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Abstract. In the theory of algebraic group actions on affine varieties,
the concept of a Kempf–Ness set is used to replace the geometric
quotient by the quotient with respect to a maximal compact subgroup.
By making use of the recent achievements of “toric topology” we show
that an appropriate notion of a Kempf–Ness set exists for a class of
algebraic torus actions on quasiaffine varieties (coordinate subspace
arrangement complements) arising in the “geometric invariant theory”
approach to toric varieties. We proceed by studying the cohomology
of these Kempf–Ness sets.
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1. Kempf–Ness sets for affine varieties.

G reductive algebraic group, S affine G-variety.
πS,G : S → S//G dual to C[S]G → C[S]. πS,G establishes a bijection:

closed G-orbits of S ↔ points of S//G.
S//G is called the categorical quotient.

Let ρ : G→ GL(V ) be a representation of G,
K be a maximal compact subgroup of G,
⟨ , ⟩ be a K-invariant hermitian form on V with associated norm ∥ ∥.
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Given v ∈ V , consider the function

Fv : G→ R, g 7→ ∥gv∥2.

It has a critical point if and only if Gv is closed, and all critical points
of Fv are minima. Define KN ⊂ V by one of the following equivalent
conditions:

KN = {v ∈ V : (dFv)e = 0} (e ∈ G is the unit)

= {v ∈ V : TvGv ⊥ v}
= {v ∈ V : ⟨γv, v⟩ = 0 for all γ ∈ g}
= {v ∈ V : ⟨κv, v⟩ = 0 for all κ ∈ k},

(1)

where g (resp. k) is the Lie algebra of G (resp. K). Therefore, any
point v ∈ KN is a closest point to the origin in its orbit Gv. Then KN
is called the Kempf–Ness set of V .
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We may assume that the affine G-variety S is equivariantly embedded
as a closed subvariety in a representation V of G. Then the Kempf–
Ness set KNS of S is defined as KN ∩ S.

The importance of Kempf–Ness sets for the study of orbit quotients
is due to the following result (Kempf–Ness, Neeman).

Thm 2. a) The composition KNS ↪→ S → S//G is proper and induces
a homeomorphism KNS /K→ S//G.
b) There is a K-equivariant deformation retraction S → KNS.
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2. Algebraic torus actions.

N ∼= Zn integral lattice, NR = N ⊗Z R. A convex subset σ ∈ NR is a
cone if there are vectors a1, . . . , ak ∈ N such that

σ = {µ1a1 + . . .+ µkak : µi ∈ R, µi > 0}.

A cone σ is called regular (resp. simplicial) if a1, . . . , ak is a subset
of a Z-basis of N (resp. an R-basis of NR). A finite collection Σ =

{σ1, . . . , σs} of cones in NR is called a fan if a face of every cone in Σ

belongs to Σ and the intersection of any two cones in Σ is a face of
each. A fan Σ = {σ1, . . . , σs} is called complete if NR = σ1 ∪ . . . ∪ σs.
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TC = N ⊗Z C∗ ∼= (C∗)n algebraic torus, T = N ⊗Z S1 ∼= (S1)n, a
maximal compact subgroup, the (compact) torus. A toric variety is
a normal algebraic variety X containing TC as a Zariski open subset
so that the natural action of TC on itself extends to an action on X.

A classical construction establishes a one-to-one correspondence:

fans in NR ←→ complex n-dimensional toric varieties,
regular fans ←→ non-singular varieties,
complete fans ←→ compact varieties.
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Assume Σ has m one-dimensional cones, and consider the map Zm →
N sending the ith generator of Zm to the integer primitive vector ai
generating the ith one-dimensional cone. Get an exact sequence

1 −→ G −→ (C∗)m −→ TC −→ 1,

where G ∼= (C∗)m−n × (finite group), and

1 −→ K −→ Tm −→ T −→ 1 (3)

(here and below we denote Tm = (S1)m).
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Say that {i1, . . . , ik} ∈ [m] = {1, . . . ,m} is a g-subset if {ai1, . . . , aik} is
a subset of the generator set of a cone in Σ.

KΣ = {g-subsets} an abstract simplicial complex on the set [m].

Σ is complete simplicial ⇒ KΣ is a triangulation of Sn−1.

