Toric Topology

Victor M. Buchstaber and Taras E. Panov

Dobrushin International Conference, 15–20 July 2009, IITP, Moscow

1. From polytopes to quadrics.

 \mathbb{R}^n : Euclidean vector space. Consider a convex polyhedron

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n : (\boldsymbol{a}_i, \boldsymbol{x}) + b_i \geqslant 0 \text{ for } 1 \leqslant i \leqslant m \}, \quad \boldsymbol{a}_i \in \mathbb{R}^n, \ b_i \in \mathbb{R}.$$

Assume dim P = n, no redundant inequalities, P is bounded, and bounding hyperplanes $H_i = \{(\boldsymbol{a}_i, \boldsymbol{x}) + b_i = 0\}$, $1 \le i \le m$, intersect in general position at every vertex.

Then P is an n-dim convex simple polytope with m facets

$$F_i = \{ \mathbf{x} \in P : (\mathbf{a}_i, \mathbf{x}) + b_i = 0 \} = P \cap H_i$$

and normal vectors \mathbf{a}_i , for $1 \leq i \leq m$. At every vertex meets an n-tuple of facets.

Two polytopes are said to be combinatorially equivalent if their face posets are isomorphic.

We may specify P by a matrix inequality

$$P = \{ \mathbf{x} : A_P \mathbf{x} + \mathbf{b}_P \geqslant 0 \},$$

where $A_P = (a_{ij})$ is the $m \times n$ matrix of row vectors \mathbf{a}_i , and \mathbf{b}_P is the column vector of scalars b_i .

The affine injection

$$i_P \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m, \quad \mathbf{x} \mapsto A_P \mathbf{x} + \mathbf{b}_P$$

embeds P into $\mathbb{R}^m = \{ \mathbf{y} \in \mathbb{R}^m : y_i \geqslant 0 \}.$

Now define the space \mathcal{Z}_P by a pullback diagram

Here i_Z is a T^m -equivariant embedding.

Prop 1. \mathcal{Z}_P is a smooth T^m -manifold with canonically trivialised normal bundle of $i_Z \colon \mathcal{Z}_P \to \mathbb{C}^m$.

Idea of proof.

- 1) Write the image $i_P(\mathbb{R}^n) \subset \mathbb{R}^m$ as the set of common solutions of m-n linear equations $\sum_{k=1}^m c_{jk}(y_k-b_k)=0$, $1 \leq j \leq m-n$;
- 2) replace every y_k by $|z_k|^2$ to get a representation of \mathcal{Z}_P as an intersection of m-n real quadratic hypersurfaces:

$$\sum_{k=1}^{m} c_{jk} (|z_k|^2 - b_k) = 0, \text{ for } 1 \le j \le m - n.$$

3) check that 2) is a non-degenerate intersection, i.e. the gradient vectors are linearly independent at each point of \mathcal{Z}_P .

 \mathcal{Z}_P is called the moment-angle manifold corresponding to P.

In fact, the topological type of \mathcal{Z}_P depends only on the combinatorial type of P (the original construction of [Davis–Januszkiewicz]).

Write the system $\sum_{k=1}^m c_{jk}(|z_k|^2-b_k)=0$, $1\leqslant j\leqslant m-n$, as $\mathcal{Z}_P=\{\pmb{z}\in\mathbb{C}^m\colon C|\pmb{z}|^2=C\pmb{b}_P\}$

with $C = (c_{jk}) (m-n) \times m$ -matrix, $|\mathbf{z}|^2$ column of $|z_k|^2$.

Rows of C constitute a basis in the space of linear relations between the \mathbf{a}_i 's. That is, $CA_P=0$ and $\mathrm{rank}\,C=m-n$ (note $\mathrm{rank}\,A_P=n$).

Given P, how to choose C?

1st method:

Assume the first n facets F_1, \ldots, F_n meet at a vertex, and take their normals as the basis for \mathbb{R}^n (after linear transformation). Then

$$A_P = \begin{pmatrix} E \\ A_P^* \end{pmatrix}$$

with E unit $n \times n$ -matrix and A_P^* an $(m-n) \times n$ -matrix. Then we may take

$$C = \begin{pmatrix} -A_P^* & E \end{pmatrix}.$$

(Remember $CA_P = 0!$)

This is convenient for applications in cobordism (finding quasitoric representatives in complex cobordism classes).

2nd method:

Have $\alpha_1 \boldsymbol{a}_1 + \ldots + \alpha_m \boldsymbol{a}_m = 0$ with $\alpha_i > 0$. In fact, $\alpha_i = \text{Vol } F_i$ if $|\boldsymbol{a}_i| = 1$.

