Algebraic torus actions, Kempf-Ness sets and real quadrics in \mathbb{C}^{m}

Taras Panov

Moscow State University

International Conference "Transformation Groups" dedicated to the 70-th anniversary of Ernest B. Vinberg

17-22 December 2007, Moscow

1. Categorical quotient.

G a reductive algebraic group, S an affine G-variety.
$\pi_{S, \mathrm{G}}: S \rightarrow S / / \mathrm{G}$ morphism dual to $\mathbb{C}[S]^{G} \rightarrow \mathbb{C}[S]$.
$\pi_{S, \mathrm{G}}$ is surjective and establishes a bijection
closed G-orbits of $S \longleftrightarrow$ points of $S / / G$.
$\pi_{S, \mathrm{G}}$ is universal in the class of morphisms from S constant on G-orbits in the category of algebraic varieties.
$S / / \mathrm{G}$ is called the categorical quotient.

2. Kempf-Ness sets for affine varieties.

$\rho: \mathrm{G} \rightarrow \mathrm{GL}(V)$ a representation, $\mathrm{K} \subset \mathrm{G}$ a maximal compact subgroup, \langle,$\rangle a K-invariant hermitian form on V$ with associated norm || ||.

Given $v \in V$, consider the function $F_{v}: \mathrm{G} \rightarrow \mathbb{R}$ sending g to $\frac{1}{2}\|g v\|^{2}$. It has a critical point iff $\mathrm{G} v$ is closed, and all critical points of F_{v} are minima. Define the subset $K N \subset V$ by one of the following equivalent conditions:

$$
\begin{align*}
K N & =\left\{v \in V:\left(d F_{v}\right)_{e}=0\right\} \quad(e \in \mathrm{G} \text { is the unit) } \\
& =\left\{v \in V: T_{v} \mathrm{G} v \perp v\right\} \\
& =\{v \in V:\langle\gamma v, v\rangle=0 \text { for all } \gamma \in \mathfrak{g}\} \\
& =\{v \in V:\langle\kappa v, v\rangle=0 \text { for all } \kappa \in \mathfrak{k}\}, \tag{1}
\end{align*}
$$

where \mathfrak{g} (resp. \mathfrak{k}) is the Lie algebra of G (resp. K) and we consider $\mathfrak{k} \subseteq \mathfrak{g} \subseteq \operatorname{End}(V)$. Therefore, any point $v \in K N$ is a closest point to the origin in its orbit $\mathrm{G} v$. Then $K N$ is called the Kempf-Ness set of V.

Assume that S is G-equivariantly embedded as a closed subvariety in a representation V of G. Then the Kempf-Ness set $K N_{S}$ of S is defined as $K N \cap S$.

The importance of Kempf-Ness sets for the study of orbit quotients is due to the following result.

Thm 2. (a) [Kempf-Ness] The composition

$$
K N_{S} \hookrightarrow S \rightarrow S / / \mathrm{G}
$$

is proper and induces a homeomorphism

$$
K N_{S} / \mathrm{K} \xlongequal{\cong} S / / \mathrm{G}
$$

(b) [Neeman] There is a K-equivariant deformation retraction

$$
S \rightarrow K N_{S}
$$

3. Cones and fans.

$N \cong \mathbb{Z}^{n}$ an integral lattice, $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$.
A convex subset $\sigma \in N_{\mathbb{R}}$ is a cone if there are $a_{1}, \ldots, a_{k} \in N \mathrm{~s} . \mathrm{t}$.

$$
\sigma=\left\{\mu_{1} a_{1}+\ldots+\mu_{k} a_{k}: \mu_{i} \in \mathbb{R}, \mu_{i} \geqslant 0\right\}
$$

If the set $\left\{a_{1}, \ldots, a_{k}\right\}$ is minimal, then it is called the generator set of σ. A cone is strongly convex if it contains no line through the origin; all the cones below are assumed to be strongly convex. A cone σ is called regular (resp. simplicial) if a_{1}, \ldots, a_{k} can be chosen to form a subset of a \mathbb{Z}-basis of N (resp. an \mathbb{R}-basis of $N_{\mathbb{R}}$).