Now set

A(Σ) =
∪

{i1,...,ik} is not a g-subset
{z ∈ Cm : zi1 = . . . = zik = 0}

and
U(Σ) = Cm \A(Σ).

Both sets depend only on the combinatorial structure of the simpli-
cial complex KΣ; and U(Σ) is the coordinate subspace arrangement
complement U(KΣ).
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The set A(Σ) is an affine variety, while its complement U(Σ) admits
a simple affine cover, as described in the following statement.

Prop 4. Given a cone σ ∈ Σ, denote g(σ) ⊆ [m] the set of its genera-
tors, zσ̂ =

∏
j /∈g(σ) zj, and define

V (Σ) = {z ∈ Cm : zσ̂ = 0 for all σ ∈ Σ}

and
U(σ) = {z ∈ Cm : zj ̸= 0 if j /∈ g(σ)}.

Then A(Σ) = V (Σ) and

U(Σ) = Cm \ V (Σ) =
∪

σ∈Σ
U(σ).
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U(Σ) ⊂ Cm is (C∗)m-invariant, and G ⊂ (C∗)m acts on U(Σ) with finite
isotropy subgroups if Σ is simplicial. The corresponding quotient is
identified with the toric variety XΣ determined by Σ. The more precise
statement is as follows (Batyrev–Cox).

Thm 5. (a) XΣ
∼= U(Σ)//G (categorical quotient).

(b) XΣ is the geometric quotient ⇔ Σ is simplicial.

However, the analysis of the previous section does not apply here, as
U(Σ) is not an affine variety in Cm (it is only quasiaffine in general).
E.g., if Σ is a complete fan, then the G-action on the whole Cm has
only one closed orbit 0, and the quotient Cm//G consists of a single
point. Below we show that an appropriate notion of the Kempf–Ness
set still exists for this class of torus actions.
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Consider the unit polydisc

(D2)m = {z ∈ Cm : |zj| 6 1 for all j}.

Given σ ∈ Σ, define

Z(σ) = {z ∈ (D2)m : |zj| = 1 if j /∈ g(σ)},

and
Z(Σ) =

∪
σ∈Σ
Z(σ).

The subset Z(Σ) ⊆ (D2)m is invariant with respect to the Tm-action.

Prop 6. Assume that Σ is a complete simplicial fan. Then Z(Σ) is a
compact Tm-manifold of dimension m+ n.
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Note that Z(σ) ⊂ U(σ), and therefore, Z(Σ) ⊂ U(Σ).

Thm 7. Assume that Σ is a simplicial fan.

a) The composition Z(Σ) ↪→ U(Σ) → U(Σ)/G is proper and induces
a homeomorphism Z(Σ)/K→ U(Σ)/G.

b) There is a Tm-equivariant deformation retraction of U(Σ) to Z(Σ).

Proof. b): there are obvious equivariant deformation retractions
U(σ) → Z(σ) for all σ ∈ Σ, which patch together to get the nec-
essary map U(Σ)→ Z(Σ).

By comparing this result with Theorem 2, we see that Z(Σ) has the
same properties with respect to the G-action on U(Σ) as the set KNS
with respect to a G-action on an affine variety S. We therefore refer
to Z(Σ) as the Kempf–Ness set of U(Σ).
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3. Normal fans.

The next step in our study of the Kempf–Ness set for torus actions
on quasiaffine varieties like U(Σ) would be to obtain an explicit de-
scription like the one given by (1) in the affine case. Although we do
not now of such a description in general, it does exist in the particular
case when Σ is the normal fan of a simple polytope.
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MR = (NR)
∗ the dual vector space. Given primitive vectors a1, . . . , am ∈

N and b1, . . . , bm ∈ Z, consider

P = {x ∈MR : ⟨ai, x⟩+ bi > 0, i = 1, . . . ,m}.

Assume that P is bounded, the affine hull of P is the whole MR, and
there are no redundant inequalities. Then P is a convex polytope
with exactly m facets Fi and normal vectors ai, i = 1, . . . ,m.

If G is an l-dimensional face, then the set of all its normal vectors
{ai1, . . . , aik} spans an (n− l)-dimensional normal cone σG.

ΣP = {σG : G a face of P} normal fan of P (a complete fan).