By scaling the \boldsymbol{a}_i 's can always achieve $\boldsymbol{a}_1+\ldots+\boldsymbol{a}_m=0$ and so take $C=\begin{pmatrix} C_1\\1\cdots 1\end{pmatrix}$ where C_1 is $(m-n-1)\times m$.

By moving the origin 0 into Int P, get $b_i > 0$. By scaling P get $b_1 + \ldots + b_m = 1$, so the last quadratic equation defining \mathcal{Z}_P is

$$|z_1|^2 + \ldots + |z_m|^2 = 1.$$

Subtracting this from the first m-n-1 equations, finally get

$$\mathcal{Z}_P = \begin{cases} \mathbf{z} \in \mathbb{C}^m : & C_* |\mathbf{z}|^2 = 0, \\ & |z_1|^2 + \dots + |z_m|^2 = 1 \end{cases}$$

where C_* is $(m-n-1) \times m$.

Ex 1.

$$P = \left\{ \begin{array}{ll} \boldsymbol{x} \in \mathbb{R}^n \colon & x_i \geqslant 0, \ i = 1, \dots, n, \\ & -x_1 - \dots - x_n + 1 \geqslant 0 \end{array} \right\} \colon \qquad n\text{-simplex}.$$

So
$$m = n + 1$$
, $a_i = e_i$ for $i = 1, ..., n$, $a_{n+1} = -e_1 - ... - e_n$.

$$A_P = \begin{pmatrix} E \\ -1 \cdots - 1 \end{pmatrix}$$
, $C = (1 \cdots 1)$,

$$\mathcal{Z}_P = \{ \mathbf{z} : |z_1|^2 + \ldots + |z_m|^2 = 1 \} = S^{2n+1},$$

and $C_* = \emptyset$.

2. From quadrics to polytopes.

After Lopes de Medrano, Bosio-Meersseman.

$$C_* = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m)$$
: $p \times m$ matrix, $0 \leqslant p < m$ (later set $p = m - n - 1$).

Set

$$\mathcal{L}_C = \left\{ \begin{array}{ll} \mathbf{z} \in \mathbb{C}^m \colon & \mathbf{c}_1 |z_1|^2 + \ldots + \mathbf{c}_m |z_m|^2 = 0 \\ & |z_1|^2 + \ldots + |z_m|^2 = 1 \end{array} \right\} \colon \text{ ``link of p special real quadrics in \mathbb{C}^m''}.$$

 C_* is admissible if \mathcal{L}_C is nonempty and nondegenerate. (So \mathcal{L}_C is a (2m-p-1)-dimensional manifold.)

 $\mathsf{Conv}(C_*) := \mathsf{convex} \ \mathsf{hull} \ \mathsf{of} \ \boldsymbol{c}_1, \dots, \boldsymbol{c}_m \ \mathsf{in} \ \mathbb{R}^p.$

Lemma 1. C_* is admissible iff

- 1) $0 \in Conv(C_*)$, and
- 2) $0 \in Conv(\mathbf{c}_i, i \in I)$ implies |I| > p.

Ex 2. p = 1, so $c_i \in \mathbb{R}$. Then (2) implies $c_i \neq 0$.

Assume k of c_i are positive and l=m-k are negative.

Then (1) implies k > 0, l > 0.

Get like
$$|z_1|^2 + \ldots + |z_k|^2 - |z_{k+1}|^2 - \ldots - |z_m|^2 = 0$$
:
cone over $S^{2k-1} \times S^{2l-1}$,

and
$$|z_1|^2 + \ldots + |z_m|^2 = 1$$
, so $\mathcal{L}_C = S^{2k-1} \times S^{2l-1}$.

Ex 3. p=2, so $\boldsymbol{c}_i\in\mathbb{R}^2$. Then by (1), $0\in \mathsf{Conv}(\boldsymbol{c}_1,\ldots,\boldsymbol{c}_m)$.

(2) says that no segment joining c_i contains 0.

Lemma 2. Can always achieve odd number of points on a circle with positive weights assigned.

Set k(C) = number of i such that $\mathcal{L}_C \cap \{z_i = 0\} = \emptyset$.

Lemma 3. $\mathcal{L}_C \cong \mathcal{L}_{C'} \times T^{k(C)}$, where $\mathcal{L}_{C'} \subset \mathbb{C}^{m-k(C)}$ intersects every coordinate hyperplane.

How to get a polytope out of \mathcal{L}_C ?