A finite collection $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ of cones in $N_{\mathbb{R}}$ is a fan if a face of every cone in Σ belongs to Σ and the intersection of any two cones in Σ is a face of each.

A fan Σ is regular (resp. simplicial) if every cone in Σ is regular (resp. simplicial). A fan $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ is complete if $N_{\mathbb{R}}=\sigma_{1} \cup \ldots \cup \sigma_{s}$.

4. Algebraic torus actions.

$\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$ the multiplicative group of complex numbers, S^{1} the subgroup of complex numbers of absolute value one.
$\top_{\mathbb{C}}=N \otimes_{\mathbb{Z}} \mathbb{C}^{*} \cong\left(\mathbb{C}^{*}\right)^{n}$ the algebraic torus, $\mathrm{T}=N \otimes_{\mathbb{Z}} \mathrm{S}^{1} \cong\left(\mathrm{~S}^{1}\right)^{n}$ the (compact) torus.

A toric variety is a normal algebraic variety X containing the algebraic torus $T_{\mathbb{C}}$ as a Zariski open subset in such a way that the natural action of $\mathrm{T}_{\mathbb{C}}$ on itself extends to an action on X.

There is a classical construction establishing bijections
fans Σ in $N_{\mathbb{R}} \longleftrightarrow$ complex n-dim toric varieties X_{Σ} regular fans \longleftrightarrow non-singular varieties
complete fans \longleftrightarrow compact varieties

5. Batyrev-Cox construction.

Assume that one-dimensional cones of $\Sigma \operatorname{span} N_{\mathbb{R}}$ as a vector space.
m the number of one-dimensional cones.
$a_{i} \in N$ the primitive generator of the i th one-dim cone, $1 \leqslant i \leqslant m$.
Consider the map

$$
\mathbb{Z}^{m} \rightarrow N, \quad e_{i} \mapsto a_{i}
$$

The corresponding map of tori fit into an exact sequences

$$
\begin{gather*}
1 \longrightarrow \mathrm{G} \longrightarrow\left(\mathbb{C}^{*}\right)^{m} \longrightarrow \mathrm{~T}_{\mathbb{C}} \longrightarrow 1 \tag{3}\\
1 \longrightarrow \mathrm{~K} \longrightarrow T^{m} \longrightarrow \mathrm{\top} \longrightarrow 1 \tag{4}
\end{gather*}
$$

where G is isomorphic to a product of $\left(\mathbb{C}^{*}\right)^{m-n}$ and a finite group. If Σ is a regular fan and has at least one n-dimensional cone, then $\mathrm{G} \cong\left(\mathbb{C}^{*}\right)^{m-n}$, and similarly for K.

We say that a subset $\left\{i_{1}, \ldots, i_{k}\right\} \in[m]=\{1, \ldots, m\}$ is a g-subset if $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$ is a subset of the generator set of a cone in Σ.

The collection of g-subsets is closed with respect to the inclusion, and therefore forms an (abstract) simplicial complex on the set $[m$], which we denote \mathcal{K}_{Σ}.

If Σ is a complete simplicial fan, then \mathcal{K}_{Σ} is a triangulation of an ($n-1$)-dimensional sphere.

Given a cone $\sigma \in \Sigma$, we denote by $g(\sigma) \subseteq[m]$ the set of its generators. Now set

$$
A(\Sigma)=\quad \bigcup \quad\left\{z \in \mathbb{C}^{m}: z_{i_{1}}=\ldots=z_{i_{k}}=0\right\}
$$

$\left\{i_{1}, \ldots, i_{k}\right\}$ is not a g-subset
and

$$
U(\Sigma)=\mathbb{C}^{m} \backslash A(\Sigma)
$$

Unlike G and K , both $A(\Sigma)$ and $U(\Sigma)$ depend only on the combinatorial structure of the simplicial complex \mathcal{K}_{Σ}; the set $U(\Sigma)$ coincides with the coordinate subspace arrangement complement $U\left(\mathcal{K}_{\Sigma}\right)$.