From now on, assume: ΣP is simplicial ⇔ P is simple.
In this case, {ai1, . . . , aik} spans a cone of ΣP ⇔ Fi1 ∩ . . . ∩ Fik ̸= ∅.
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Kempf–Ness sets Z(ΣP ) admit a very transparent interpretation as
complete intersections of real algebraic quadrics.

We may specify P by a matrix inequality APx + bP > 0, where AP is
the m × n matrix of row vectors ai, and bP is the column vector of
scalars bi.

The linear transformation AP : MR → Rm is exactly the one obtained
from the map Tm → T from (3) by applying HomZ( · ,S1)⊗Z R.

The formula iP (x) = APx+ bP defines an affine injection

iP : MR −→ Rm,

which embeds P into the positive cone Rm
> .
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Now define the space ZP by a pullback diagram

ZP
iZ−→ Cm

ϱP

y yϱ
P

iP−→ Rm

where ϱ(z1, . . . , zm) is given by (|z1|2, . . . , |zm|2).

Prop 8. a) We have ZP ⊂ U(ΣP ).

b) There is a Tm-equivariant homeomorphism ZP ∼= Z(ΣP ).
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Applying HomZ( · ,S1)⊗Z R to

1 −→ K −→ Tm −→ T −→ 1

we get

0 −→MR
AP−→ Rm C−→ Rm−n −→ 0,

where C = (cjk) is an (m− n)×m-matrix.

The map iZ embeds ZP in Cm as the space of solutions of the m− n

real quadratic equations
m∑

k=1

cj,k
(
|zk|2 − bk

)
= 0, for 1 ≤ j ≤ m− n. (9)

This intersection of real quadrics is non-degenerate, and therefore,
ZP ⊂ R2m is a smooth submanifold with trivial normal bundle.
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4. Projective toric varieties and moment maps.

Let fv = (dFv)e : g→ R, γ ∈ g 7→ ⟨γv, v⟩. Think fv ∈ g∗.

G is reductive ⇒ g = k⊕ ik.

K-action is norm preserving ⇒ fv vanishes on k,
so we consider fv as an element of ik∗ ∼= k∗.

Varying v ∈ V we get the moment map µ : V → k∗, which sends v ∈ V ,
κ ∈ k to ⟨iκv, v⟩. The Kempf–Ness set is the set of zeroes of µ:

KN = µ−1(0).
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This description does not directly apply to algebraic torus actions on
U(Σ): the set

µ−1(0) = {z ∈ Cm : ⟨κz, z⟩ = 0 for all κ ∈ k}

consist only of the origin in this case.

Assume now that ΣP is a regular fan. Then XΣP
is a smooth pro-

jective variety. This implies that XΣP
is Kähler, and therefore, a

symplectic manifold. In this case there is a symplectic version of the
previous constructions.
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(W,ω) symplectic manifold with symplectic K-action.

Given κ ∈ k, denote by ξκ the corresponding K-invariant vector field
on W .

The K-action is Hamiltonian if the 1-form ω( · , ξκ) is exact for every
κ ∈ k, that is, there is a function Hκ on W such that

ω(ξ, ξκ) = dHκ(ξ) = ξ(Hκ)

for every vector field ξ on W . Under this assumption, the moment
map

µ : W → k∗, (x, κ) 7→ Hκ(x)

is defined.
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Ex 10. 1. W = Cm, ω = 2
∑m

k=1 dxk ∧ dyk, zk = xk + iyk. The
coordinatewise action of K = Tm is Hamiltonian with moment map

µ : Cm → Rm, (z1, . . . , zm) 7→ (|z1|2, . . . , |zm|2).

2. Σ a simplicial fan, 1→ K→ Tm → T→ 1.
We can restrict the previous example to the K-action on the invariant
subvariety U(Σ) ⊂ Cm. The moment map

µΣ : Cm −→ Rm −→ k∗.

A choice of an isomorphism k ∼= Rm−n allows to identify the map
Rm → k∗ with the linear transformation given by matrix C in

0 −→MR
AP−→ Rm C−→ Rm−n −→ 0.
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Unlike the affine case, the Kempf–Ness set ZP for the G-action on
U(ΣP ) does not coincide with the level set

µ−1Σ (0) = {z ∈ Cm : ⟨κz, z⟩ = 0 for all κ ∈ k}.
The latter is given by the equations

∑m
k=1 cj,k|zk|

2 = 0, 1 ≤ j ≤ m−n,
which have only zero solution.

