZP ⊂ U(ΣP ).
(b) There is a Tm-homeomorphism ZP ∼= Z(ΣP ).
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8. Complete intersections of real quadrics.

The linear transformation AP : N∗R → Rm is exactly the one obtained
from Tm → T by applying HomZ( · ,S1)⊗Z R.

Applying HomZ( · ,S1) ⊗Z R to the whole exact sequence of tori, we
obtain

0 −→ N∗R
AP−→ Rm C−→ Rm−n −→ 0,

where Rm−n = HomZ(G,S1)⊗Z R.

Assume the first n normal vectors a1, . . . , an span a cone of ΣP , and
take these vectors as a basis of N∗R. In this basis, we may take

C = (cij) =


−an+1,1 . . . −an+1,n 1 0 . . . 0
−an+2,1 . . . −an+2,n 0 1 . . . 0

... . . . ... ... ... . . . ...
−am,1 . . . −am,n 0 0 . . . 1

 .
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Then ZP embeds in Cm as the space of common solutions of m − n

real quadratic equations
m∑

k=1

cjk
(
|zk|2 − bk

)
= 0, for 1 ≤ j ≤ m− n.

This intersection is non-degenerate, so ZP ⊂ Cm is a smooth sub-
manifold with trivial normal bundle (Buchstaber-P-Ray’07).

The projective toric variety XP = XΣP
can be obtained from the

action of K on U(ΣP ) ⊂ Cm via the process of symplectic reduction.
The moment map µΣP

is given by the composition

Cm µ−→ Rm C−→ Lie(K) ∼= Rm−n,

where µ(z1, . . . , zm) = (|z1|2, . . . , |zm|2) and C = (cjk), so

ZP = µ−1ΣP
(CbP ).

is its level surface. Then XP = ZP/K.
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Question 11. There are many complete regular fans Σ which cannot
be realised as normal fans of convex polytopes. The corresponding
toric varieties XΣ are non-singular, but not projective. In this case the
Kempf–Ness set Z(Σ) is still defined. Is there a description of Z(Σ)

similar to that of Z(ΣP ) as a complete intersection of real quadrics?
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9. Cohomology of Kempf–Ness sets.

Given an abstract simplicial complex K on the set [m], the face ring
(or the Stanley–Reisner ring) Z[K] is the quotient

Z[K] = Z[v1, . . . , vm]/(vi1· · · vik : {i1, . . . , ik} /∈ K).

Thm 12. [Buchstaber-P., Franz] For every simplicial fan Σ there are
algebra isomorphisms

H∗
(
Z(Σ);Z

) ∼= Tor∗Z[v1,...,vm]

(
Z[KΣ],Z

)
∼= H

[
Λ[u1, . . . , um]⊗ Z[KΣ], d

]
,

where degui = 1, deg vi = 2, dui = vi, dvi = 0, for 1 6 i 6 m.
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Ex 13. Let P be the simple poly-
tope obtained by cutting two non-
adjacent edges off a cube in N∗R

∼=
R3. We may specify P by 8 in-
equalities:

x > 0, y > 0, z > 0,

−x+3 > 0, −y +3 > 0,

−z +3 > 0,

−x+ y +2 > 0, −y − z +5 > 0.
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Toric variety XP is obtained by blowing up the product CP1 × CP1 ×
CP1 at two complex 1-dimensional subvarieties {∞} × {0} × CP1 and
CP1 × {∞} × {∞}.

The Kempf–Ness set ZP is given by 5 real quadratic equations:

|z1|2 + |z4|2 − 3 = 0, |z2|2 + |z5|2 − 3 = 0,

|z3|2 + |z6|2 − 3 = 0, |z1|2 − |z2|2 + |z7|2 − 2 = 0,

|z2|2 + |z3|2 + |z8|2 − 5 = 0.

It is an 11-dimensional manifold with Betti vector

(1,0,0,10,16,5,5,16,10,0,0,1)

and non-trivial Massey products of 3-dimensional classes (Baskakov’03).
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