The set $A(\Sigma)$ is an affine variety, while its complement $U(\Sigma)$ admits a simple affine cover, as described in the following statement.

Prop 5. Given a cone $\sigma \in \Sigma$, set $z^{\hat{\sigma}}=\prod_{j \notin g(\sigma)} z_{j}$ and define

$$
V(\Sigma)=\left\{z \in \mathbb{C}^{m}: z^{\hat{\sigma}}=0 \text { for all } \sigma \in \Sigma\right\}
$$

and

$$
U(\sigma)=\left\{z \in \mathbb{C}^{m}: z_{j} \neq 0 \text { if } j \notin g(\sigma)\right\}
$$

Then $A(\Sigma)=V(\Sigma)$ and

$$
U(\Sigma)=\mathbb{C}^{m} \backslash V(\Sigma)=\bigcup_{\sigma \in \Sigma} U(\sigma)
$$

The complement $U(\Sigma) \subset \mathbb{C}^{m}$ is $\left(\mathbb{C}^{*}\right)^{m}$-invariant.

If Σ is simplicial, the subgroup $G \subset\left(\mathbb{C}^{*}\right)^{m}$ acts on $U(\Sigma)$ with finite isotropy subgroups (or freely if Σ is regular). The quotient can be identified with the toric variety X_{Σ} determined by Σ :

Thm 6. [Cox] (a) The toric variety X_{Σ} is isomorphic to the categorical quotient of $U(\Sigma)$ by G.
(b) X_{Σ} is the geometric quotient of $U(\Sigma)$ by G if and only if Σ is simplicial.

Therefore, if Σ is a simplicial, then all the orbits of the G-action on $U(\Sigma)$ are closed and we have $U(\Sigma) / / \mathrm{G}=U(\Sigma) / \mathrm{G}$.

However, the corresponding Kempf-Ness set cannot constructed in the standard way, as $U(\Sigma)$ is not an affine variety in \mathbb{C}^{m} (it is only quasiaffine in general)!
6. The moment-angle complex.

Consider the unit polydisc

$$
\left(\mathrm{D}^{2}\right)^{m}=\left\{z \in \mathbb{C}^{m}:\left|z_{j}\right| \leqslant 1 \text { for all } j\right\}
$$

Given a cone $\sigma \in \Sigma$, define

$$
\mathcal{Z}(\sigma)=\left\{z \in\left(\mathrm{D}^{2}\right)^{m}:\left|z_{j}\right|=1 \text { if } j \notin g(\sigma)\right\}
$$

and the moment-angle complex

$$
\mathcal{Z}(\Sigma)=\bigcup_{\sigma \in \Sigma} \mathcal{Z}(\sigma) \subseteq\left(\mathrm{D}^{2}\right)^{m}
$$

$\mathcal{Z}(\Sigma)$ is T^{m}-invariant. Also, $\mathcal{Z}(\Sigma) \subset U(\Sigma)$.
Prop 7. Assume Σ is complete simplicial. Then $\mathcal{Z}(\Sigma)$ is a compact T^{m}-manifold of dimension $m+n$.

7. Toric Kempf-Ness sets.

$\mathcal{Z}(\Sigma)$ has the same properties with respect to the G-action on $U(\Sigma)$ as $K N_{S}$ with respect to the G -action on an affine variety S :

Thm 8 (Buchstaber-P.'00). Assume Σ is simplicial.
(a) If Σ is complete, then the composition

$$
\mathcal{Z}(\Sigma) \hookrightarrow U(\Sigma) \rightarrow U(\Sigma) / G
$$

induces a homeomorphism

$$
\mathcal{Z}(\Sigma) / \mathrm{K} \rightarrow U(\Sigma) / \mathrm{G}
$$

(b) There is a T^{m}-equivariant deformation retraction $U(\Sigma) \rightarrow \mathcal{Z}(\Sigma)$.

We therefore refer to $\mathcal{Z}(\Sigma)$ as the toric Kempf-Ness set of $U(\Sigma)$.