 \mathcal{L}_C/T^m is given by the nonnegative solutions of

$$C_* y = 0, \quad y_1 + \ldots + y_m = 1.$$

By nondegeneracy condition (2), this system has maximal rank. So may write its general solution as

$$y_i = (a_i, x) + b_i, \quad x \in \mathbb{R}^{m-p-1}, \text{ with } b_i > 0.$$

Therefore,

$$\mathcal{L}_C/T^m = \{ \boldsymbol{x} \in \mathbb{R}^{m-p-1} : (\boldsymbol{a}_i, \boldsymbol{x}) + b_i \geqslant 0 \}.$$

Lemma 4. This is a simple (m-p-1)-dimensional polytope P with $m-k(C_*)$ facets.

So every $\{z_i = 0\} \cap \mathcal{L}_C = \emptyset$ gives a redundant inequality.

 $P^* = \operatorname{Conv}\left(\frac{\boldsymbol{a}_1}{b_1}, \dots, \frac{\boldsymbol{a}_m}{b_m}\right)$: polar (or dual) simplicial polytope. Denote $\boldsymbol{a}_i' = \frac{\boldsymbol{a}_i}{b_i}$.

Lemma 5. $0 \in Int Conv(\boldsymbol{c}_i, i \in I)$

 \iff Conv $(a'_i, i \in [m] \setminus I)$ is a proper face of P^* .

In other words, (c_1, \ldots, c_m) is the Gale diagram of (a'_1, \ldots, a'_m) .

Finally, we get

Thm 1. Every \mathcal{L}_C with k(C) = 0 is \mathcal{Z}_P for some P.

3. Topology of \mathcal{Z}_P .

 F_1, \ldots, F_m : facets of P.

Given $I \subset [m]$, set $P_I = \bigcup_{i \in I} F_i \subset P$.

Thm 2. $H^k(\mathcal{Z}_P) = \bigoplus_{I \subset [m]} \widetilde{H}^{k-|I|-1}(P_I)$.

Ex 4. P a 5-gon. Then $\dim \mathcal{Z}_P = 7$, and the Betti vector is (1,0,0,5,5,0,0,1).

In fact, $\mathcal{Z}_P = (S^3 \times S^4)^{\#5}$.

Proof of Thm 2. \mathcal{Z}_P generalises to \mathcal{Z}_K , the moment-angle complex defined for an arbitrary simplicial complex K on m vertices.

Given P as above, set

$$K_P = \{ \sigma = \{i_1, \dots, i_k\} \colon F_{i_1} \cap \dots \cap F_{i_k} \neq \emptyset \text{ in } P \},$$

the boundary complex of P^* . It is a sphere triangulation: $|K_P| \cong S^{n-1}$.

Then $\mathcal{Z}_{K_P} = \mathcal{Z}_P$.

By [Buchstaber-P], there is an isomorphism of (bi)graded algebras

$$H^*(\mathcal{Z}_K) \cong \mathsf{Tor}^{*,*}_{\mathbb{Z}[v_1,...,v_m]}(\mathbb{Z}[K],\mathbb{Z})$$

$$\cong H\Big[\Lambda[u_1,\ldots,u_m]\otimes \mathbb{Z}[K];d\Big],$$

where $\mathbb{Z}[K]$ is the face ring (or the Stanley-Reisner ring) of K, $du_i = v_i$, $dv_i = 0$ for $1 \le i \le m$.

From this description follows Hochster's calculation of Tor modules in terms of full subcomplexes of K:

$$\operatorname{Tor}_{\mathbb{Z}[v_1,\dots,v_m]}^{-i,2j}(\mathbb{Z}[K],\mathbb{Z}) \cong \bigoplus_{|J|=j} \widetilde{H}^{j-i-1}(K_J),$$

where K_J is the restriction of K to the subset $J \subset [m]$.

This dualises to the required description of the cohomology in the case $K = K_P$ (because P_J retracts onto K_J).

4. Quasitoric manifolds and cobordism.

Assume given P as above, and an integral $n \times m$ matrix

$$\Lambda = \begin{pmatrix}
1 & 0 & \dots & 0 & \lambda_{1,n+1} & \dots & \lambda_{1,m} \\
0 & 1 & \dots & 0 & \lambda_{2,n+1} & \dots & \lambda_{2,m} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \dots & 1 & \lambda_{n,n+1} & \dots & \lambda_{n,m}
\end{pmatrix}$$

satisfying the condition

the column vectors $\lambda_{j_1}, \ldots, \lambda_{j_n}$ corresponding to any vertex $v = F_{j_1} \cap \cdots \cap F_{j_n}$ form a basis of \mathbb{Z}^n .

We refer to (P, Λ) as a combinatorial quasitoric pair.