The right statement is as follows.

Prop 11. Then the Kempf–Ness set Z(ΣP ) is given by

Z(ΣP )
∼= µ−1ΣP

(CbP ).

In other words, the difference with the affine situation is that we have
to take CbP instead of 0 as the value of the moment map. The reason
is that CbP is a regular value of µ, unlike 0.
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In the case of normal fans the following version of our Theorem 7 (a)
is known in toric geometry (Audin, Batyrev, Guillemin):

Thm 12. Assume XΣ a projective simplicial toric variety and c is in
its Kähler cone. Then µ−1Σ (c) ⊂ U(Σ), and the natural map

µ−1Σ (c)/K→ U(Σ)/G = XΣ

is a diffeomorphism.

This statement is the essence of the construction of smooth projective
toric varieties via symplectic reduction. The submanifold µ−1Σ (c) ⊂ Cm

may fail to be symplectic as the restriction of the standard symplectic
form ω on Cm to µ−1Σ (c) may fail to be non-degenerate. However, the
restriction of ω descends to the quotient µ−1Σ (c)/K as a symplectic
form.
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Ex 13. P = ∆n ⊂MR standard simplex defined by

⟨ei, x⟩ > 0, i = 1, . . . , n, and ⟨(−1, . . . ,−1), x⟩+1 > 0

Cones of ΣP are generated by proper subsets of the set of vectors
{e1, . . . , en, (−1, . . . ,−1)}.

G ∼= C∗ and K ∼= S1 are the diagonal subgroups in (C∗)n+1 and Tn+1

respectively, while U(Σ) = Cn+1 \ {0}.

C is a row of units. Moment map is given by

µΣ(z1, . . . , zn+1) = |z1|2 + . . .+ |zn+1|2.

Since CbP = 1, the Kempf–Ness set ZP = µ−1Σ (1) is the unit sphere
S2n+1 ⊂ Cn+1, and XΣ = (Cn+1 \ {0})/G = S2n+1/K is the complex
projective space CPn.
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Problem 14. As is known, there are many complete regular fans Σ

which cannot be realised as normal fans of convex polytopes. The
corresponding toric varieties XΣ are not projective (although being
non-singular). In this case the Kempf–Ness set Z(Σ) is still defined,
as well as the moment map. However, the rest of the analysis does not
apply here. Can one still describe Z(Σ) as a complete intersection of
real quadratic (or other) hypersurfaces? And does the moment map
µΣ : U(Σ)→ k∗ have any regular values?
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5. Cohomology of Kempf–Ness sets.

Given an abstract simplicial complex K on the set [m], the face ring
(or the Stanley–Reisner ring) Z[K] is defined as the following quotient
of the polynomial ring on m generators:

Z[K] = Z[v1, . . . , vm]/(vi1 · · · vik : {i1, . . . , ik} is not a simplex of K).

Grading deg vi = 2, i = 1, . . . ,m.

Thm 15. For every simplicial fan Σ there are algebra isomorphisms

H∗
(
Z(Σ);Z

) ∼= Tor∗Z[v1,...,vm]

(
Z[KΣ],Z

) ∼= H
[
Λ[u1, . . . , um]⊗ Z[KΣ], d

]
,

where the latter denotes the cohomology of a dga with degui = 1,
deg vi = 2, dui = vi, dvi = 0 for 1 6 i 6 m.
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Given I ⊆ [m], denote by K(I) the corresponding full subcomplex of
K, or the restriction of K to I.

H̃i(K(I)) the ith reduced simplicial cohomology group of K(I) with
integer coefficients.

A theorem due to Hochster expresses Tor−i,2jZ[v1,...,vm](Z[K],Z) in terms
of full subcomplexes of K, which leads to the following description of
the cohomology of Z(Σ).

Thm 16. We have

Hk
(
Z(Σ)

) ∼= ⊕
I⊆[m]

H̃k−|I|−1
(
KΣ(I)

)
.

There is also a similar description of the product in H∗(Z(Σ)).
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