Ex 9. Let $n=2$ and e_{1}, e_{2} be a basis in $N_{\mathbb{R}}$.

1. Consider a complete fan Σ having the following three 2-dimensional cones: the first is spanned by e_{1} and e_{2}, the second spanned by e_{2} and $-e_{1}-e_{2}$, and the third spanned by $-e_{1}-e_{2}$ and e_{1}. The simplicial complex \mathcal{K}_{Σ} is a complete graph on 3 vertices (or the boundary of a triangle). We have

$$
U(\Sigma)=\mathbb{C}^{3} \backslash\left\{z: z_{1}=z_{2}=z_{3}=0\right\}=\mathbb{C}^{3} \backslash\{0\}
$$

and

$$
\begin{aligned}
& \mathcal{Z}(\Sigma)=D^{2} \times D^{2} \times S^{1} \cup D^{2} \times S^{1} \times D^{2} \cup S^{1} \times D^{2} \times D^{2} \\
&=\partial\left(\left(D^{2}\right)^{3}\right) \cong S^{5}
\end{aligned}
$$

Then G is the diagonal subtorus in $\left(\mathbb{C}^{*}\right)^{3}$, and K is the diagonal subcircle in T^{3}. Therefore,

$$
X_{\Sigma}=U(\Sigma) / \mathrm{G}=\mathcal{Z}(\Sigma) / \mathrm{K}=\mathbb{C} P^{2}
$$

2. Now consider the fan Σ consisting of three 1-dimensional cones generated by vectors e_{1}, e_{2} and $-e_{1}-e_{2}$. This fan is not complete, but its 1-dimensional cones span $N_{\mathbb{R}}$ as a vector space. So Cox' Thm 6 applies, but Thm 8 (a) does not. We have

$$
\begin{gathered}
\mathcal{K}_{\Sigma}=3 \text { disjoint points, } \\
U(\Sigma)=\mathbb{C}^{3} \backslash\left\{z_{1}=z_{2}=0, z_{1}=z_{3}=0, z_{2}=z_{3}=0\right\}
\end{gathered}
$$

and

$$
\mathcal{Z}(\Sigma)=D^{2} \times S^{1} \times S^{1} \cup S^{1} \times D^{2} \times S^{1} \cup S^{1} \times S^{1} \times D^{2}
$$

Both spaces are homotopy equivalent to $S^{3} \vee S^{3} \vee S^{3} \vee S^{4} \vee S^{4}$.
G is again a diagonal subtorus in $\left(\mathbb{C}^{*}\right)^{3}$. By Thm 6,

$$
X_{\Sigma}=U(\Sigma) / \mathrm{G}=\mathbb{C} P^{2} \backslash\{3 \text { points }\}
$$

This in non-compact, and cannot be identified with $\mathcal{Z}(\Sigma) / K$.

8. Polytopes and normal fans.

$N_{\mathbb{R}}^{*}$ the dual vector space. Given primitive vectors $a_{1}, \ldots, a_{m} \in N$ and integer numbers $b_{1}, \ldots, b_{m} \in \mathbb{Z}$, consider

$$
P=\left\{x \in N_{\mathbb{R}}^{*}:\left\langle a_{i}, x\right\rangle+b_{i} \geqslant 0 \text { for } 1 \leqslant i \leqslant m\right\} .
$$

Assume:

- P is bounded;
- the affine hull of P is the whole $N_{\mathbb{R}}^{*}$;
- no redundant inequalities;
- no $(n+1)$ hyperlanes $\left\langle a_{i}, x\right\rangle+b_{i}=0$ meet at a point.

Then P is a convex simple polytope with m facets

$$
F_{i}=\left\{x \in P:\left\langle a_{i}, x\right\rangle+b_{i}=0\right\}
$$

with normal vectors a_{i}, for $1 \leqslant i \leqslant m$.

We may specify P by a matrix inequality

$$
A_{P} x+b_{P} \geqslant 0
$$

where A_{P} is the $m \times n$ matrix of row vectors a_{i}, and b_{P} is the column vector of scalars b_{i}.