Define $K = K(\Lambda) := \ker(\Lambda : T^m \to T^n) \cong T^{m-n}$.

Prop 2. $K(\Lambda)$ acts freely on \mathcal{Z}_P .

The quotient

$$M = M(P, \Lambda) := \mathcal{Z}_P/K(\Lambda)$$

is the quasitoric manifold corresponding to (P, Λ) . It has a residual T^n -action $(T^m/K(\Lambda) \cong T^n)$ satisfying the two Davis-Januszkiewicz conditions:

- a) the T^n -action is locally standard;
- b) there is a projection $\pi \colon M \to P$ whose fibres are orbits of the T^n -action.

Algebraic and symplectic geometers would recognise in the above construction of a quasitoric manifold M from \mathcal{Z}_P a generalisation of the symplectic reduction construction of a Hamiltonian toric manifold. In the latter case we take $\Lambda = A_P^t$; then M is a toric manifold corresponding to the Delzant polytope

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n : (\boldsymbol{a}_i, \boldsymbol{x}) + b_i \geqslant 0 \text{ for } 1 \leqslant i \leqslant m \}, \quad \boldsymbol{a}_i \in \mathbb{Z}^n, \ b_i \in \mathbb{R}.$$

Here we additionally assume the normal vectors \mathbf{a}_i to be *integer*, and the Delzant condition:

for every vertex $v = F_{i_1} \cap \ldots \cap F_{i_n}$ of P, the corresponding normal vectors $\mathbf{a}_{i_1}, \ldots, \mathbf{a}_{i_n}$ form a basis of \mathbb{Z}^n

to be satisfied.

Then \mathcal{Z}_P is the level set for the moment map $\mu \colon \mathbb{C}^m \to \mathbb{R}^{m-n}$ corresponding to the Hamiltonian action of $K = \operatorname{Ker} \Lambda = \operatorname{Ker} A^t$ on \mathbb{C}^m .

Define complex line bundles

$$\rho_i \colon \mathcal{Z}_P \times_K \mathbb{C}_i \to M, \quad 1 \leqslant i \leqslant m,$$

where \mathbb{C}_i is the 1-dim complex T^m -representation defined via the quotient projection $\mathbb{C}^m \to \mathbb{C}_i$ onto the *i*th factor.

Thm 3 (Davis–Januszkiewicz). There is an isomorphism of real vector bundles

$$\tau M \oplus \mathbb{R}^{2(m-n)} \xrightarrow{\cong} \rho_1 \oplus \cdots \oplus \rho_m.$$

This endows M with the canonical equivariant stably complex structure. So we may consider its complex cobordism class $[M] \in \Omega_U$.

Thm 4 (Buchstaber-P-Ray). Every complex cobordism class in dim > 2 contains a quasitoric manifold.

The complex cobordism ring Ω_U is multiplicatively generated by the cobordism classes $[H_{ij}]$, $0 \le i \le j$, of Milnor hypersurfaces

$$H_{ij} = \{(z_0 : \ldots : z_i) \times (w_0 : \ldots : w_j) \in \mathbb{C}P^i \times \mathbb{C}P^j : z_0w_0 + \ldots + z_iw_i = 0\}.$$

But H_{ij} is not a quasitoric manifold if $i > 1$.

Idea of proof of Thm 4

- 1) Replace each H_{ij} by a quasitoric (in fact, toric) manifold B_{ij} so that $\{B_{ij}\}$ is still a multiplicative generator set for Ω_U . Therefore, every stably complex manifold is cobordant to the disjoint union of products of B_{ij} 's. Every such product is a q-t manifold, but their disjoint union is not.
- 2) Replace disjoint unions by certain connected sums. This is tricky, because you need to take account of both the torus action and the stably complex structure.

- [1] Frédéric Bosio and Laurent Meersseman. Real quadrics in \mathbb{C}^n , complex manifolds and convex polytopes. Acta Math. **197** (2006), no. 1, 53–127.
- [2] Victor M Buchstaber and Taras E Panov. *Torus Actions and Their Applications in Topology and Combinatorics*. University Lecture Series, vol. **24**, Amer. Math. Soc., Providence, R.I., 2002.
- [3] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. *Spaces of polytopes and cobordism of quasitoric manifolds*. Moscow Math. J. **7** (2007), no. 2; arXiv:math.AT/0609346.
- [4] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. *Toric genera*. Preprint (2009), to appear in the arXiv soon.
- [5] Michael W. Davis and Tadeusz Januszkiewicz. *Convex polytopes, Coxeter orbifolds and torus actions*. Duke Math. J., **62** (1991), no. 2, 417–451.