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1. Simple polytopes.

An arrangement of half-spaces is a collection H of subsets

Si = {x ∈ V : (ai, x)− bi > 0}, 1 6 i 6 m,

where ai ∈ V ∼= Rn and bi ∈ R. When the intersection of the Si is
bounded, it forms a convex polytope P ; otherwise, it is a polyhedron.

We may specify P by the matrix inequality APx > b.

Assume dimP = n, and no redundant half-spaces. So P has m facets
Fi, defined by its intersection with the bounding hyperplanes

Hi = {x ∈ V : (ai, x) = bi}.
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When the bounding hyperplanes are in general position, every vertex
is the intersection of precisely n facets, and P is simple.

The positive cone

Rm
> = {h ∈ Rm : hi > 0 for i = 1, . . . ,m}.



2. Spaces of polytopes.

Following Khovanskii, we fix AP and identify the m-dimensional vector
b with the arrangement H, and hence with the polytope P . The
coordinates bi describe the signed distances of the hyperplanes Hi

from the origin 0 in V , so long as the normal vectors ai have length
1; otherwise, the distances have to be scaled accordingly. The sign is
positive or negative as 0 lies in the interior or exterior of Si respectively.

Every vector in Rm may then be identified with an analogous arrange-
ment of halfspaces, obtained from H by parallel displacement of the
Si. Some such arrangements define polytopes, and others, dubbed
virtual polytopes by Khovanskii, do not; in either case, we also de-
scribe the corresponding intersections as analogous. The zero vector

3



is therefore identified with the virtual polytope {0}. An n-parameter
family of examples is given by the translations of V , for which the
corresponding polytopes are congruent to P .



In this context, we denote the m-dimensional vector space of poly-
topes analogous to P by R(P ), and interpret the identification as an
isomorphism k : Rm → R(P ).

We may interpret the matrix AP as a linear transformation V → Rm.
Since the points of P are specified by the constraint APx > b, it
follows that the intersection of the affine subspace AP (V ) − b with
the positive cone Rm

> is a copy of P in Rm. Denote

iP : V → Rm; V 7→ AP (v)− b.

So χ = k ◦ iP restricts to an affine embedding P → R(P ), for which
χ(x) is the polytope congruent to P with origin at x, for all x ∈ P . In
particular, χ(P ) is a submanifold of the positive cone R(P )>.

4



3. (Quasi)toric manifolds.

A (quasi)toric manifold (cf. Davis–Januszkiewicz) M = M2n over a
simple polytope P = Pn has

• an action of an n-dimensional torus T that locally looks like the
standard T-action on Cn;

• the orbit map π : M → P sending every set of orbits with the same
isotropy group onto the interior of a face of P .

In comparison with the smooth compact toric varieties from algebraic
geometry, (quasi)toric manifolds enjoy much larger flexibility for both
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topological and combinatorial applications, while retaining most of
the important properties of their algebraic counterpart.



Codimension-two characteristic submanifolds
Mi ⊂ M , i = 1, . . . ,m:

• Mi = π−1(Fi), where Fi is a facet of P ;

or, equivalently,

• Mi is a connected submanifold fixed pointwise by a circle subgroup
of T.

We denote by ρi the canonical orientable 2-dimensional real bundle
over M determined by Mi; it restricts to the normal bundle ν(Mi ↪→
M).
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An omniorientation of M consists of a choice of orientation for M

and each ρi.



A choice of orientation of ρi identifies it as a complex line bundle. The
one-dimensional isotropy subgroup TMi

of Mi acts in the fibres of the
normal bundle ν(Mi ↪→ M). We orient the circle TMi

in such way
that this action preserves the orientation determined by the complex
structure in ρi. Thereby we obtain a map

λ : Tm → T, TFi 7→ TMi
,

called the characteristic map of M . Due to a non-singularity condition
the kernel K(λ) of λ is isomorphic to a (m− n)-dimensional torus.
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Thm 1 (Davis–Januszkiewicz). There is an isomorphism of real 2m-
plane bundles:

τ(M)⊕ R2(m−n) ∼= ρ1 ⊕ . . .⊕ ρm.

Idea of proof. Consider the pullback diagram

ZP = Tm × P/∼ iZ−→ Tm × Rm
> /∼ = Cmy yρ

P
iP−→ Rm.

,

where ρ(z1, . . . , zm) = (|z1|2, . . . , |zm|2). It determines a canonically
framed manifold ZP .
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The map λ : Tm → T induces a principal K(λ)-fibration p : ZP = Tm×
P/∼ −→ T× P/≈ = M . The tangent bundle to ZP decomposes as

τ(ZP ) = p∗τ(M)⊕ ξ(p)

where ξ(p) is the tangent bundle along the fibres of p. The required
bundle isomorphism comes from Szczarba’s identification

τ(M)⊕ (ξ(p)/K(λ))⊕ (ν(iZ)/K(λ)) ∼= ρ1 ⊕ . . .⊕ ρm

by noticing that both ξ(p)/K(λ) and ν(iZ)/K(λ) are trivial real (m−n)-
plane bundles over M .



4. Stably almost complex structures.

Thm 2. A choice of omniorientation of M , ordering of facets, and
initial vertex of P gives rise to a canonical framing of the real 2(m−n)-
bundle ν(iZ)/K(λ)⊕ξ(p)/K(λ) over M , thereby determining a canon-
ical T-invariant stably complex structure for M .

Prop 3. The equivalence class of the stably complex structure on M

defined in Thm 2, and therefore the corresponding complex cobordism
class, depends on only on a choice of orientations for M and for each
normal bundle ν(Mi ↪→ M).
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5. Complex cobordisms.

Thm 4 (Buchstaber–Ray’01, corrected by Buchstaber–Ray–P.). In
dimensions > 2, every complex cobordism class contains a toric mani-
fold, necessarily connected, whose stably complex structure is induced
by an omniorientation, and is therefore compatible with the action of
the torus.

Idea of proof. Start with the additive basis in the complex cobordism
ring consisting of toric manifolds, constructed by Buchstaber and Ray
in 1999. Then one needs to replace the disjoint union (representing
the cobordism sum) by something connected.

Given two cobordism classes represented by 2n-dimensional omnior-
iented toric manifolds M1 and M2, with quotient polytopes P1 and
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P2 respectively, we need to construct a third such manifold M , with
quotient polytope P , representing the sum of the cobordism classes of
M1 and M2. This is done using the connected sum construction.



Ex 5. Connected sum of CP2 and CP2. The resulting stably complex
structure on the manifold CP2 # CP2 bounds, that is, represents the
zero cobordism class.
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However, it is not possible to take the connected sum of two copies
of CP2 with the standard omniorientation by a procedure like this. A
modification is needed here.
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Ex 6. Connected sum CP2 # S # CP2.
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