The affine injection

$$
i_{P}: N_{\mathbb{R}}^{*} \longrightarrow \mathbb{R}^{m}, \quad x \mapsto A_{P} x+b_{P}
$$

embeds P into $\mathbb{R}_{\geqslant}^{m}=\left\{y \in \mathbb{R}^{m}: y_{i} \geqslant 0\right\}$.

Now define the space \mathcal{Z}_{P} by a pullback diagram

where $\mu\left(z_{1}, \ldots, z_{m}\right)=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{m}\right|^{2}\right)$. Here i_{Z} is a T^{m}-equivariant embedding.

The normal fan Σ_{P} consists of the cones spanned by the sets $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$ such that the intersection $F_{i_{1}} \cap \ldots \cap F_{i_{k}}$ of the corresponding facets is non-empty. Σ_{P} is a simplicial fan.

Prop 10. (a) We have $\mathcal{Z}_{P} \subset U\left(\Sigma_{P}\right)$.
(b) There is a T^{m}-homeomorphism $\mathcal{Z}_{P} \cong \mathcal{Z}\left(\Sigma_{P}\right)$.

9. Complete intersections of real quadrics.

The linear transformation $A_{P}: N_{\mathbb{R}}^{*} \rightarrow \mathbb{R}^{m}$ is exactly the one obtained from $T^{m} \rightarrow \top$ by applying $\operatorname{Hom}_{\mathbb{Z}}\left(\cdot, S^{1}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.

Applying $\operatorname{Hom}_{\mathbb{Z}}\left(\cdot, S^{1}\right) \otimes_{\mathbb{Z}} \mathbb{R}$ to the whole exact sequence of tori, we obtain

$$
0 \longrightarrow N_{\mathbb{R}}^{*} \xrightarrow{A_{P}} \mathbb{R}^{m} \xrightarrow{C} \mathbb{R}^{m-n} \longrightarrow 0,
$$

where $\mathbb{R}^{m-n}=\operatorname{Hom}_{\mathbb{Z}}\left(\mathrm{G}, \mathrm{S}^{1}\right) \otimes_{\mathbb{Z}} \mathbb{R}$.
Assume the first n normal vectors a_{1}, \ldots, a_{n} span a cone of Σ_{P}, and take these vectors as a basis of $N_{\mathbb{R}}^{*}$. In this basis, we may take

$$
C=\left(c_{i j}\right)=\left(\begin{array}{ccccccc}
-a_{n+1,1} & \ldots & -a_{n+1, n} & 1 & 0 & \ldots & 0 \\
-a_{n+2,1} & \ldots & -a_{n+2, n} & 0 & 1 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-a_{m, 1} & \ldots & -a_{m, n} & 0 & 0 & \ldots & 1
\end{array}\right) .
$$

Then \mathcal{Z}_{P} embeds in \mathbb{C}^{m} as the space of common solutions of $m-n$ real quadratic equations

$$
\sum_{k=1}^{m} c_{j k}\left(\left|z_{k}\right|^{2}-b_{k}\right)=0, \quad \text { for } 1 \leq j \leq m-n
$$

This intersection is non-degenerate, so $\mathcal{Z}_{P} \subset \mathbb{C}^{m}$ is a smooth submanifold with trivial normal bundle (Buchstaber-P-Ray'07).

The projective toric variety $X_{P}=X_{\Sigma_{P}}$ can be obtained from the action of K on $U\left(\Sigma_{P}\right) \subset \mathbb{C}^{m}$ via the process of symplectic reduction. The moment map $\mu_{\Sigma_{P}}$ is given by the composition

$$
\mathbb{C}^{m} \xrightarrow{\mu} \mathbb{R}^{m} \xrightarrow{C} \operatorname{Lie}(\mathrm{~K}) \cong \mathbb{R}^{m-n},
$$

where $\mu\left(z_{1}, \ldots, z_{m}\right)=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{m}\right|^{2}\right)$ and $C=\left(c_{j k}\right)$, so

$$
\mathcal{Z}_{P}=\mu_{\Sigma_{P}^{-1}}^{-1}\left(C b_{P}\right)
$$

is its level surface. Then $X_{P}=\mathcal{Z}_{P} / \mathrm{K}$.

Problem 11. There are many complete regular fans Σ which cannot be realised as normal fans of convex polytopes. The corresponding toric varieties X_{Σ} are not projective, although being non-singular. In this case the Kempf-Ness set $\mathcal{Z}(\Sigma)$ is still defined. Is there a description of $\mathcal{Z}(\Sigma)$ similar to that of $\mathcal{Z}\left(\Sigma_{P}\right)$ as a complete intersection of real quadrics?

14. Cohomology of Kempf-Ness sets.

Given an abstract simplicial complex \mathcal{K} on the set [m], the face ring (or the Stanley-Reisner ring) $\mathbb{Z}[\mathcal{K}]$ is the quotient

$$
\mathbb{Z}[\mathcal{K}]=\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right] /\left(v_{i_{1}} \cdots v_{i_{k}}:\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K}\right)
$$

Thm 12. [Buchstaber-P'02] For every simplicial fan Σ there are algebra isomorphisms

$$
H^{*}(\mathcal{Z}(\Sigma) ; \mathbb{Z}) \cong \operatorname{Tor}_{\mathbb{Z}\left[v_{1}, \ldots, v_{m}\right]}^{*}\left(\mathbb{Z}\left[\mathcal{K}_{\Sigma}\right], \mathbb{Z}\right)
$$

$$
\cong H\left[\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{Z}\left[\mathcal{K}_{\Sigma}\right], d\right]
$$

where deg $u_{i}=1$, deg $v_{i}=2, d u_{i}=v_{i}, d v_{i}=0$, for $1 \leqslant i \leqslant m$.

Ex 13. Let P be the simple polytope obtained by cutting two nonadjacent edges off a cube in $N_{\mathbb{R}}^{*} \cong$ \mathbb{R}^{3}. We may specify P by 8 inequalities:

$$
\begin{gathered}
x \geqslant 0, \quad y \geqslant 0, \quad z \geqslant 0 \\
-x+3 \geqslant 0, \quad-y+3 \geqslant 0 \\
-z+3 \geqslant 0 \\
-x+y+2 \geqslant 0, \quad-y-z+5 \geqslant 0
\end{gathered}
$$

Toric variety X_{P} is obtained by blowing up the product $\mathbb{C} P^{1} \times \mathbb{C} P^{1} \times$ $\mathbb{C} P^{1}$ at two complex 1-dimensional subvarieties $\{\infty\} \times\{0\} \times \mathbb{C} P^{1}$ and $\mathbb{C} P^{1} \times\{\infty\} \times\{\infty\}$.

The Kempf-Ness set \mathcal{Z}_{P} is given by 5 real quadratic equations:

$$
\begin{gathered}
\left|z_{1}\right|^{2}+\left|z_{4}\right|^{2}-3=0, \quad\left|z_{2}\right|^{2}+\left|z_{5}\right|^{2}-3=0 \\
\left|z_{3}\right|^{2}+\left|z_{6}\right|^{2}-3=0, \quad\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\left|z_{7}\right|^{2}-2=0 \\
\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{8}\right|^{2}-5=0
\end{gathered}
$$

It is an 11-dimensional manifold with Betti vector

$$
(1,0,0,10,16,5,5,16,10,0,0,1)
$$

and non-trivial Massey products of 3-dimensional classes (Baskakov'03).
[1] Victor M Buchstaber and Taras E Panov. Torus Actions and Their Applications in Topology and Combinatorics. Volume 24 of University Lecture Series, Amer. Math. Soc., Providence, R.I., 2002.
[2] Taras E. Panov. Topology of Kempf-Ness sets for algebraic torus actions; arXiv:math.AG/0603556.
[3] Victor M. Buchstaber, Taras E. Panov and Nigel Ray. Spaces of polytopes and cobordism of quasitoric manifolds. Moscow Math. J. 7 (2007), no. 2; arXiv:math.AT/0609346.

